English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 311-321 DOI: 10.7536/PC180435 前一篇   后一篇

• •

用于甲醛催化氧化的锰基催化剂及协同效应的影响

刘喆1, 张晓岚1, 蔡婷1,2, 袁静2,3,**(), 赵昆峰2, 何丹农1,2,**()   

  1. 1. 上海交通大学材料科学与工程学院 上海 200240
    2. 纳米技术及应用国家工程研究中心 上海 200241
    3. 上海健康医学院 上海 201318
  • 收稿日期:2018-04-23 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 袁静, 何丹农
  • 基金资助:
    国家自然科学基金项目(21607098); 上海市青年科技启明星计划(17QB1402800)

Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect

Zhe Liu1, Xiaolan Zhang1, Ting Cai1,2, Jing Yua2,3,**(), Kunfeng Zhao2, Dannong He1,2,**()   

  1. 1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China
    3. Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
  • Received:2018-04-23 Online:2019-02-15 Published:2018-12-20
  • Contact: Jing Yua, Dannong He
  • About author:
    ** E-mail: (Jing Yuan);
    (Dannong He)
  • Supported by:
    National Natural Science Foundation of China(21607098); Shanghai Youth Science and Technology Rising-Star Project(17QB1402800)

甲醛作为主要的室内空气污染气体,正在严重威胁着人类的健康。甲醛的治理引起了人们的广泛关注,其中催化氧化技术是目前最有效和环境友好的手段之一。因氧化锰结构多变和氧化能力强的特点,围绕锰基催化剂在甲醛深度氧化中应用的研究日渐成为热点。本文主要从单一组分MnOx催化剂、锰基复合氧化物催化剂、多孔材料负载MnOx催化剂以及MnOx负载贵金属催化剂四方面归纳总结了近年来锰基催化剂在甲醛氧化方面的研究进展,阐述了以Mars-van Krevelen机理为基础的甲醛催化氧化机制。在具体反应过程中,不同的表面氧物种和活性位点产生特定的中间相。重点分析了催化剂组分之间存在的协同作用对催化剂的影响,组分间的相互活化以及不同组分在多步反应中分别或依次发挥催化作用是实现锰基催化剂协同的主要方式。最后,展望了锰基催化剂在甲醛氧化反应中的未来发展方向和趋势。

Formaldehyde is one of the major indoor pollutants and has threatened the human health seriously. The treatment of formaldehyde has attracted broad attention. Catalytic oxidation is one of the most effective and environment-friendly technology. Presently, the catalytic deep oxidation of formaldehyde over manganese-based catalysts has become the research hotspot owing to the structure flexibility and good oxidation ability of manganese oxides(MnOx). The review mainly summarizes the recent progress in formaldehyde oxidation over manganese-based catalysts from four perspectives: pure MnOxcatalysts, manganese-based composite oxides, MnOx immobilization on porous material and MnOx supported noble-metal catalysts. Catalytic mechanisms are elaborated based on Mars-van Krevelen mechanism. Specified surface oxygen species and active sites in variety of catalysts produce corresponding intermediates during the catalytic oxidation of formaldehyde and consequently induce different reaction pathways. The influence of synergistic catalytic effect is emphatically discussed between catalyst components. The synergistic effect of manganese-based catalysts is achieved through one component activation by the other between two catalytic components for enhanced activity, or successional catalytic functioning of two components in catalytic reactions probably involving multi-step for enhanced activity and/or selectivity. Finally, the challenges and outlook are featured based on such catalysts in the application of HCHO removal.

