English
新闻公告
More

文章编号: 190922  

文献标识码: A

综述

固态荧光碳点的制备

展开
  • 1.中北大学材料科学与工程学院 太原 030051
  • 2.山西机电职业技术学院 长治 046011
  • 3.中北大学能源动力工程学院 太原 030051

收稿日期:2019-09-18

  修回日期:2019-12-16

  网络出版日期:2020-02-20

基金资助

山西省三晋学者计划、山西省高等学校中青年拔尖创新人才支持计划、山西省重点研发计划-国际合作项目(201903D421082)

山西省三晋学者计划、山西省高等学校中青年拔尖创新人才支持计划、山西省重点研发计划-国际合作项目(201803D421091)

山西省高校成果转化培育项目()

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Preparation of Solid-State Fluorescent Carbon Dots

Expand
  • 1.School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
  • 2.Shanxi Institute of Mechanical & Electrical Engineering, Changzhi 046011, China
  • 3.School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
** e-mail:

Received:18 Sept. 2019

  Revised:16 Dec. 2019

  Online:20 Feb. 2020

Fund

Specialized Research Fund for Sanjin Scholars Program of Shanxi Province, the Program for the Innovative Talents of Higher Education Institutions of Shanxi, the Key Research and Development Plan(International Cooperation) of Shanxi Province(201903D421082)

Specialized Research Fund for Sanjin Scholars Program of Shanxi Province, the Program for the Innovative Talents of Higher Education Institutions of Shanxi, the Key Research and Development Plan(201803D421091)

Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (TSTAP), China()

Copyright

Copyright reserved © 2020.

摘要

荧光碳点由于其具有无毒、制备成本低以及独特的光致发光性能而引起人们极大的研究兴趣,但是通常碳点的制备和使用均是在溶液中,而且随着碳点浓度的增加其荧光强度可能会降低甚至猝灭,通过简单干燥后得到的固态粉末则常常缺少荧光性质。因此,固态荧光碳点制备及其相关应用的研究相对较少。本文综述了固态荧光碳点的制备方法,包括后处理法(基质分散法、表面工程法)和前驱体直接合成法;对比了各种调控手段处理前后碳点荧光性能的变化情况,总结了各种固态碳点在制备过程中和使用过程中存在的主要问题。最后,针对固态发光碳点的制备方法、性能调控及发展方向进行了展望。开发具有聚集诱导发射增强的碳点是至关重要的,也为固态碳点的发展提供了新思路。

关键词: 固态荧光碳点 ; 制备 ; 荧光量子产率 ; 荧光猝灭 ; 负载率

中图分类号: O613.71 ()  

本文引用格式

李世嘉 , 庞尔楠 , 郝彩红 , 蔡婷婷 , 胡胜亮 . 固态荧光碳点的制备[J]. 化学进展, 2020 , 32(5) : 548 -561 . DOI: 10.7536/PC190922

Shijia Li , Ernan Pang , Caihong Hao , Tingting Cai , Shengliang Hu . Preparation of Solid-State Fluorescent Carbon Dots[J]. Progress in Chemistry, 2020 , 32(5) : 548 -561 . DOI: 10.7536/PC190922

Abstract

Fluorescent carbon dots have attracted significant interest for their non-toxicity, low cost and unique photoluminescence properties. Generally, the preparation and usage of carbon dots(CDs) are in solution. With the increase of CDs concentration, their fluorescence intensity may be reduced or even quenched. Following, the solid-state fluorescent CDs powder obtained by simple drying often lack of fluorescence properties. Therefore, there are relatively few researches on the preparation and related applications of solid-state fluorescent CDs. The article describes recent preparation methods of solid-state fluorescent CDs, including post-processing methods(matrix dispersion method, surface engineering) and direct synthesis method. The changes of fluorescence properties of CDs before and after treatment are compared, and the main problems in preparation and application of solid CDs are summarized. Meanwhile, the preparation, performance modulation of solid-state fluorescent CDs are prospected. It is very crucial to exploit the CDs with the enhancement of aggregation induced emission, which provides a new strategy for the development of solid-state fluorescence CDs.

Contents

1 Introduction

2 Preparation of solid-state fluorescent carbon dots by post-processing method

2.1 Matrix dispersion method

2.2 Surface engineering method

3 Preparation of solid-state fluorescent carbon dots by direct synthesis method

4 Conclusion

1 引言

自2006年Sun等[1]提出量子尺寸发光的碳点(CDs)以来,碳点一般被定义为具有荧光特性的碳纳米颗粒(通常小于10 nm),具有单层或多层石墨碳结构,外形呈球状。CDs具有低毒性、良好生物相容性、独特光学性能等优点,广泛应用于化学催化[2,3,4,5]、化学传感[6,7,8,9]、生物医学[10,11,12,13,14]、光电子器件[15,16,17]、储能材料[18,19,20]等领域。碳点的制备方法比较多,可以分成两类:自上而下和自下而上方法。自上而下方法包括激光刻蚀法[21, 22]、酸刻蚀法[23,24,25]和电化学法[26,27,28,29]等;自下而上方法包括水热法[30, 31]、溶剂热法[32,33,34]、微波辅助法[35, 36]等。自上而下方法制备的CDs结晶度高[37],但是荧光量子产率低,表面未功能化的CDs通常表现出微弱的发光[38],需要进一步的钝化才能提高发光效率;自下而上方法制备的碳点主要由sp2/sp3[39]或非晶态碳[40]组成,表面存在丰富的官能团和缺陷[41]。由于不同制备方法所得碳点化学结构不同,荧光的发光中心也各有差异。对于碳点的发光机理没有统一的解释,目前提出的发光机理有量子尺寸效应[42, 43],表面态[44]、边缘态[45, 46]和本征态发光[47],分子荧光团[48,49,50]等。此外,碳点的荧光在溶液中能够被电子受体或电子给体有效地猝灭[51, 52],表明碳点是一种优秀的电子给体或电子受体[53]。这种光生电子转移性质,为碳点用于能量转换器件,如光伏器件和超级电容器提供了可能性。
碳点制备方法均是在溶液中进行,得到的碳点分散在溶液中发射荧光,随着碳点浓度的增加,可能会发生发射波长红移、发射强度降低或者荧光猝灭的现象。当将碳点干燥成粉末以后会发生聚集导致的发光猝灭(ACQ)。在实际应用中需要在固态下发光的碳点,比如发光二极管(LEDs)一般需要固态荧光粉做颜色转换层,这就限制了碳点在固态照明器件中的应用。因此,开发合适的基质、表面功能化方法来生产固态碳点,实现碳点在固态下高质量发光(SSF),亟需科研工作者深入研究。本文综述了近年来国内外固态荧光碳点的制备方法,将各种调控手段进行归类,按照制备时碳点是否与分散物同时出现总体上分为两大类:后处理法和直接合成法,对比了处理前后碳点荧光性能的变化情况,总结了固态碳点在应用中存在的问题,最后对固态荧光碳点的发展进行了展望。

2 后处理法制备固态荧光