()
图1 不同氧化锰结构:(a)软锰矿;(b)斜方锰矿;(c)水钠锰矿;(d)尖晶石[18]
Fig. 1 Different MnO2 structures:(a)pyrolusite β-MnO2;(b)ramsdellite;(c)birnessite δ-MnO2;(d)spinel λ-MnO2[18]. ?Electrochemical Society.
表1 用于甲醛氧化的基于单一组分氧化锰催化剂代表性研究成果
Table 1 Catalytic oxidation of formaldehyde on pure MnOx catalysts
Catalyst Reaction condition HCHO conversion/removal ref
Cryptomelane-type MnO2 nanorods 50 mg catalyst, 100 ppm HCHO, 20% O2, 50 000/h 295.1% at 140 ℃ 20
Birnessite-type MnO2 nanospheres 50 mg catalyst, 100 ppm HCHO, 20% O2, 50 000/h 2100% at 140 ℃ 20
Ramsdellite MnO2 nanorods 50 mg catalyst, 100 ppm HCHO, 20% O2, 50 000/h 287.2% at 140 ℃ 20
Monoclinic MnOOH 50 mg catalyst, 100 ppm HCHO, 20% O2, 50 000/h 290.1% at 140 ℃ 20
Pyrolusite 200 mg catalyst, 400 ppm HCHO, 10% O2,18 000 mL/(g h) 1100% at 180 ℃ 21
Cryptomelane 200 mg catalyst, 400 ppm HCHO, 10% O2,18 000 mL/(g h) 1100% at 140 ℃ 21
Todorokite 200 mg catalyst, 400 ppm HCHO, 10% O2,18 000 mL/(g h) 1100% at 160 ℃ 21
Cocoon-like MnO2 100 mg catalyst, 460 ppm HCHO, air, 20 000 mL/(g h) 1100% over 200 ℃ 22
Urchin-like MnO2 100 mg catalyst, 460 ppm HCHO, air, 20 000 mL/(g h) 1100% over 200 ℃ 22
Nest-like MnO2 100 mg catalyst, 460 ppm HCHO, air, 20 000 mL/(g h) 1100% at 200 ℃ 22
α-MnO2 60 mg catalyst, 170 ppm HCHO, 20% O2, 100 000 mL/(g h) 1100% at 125 ℃ 23
β-MnO2 60 mg catalyst, 170 ppm HCHO, 20% O2, 100 000 mL/(g h) 1100% at 200 ℃ 23
γ-MnO2 60 mg catalyst, 170 ppm HCHO, 20% O2, 100 000 mL/(g h) 1100% at 150 ℃ 23
δ-MnO2 60 mg catalyst, 170 ppm HCHO, 20% O2, 100 000 mL/(g h) 1100% at 80 ℃ 23
MnO2 / 299% at 25 ℃ 24
MnOx 100 mg catalyst, air, 30 000 mL/(g h) 1100% at 40 ℃ 25
MnO2 / 299% at 25 ℃ 26
3D-MnO2 200 mg catalyst, 400 ppm HCHO,20% O2, 30 000 mL/(g h) 1100% at 130 ℃ 27
α-MnO2 nanorods 200 mg catalyst, 400 ppm HCHO,20% O2, 30 000 mL/(g h) 1100% at 140 ℃ 27
β-MnO2 nanorods 200 mg catalyst, 400 ppm HCHO,20% O2, 30 000 mL/(g h) 1100% at 180 ℃ 27
Ag-OMS-2 / 280% at 25 ℃ 28
Ag-OMS-2 200 mg catalyst, 400 ppm HCHO,10% O2 190% at 100 ℃ 29
K-OMS-2 nanorods 100 mg catalyst, 460 ppm HCHO, 21% O2, 30 000 mL/(g h) 1100% at 200 ℃ 30
K-OMS-2 nanoparticles 100 mg catalyst, 460 ppm HCHO, 21% O2, 30 000 mL/(g h) 154% at 200 ℃ 30
表2 用于甲醛氧化的锰基复合氧化物催化剂代表性研究成果
Table 2 Catalytic oxidation of formaldehyde on manganese-based composite oxides
表3 用于甲醛氧化的多孔材料负载氧化锰催化剂代表性研究成果
Table 3 Catalytic oxidation of formaldehyde on MnOx immobilization on porous material
表4 用于甲醛氧化的氧化锰负载贵金属催化剂代表性研究成果
Table 4 Catalytic oxidation of formaldehyde on MnOx supported noble-metal catalysts
图2 干燥条件下MnOx催化氧化甲醛的可能机理[67]
Fig. 2 The possible mechanism of catalytic oxidation of HCHO to CO2 on MnOx under dry condition[67] . ?Elsevier.
图3 Pd/Mn/Beta催化剂催化氧化甲醛可能的反应路径[72]
Fig. 3 A possible reaction pathway of HCHO oxidation over Pd/Mn/Beta catalyst[72]. ?Elsevier.
[1]
Hakim M, Broza Y Y, Barash O, Peled N, Phillips M, Amann A, Haick H . Chem. Rev., 2012,112:5949. https://www.ncbi.nlm.nih.gov/pubmed/22991938

doi: 10.1021/cr300174a     URL     pmid: 22991938
[2]
Chen D, Qu Z, Sun Y, Wang Y . Colloid. Surface A, 2014,441:433.
[3]
Le Y, Guo D, Cheng B, Yu J . Appl. Surf. Sci., 2013,274:110.
[4]
Yu J, Wang S, Low J, Xiao W . Phys. Chem. Chem. Phys., 2013,15:16883. https://www.ncbi.nlm.nih.gov/pubmed/23999576

doi: 10.1039/c3cp53131g     URL     pmid: 23999576
[5]
Liang W J, Li J, Li J X, Zhu T, Jin Y Q . J. Hazard Mater., 2010,175:1090. https://www.ncbi.nlm.nih.gov/pubmed/19896770

doi: 10.1016/j.jhazmat.2009.10.034     URL     pmid: 19896770
[6]
Huang H, Leung D Y C . J. Catal., 2011,280:60.
[7]
Zhang C, Liu F, Zhai Y, Ariga H, Yi N, Liu Y, Asakura K, Flytzani-Stephanopoulos M, He H . Angew. Chem. Int. Ed. Engl., 2012,51:9628. https://www.ncbi.nlm.nih.gov/pubmed/22930519

doi: 10.1002/anie.201202034     URL     pmid: 22930519
[8]
Tang X, Chen J, Huang X, Xu Y, Shen W . Appl.Catal.B:Environ., 2008,81:115.
[9]
Nie L, Yu J, Jaroniec M, Tao F F . Catal. Sci. Technol., 2016,6:3649.
[10]
Yan Z, Xu Z, Yu J, Jaroniec M . Environ. Sci. Technol., 2015,49:6637. https://www.ncbi.nlm.nih.gov/pubmed/25961411

doi: 10.1021/acs.est.5b00532     URL     pmid: 25961411
[11]
Yan Z, Xu Z, Cheng B, Jiang C . Appl. Surf. Sci., 2017,404:426.
[12]
Nie L, Yu J, Li X, Cheng B, Liu G, Jaroniec M . Environ. Sci. Technol., 2013,47:2777. https://www.ncbi.nlm.nih.gov/pubmed/23438899

doi: 10.1021/es3045949     URL     pmid: 23438899
[13]
Ma L, Wang D, Li J, Bai B, Fu L, Li Y . Appl.Catal.B: Environ., 2014,148/149:36.
[14]
Huang Y, Li H, Balogun M S, Yang H, Tong Y, Lu X, Ji H . RSC Adv., 2015,5:7729.
[15]
Zeng L, Song W, Li M, Zeng D, Xie C . Appl. Catal. B: Environ., 2014,147:490.
[16]
Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z . Environ. Sci. Technol., 2011,45:3628. https://www.ncbi.nlm.nih.gov/pubmed/21375237

doi: 10.1021/es104146v     URL     pmid: 21375237
[17]
田华(Tian H), 贺军辉(He J H) . 化学通报 (Chemistry), 2013,76(2):100.
[18]
Brousse T, Toupin M, Dugas R, Athouёl L, Crosnier O, Bélanger D . J. Electrochem. Soc., 2006,153:A2171.
[19]
Sekine Y . Atmos. Environ., 2002,36(35):5543.
[20]
Zhou L, Zhang J, He J, Hu Y, Tian H . Mater. Res. Bull., 2011,46:1714.
[21]
Chen T, Dou H, Li X, Tang X, Li J, Hao J . Micropor. Mesopor.Mater., 2009,122:270.
[22]
Yu X, He J, Wang D, Hu Y, Tian H, He Z . J. Phys. Chem. C, 2011,116:851.
[23]
Zhang C, Zhang J, Li Y, Wang L, He H . Catal. Sci. Technol., 2015,5:2305.
[24]
程海军(Cheng H J), 丁欣宇(Ding X Y), 沈拥军(Shen Y J), 蔡再生(Cai Z S), 景晓辉(Jing X H) . 印染助剂 (Textile Auxiliaries), 2016,33(8):5.
[25]
赵艳磊(Zhao Y L), 田华(Tian H), 贺军辉(He J H), 杨巧文(Yang Q W) . 应用化工 (Applied Chemical Industry), 2017,46(5):814.
[26]
李国涵(Li G H), 丁欣宇(Ding X Y), 沈拥军(Shen Y J), 景晓辉(Jing X H) . 针织工业 (Knitting Industries), 2017, (7):39.
[27]
Bai B, Qiao Q, Li J, Hao J . Chin. J. Catal., 2016,37:27.
[28]
韩瑛玉(Han Y Y), 张华(Zhang H) . 化工新型材料 (New Chemical Materials), 2014,(9):135.
[29]
曹青青(Cao Q Q) . 复旦大学博士论文(Doctoral Dissertation of Fudan University), 2011.
[30]
Tian H, He J, Liu L, Wang D . Ceram. Int., 2013,39:315.
[31]
Li J, Zhang P, Wang J, Wang M . J. Phys. Chem. C, 2016,120:24121.
[32]
Lu L, Tian H, He J, Yang Q . J. Phys. Chem. C, 2016,120:23660.
[33]
唐幸福(Tang X F), 黄秀敏(Huang X M), 邵建军(Shao J J), 刘俊龙(Liu J L), 李永刚(Li Y G), 徐奕德(Xu Y D), 申文杰(Shen W J) . 催化学报 (Chinese Journal of Catalysis), 2006,27(2):97.
[34]
Iyer A, Galindo H, Sithambaram S, King’ondu C, Chen C H, Suib S L . Appl. Catal. A: Gen., 2010,375:295.
[35]
Chen X, Shen Y F, Suib S L, O’Young C L . Chem. Mater., 2002,14:940.
[36]
余林(Yu L), 孙明(Sun M), 余坚(Yu J), 余倩(Yu Q), 郝志峰(Hao Z F), 李朝圣(Li C S) . 催化学报 (Chinese Journal of Catalysis), 2008,29(11):1127.
[37]
Liu B, Liu Y, Li C, Hu W, Jing P, Wang Q, Zhang J . Appl.Catal. B: Environ., 2012,127:47.
[38]
Bai B, Arandiyan H, Li J . Appl. Catal. B: Environ., 2013,142/143:677.
[39]
Nie L, Meng A, Yu J, Jaroniec M . Sci. Rep., 2013,3:3215. https://www.ncbi.nlm.nih.gov/pubmed/24225532

doi: 10.1038/srep03215     URL     pmid: 24225532
[40]
Luo M, Ma J, Lu J, Song Y, Wang Y . J. Catal., 2007,246:52. https://www.ncbi.nlm.nih.gov/pubmed/14335787

URL     pmid: 14335787
[41]
Ding Z Y, Li L, Wade D, Gloyna E F . Ind. Eng. Chem. Res., 1998,37:1707.
[42]
Lou Y, Cao X M, Lan J, Wang L, Dai Q, Guo Y, Ma J, Zhao Z, Guo Y, Hu P, Lu G . Chem. Commun., 2014,50:6835.
[43]
Quiroz J, Giraudon J M, Gervasini A, Dujardin C, Lancelot C, Trentesaux M, Lamonier J F . ACS Catal., 2015,5:2260.
[44]
Zhu L, Wang J, Rong S, Wang H, Zhang P . Appl.Catal.B: Environ., 2017,211:212.
[45]
Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W . Appl. Catal. B: Environ., 2006,62:265.
[46]
Li J W, Pan K L, Yu S J, Yan S Y, Chang M B . J. Environ. Sci., 2014,26:2546. https://www.ncbi.nlm.nih.gov/pubmed/25499503

doi: 10.1016/j.jes.2014.05.030     URL     pmid: 25499503
[47]
Lu S, Li K, Huang F, Chen C, Sun B . Appl. Surf. Sci., 2017,400:277.
[48]
Shi C, Wang Y, Zhu A, Chen B, Au C . Catal. Commun., 2012,28:18. https://www.ncbi.nlm.nih.gov/pubmed/19216794

doi: 10.1186/1756-9966-28-18     URL     pmid: 19216794
[49]
陈猛(Chen M), 李一倬(Li Y Z), 范泽云(Fan Z Y), 施建伟(Shi J W), 陈铭夏(Chen M X), 刘震炎(Liu Z Y), 上官文峰(Shangguan W F) . 分子催化 (Journal of Molecular Catalysis), 2015,29(6):545.
[50]
Zheng Y, Wang W, Jiang D, Zhang L . Chem. Eng. J., 2016,284:21.
[51]
Wang Y, Zhu A, Chen B, Crocker M, Shi C . Catal. Commun. 2013,36:52.
[52]
Wen Y, Tang X, Li J, Hao J, Wei L, Tang X . Catal. Commun. 2009,10:1157. https://linkinghub.elsevier.com/retrieve/pii/S1566736708005669

doi: 10.1016/j.catcom.2008.12.033     URL    
[53]
Yi Y, Li C, Zhao L, Du X, Gao L, Chen J, Zhai Y, Zeng G . Environ. Sci. Pollut. Res. Int., 2018,25:4761. http://link.springer.com/10.1007/s11356-017-0855-8

doi: 10.1007/s11356-017-0855-8     URL    
[54]
李玮(Li W), 黄丽丽(Huang L L), 翟友存(Zhai Y C), 宁晓宇(Ning X Y), 邹克华(Zou K H) . 化工进展 (Chemical Industry and Engineering Progress), 2015,(1):127. b263d73b-0a22-435b-a355-93bdde73aa25http://www.hgjz.com.cn/CN/abstract/abstract17027.shtml
[55]
Wang Z, Pei J, Zhang J . Build. Environ., 2013,65:49. 7e8d98ec-4d59-439c-8525-c61b3cd48cc7http://dx.doi.org/10.1016/j.buildenv.2013.03.007

doi: 10.1016/j.buildenv.2013.03.007     URL    
[56]
Kim M, Park E, Jurng J . Powder. Technol., 2018,325:368. https://linkinghub.elsevier.com/retrieve/pii/S0032591017308288

doi: 10.1016/j.powtec.2017.10.031     URL    
[57]
陈海川(Chen H C) . 资源节约与环保 (Resources Economization and Environment Protection), 2017,(4):106.
[58]
Park S M, Jeon S W, Kim S H . Catal. Lett., 2014,144:756. http://link.springer.com/10.1007/s10562-014-1207-7

doi: 10.1007/s10562-014-1207-7     URL    
[59]
Aguilera D A, Perez A, Molina R, Moreno S . Appl.Catal.B: Environ., 2011,104:144. https://linkinghub.elsevier.com/retrieve/pii/S0926337311000890

doi: 10.1016/j.apcatb.2011.02.019     URL    
[60]
Fang R, Huang H, Ji J, He M, Feng Q, Zhan Y, Leung D Y C . Chem. Eng. J., 2018,334:2050. https://linkinghub.elsevier.com/retrieve/pii/S1385894717320983

doi: 10.1016/j.cej.2017.11.176     URL    
[61]
Dai Z, Yu X, Huang C, Li M, Su J, Guo Y, Xu H, Ke Q . RSC Adv., 2016,6:97022. http://xlink.rsc.org/?DOI=C6RA15463H

doi: 10.1039/C6RA15463H     URL    
[62]
周昕彦(Zhou X Y), 张芃(Zhang P), 蒋文(Jiang W), 杨文韬(Yang W T), 林莉莉(Lin L L), 张巍(Zhang W) . 环境工程学报 (Chinese Journal of Environmental Engineering), 2015,9(12):5965.
[63]
陈仁忠(Chen R Z), 胡毅(Hu Y), 袁菁红(Yuan J H), 沈桢(Shen Z), 陈艳丽(Chen Y L), 吕慧(Lv H), 何霞(He X) . 纺织学报 (Journal of Textile Research), 2015,36(5):1.
[64]
Miyawaki J, Lee G H, Yeh J, Shiratori N, Shimohara T, Mochida I, Yoon S H . Catal. Today, 2012,185:278. 36ff9c1d-5e1f-4416-82e3-21917b409af2http://dx.doi.org/10.1016/j.cattod.2011.09.036

doi: 10.1016/j.cattod.2011.09.036     URL    
[65]
Wang J, Yunus R, Li J, Li P, Zhang P, Kim J . Appl. Surf. Sci., 2015,357:787. https://linkinghub.elsevier.com/retrieve/pii/S0169433215022035

doi: 10.1016/j.apsusc.2015.09.109     URL    
[66]
李传宝(Li C B), 刘海辉(Liu H H), 苗锦雷(Miao J L), 张兴祥(Zhang X X) . 复合材料学报 (Acta Materiae Compositae Sinica), 2016,33(12):2831.
[67]
Wang M, Zhang L, Huang W, Xiu T, Zhuang C, Shi J . Chem.Eng. J., 2017,320:667.
[68]
Averlant R, Royer S, Giraudon J M, Bellat J P, Bezverkhyy I, Weber G, Lamonier J F . ChemCatChem, 2014,6:152. 74369dda-38ba-41aa-958c-7f927f5f4116http://onlinelibrary.wiley.com/doi/10.1002/cctc.201300544/abstract

doi: 10.1002/cctc.201300544     URL    
[69]
Wang J, Li J, Zhang P, Zhang G . Appl.Catal.B: Environ., 2018,224:863. https://linkinghub.elsevier.com/retrieve/pii/S0926337317310743

doi: 10.1016/j.apcatb.2017.11.019     URL    
[70]
Chen H, Tang M, Rui Z, Ji H . Ind. Eng. Chem. Res., 2015,54:8900. https://pubs.acs.org/doi/10.1021/acs.iecr.5b01970

doi: 10.1021/acs.iecr.5b01970     URL    
[71]
Chen Y, He J, Tian H, Wang D, Yang Q . J. Colloid Interface Sci., 2014,428:1. https://www.ncbi.nlm.nih.gov/pubmed/24910027

doi: 10.1016/j.jcis.2014.04.028     URL     pmid: 24910027
[72]
Park S J, Bae I, Nam I S, Cho B K, Jung S M, Lee J H . Chem.Eng. J., 2012,195/196:392.
[73]
Pang G, Wang D, Zhang Y, Ma C, Hao Z . Front. Env. Sci. Eng., 2015,10:447. http://link.springer.com/10.1007/s11783-015-0808-8

doi: 10.1007/s11783-015-0808-8     URL    
[74]
Yu X, He J, Wang D, Hu Y, Tian H, Dong T, He Z .J. Nanopart. Res. 2013,15:1832. http://link.springer.com/10.1007/s11051-013-1832-x

doi: 10.1007/s11051-013-1832-x     URL    
[75]
Bai B, Qiao Q, Arandiyan H, Li J, Hao J . Environ. Sci. Technol., 2016,50:2635. https://www.ncbi.nlm.nih.gov/pubmed/26629972

doi: 10.1021/acs.est.5b03342     URL     pmid: 26629972
[76]
Li D, Yang G, Li P, Wang J, Zhang P . Catal. Today, 2016,277:257. https://linkinghub.elsevier.com/retrieve/pii/S0920586116301468

doi: 10.1016/j.cattod.2016.02.040     URL    
[77]
Kharlamova T, Mamontov G, Salaev M, Zaikovskii V, Popova G, Sobolev V, Knyazev A, Vodyankina O . Appl. Catal. A: Gen., 2013,467:519. https://linkinghub.elsevier.com/retrieve/pii/S0926860X13005024

doi: 10.1016/j.apcata.2013.08.017     URL    
[78]
张晓岚(Zhang X L), 袁静(Yuan J), 蔡婷(Cai T), 叶俊辉(Ye J H), 何丹农(He D N) . 化工进展 (Chemical Industry and Engineering Progress), 2017,36(12):4453.
[79]
Bai B, Qiao Q, Li J, Hao J . Chin. J. Catal., 2016,37:102.
[80]
Yusuf A, Snape C, He J, Xu H, Liu C, Zhao M, Chen G Z, Tang B, Wang C, Wang J, Behera S N . Catal. Rev., 2017,59:189.
[81]
Wang J, Zhang P, Li J, Jiang C, Yunus R, Kim J . Environ. Sci. Technol., 2015,49:12372. https://www.ncbi.nlm.nih.gov/pubmed/26426569

doi: 10.1021/acs.est.5b02085     URL     pmid: 26426569
[82]
Wang J, Li D, Li P, Zhang P, Xu Q, Yu J . RSC Adv., 2015,5:100434. http://xlink.rsc.org/?DOI=C5RA17018D

doi: 10.1039/C5RA17018D     URL    
[83]
Wang J, Zhang G, Zhang P . J. Mater. Chem. A, 2017,5:5719.
[84]
哈肯(Haken H) . 自然杂志 (Chinese Journal of Nature), 1983,(6):5.
[85]
Shi J . Chem.Rev., 2013,113:2139. https://www.ncbi.nlm.nih.gov/pubmed/23190123

doi: 10.1021/cr3002752     URL     pmid: 23190123
[1] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[2] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[3] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[4] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[5] 曾小珊, 单传家, 孙铭第, 何陶宏, 荣少鹏. 二氧化锰催化分解室内空气中甲醛的研究[J]. 化学进展, 2021, 33(12): 2245-2258.
[6] 田景晨, 吴功德, 刘雁军, 万杰, 王晓丽, 邓琳. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069-2084.
[7] 刘昕, 王永强, 刘芳, 赵朝成, 刘华欣, 时林. 锰基催化剂催化燃烧VOCs[J]. 化学进展, 2019, 31(8): 1159-1165.
[8] 陈茂重, 王斓懿, 于学华, 赵震. 锰基催化剂在催化柴油炭烟燃烧中的应用[J]. 化学进展, 2019, 31(5): 723-737.
[9] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[10] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[11] 王伟涛, 姚敏, 马养民, 张金. 氧气直接氧化苯制备苯酚[J]. 化学进展, 2014, 26(10): 1665-1672.
[12] 王猛, 惠永海, 张雪华, 魏雅娜, 史岷山, 王吉德*. 四氢呋喃的氧化[J]. 化学进展, 2013, 25(07): 1158-1165.
[13] 王海波, 赵猛, 计亮年, 毛宗万*. 具有非共价相互作用的金属酶模拟物[J]. 化学进展, 2013, 25(04): 577-588.
[14] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[15] 张俊, 陈婧, 黄新松, 李广社*. CO催化氧化用纳米材料及其最新研究成果[J]. 化学进展, 2012, 24(07): 1245-1251.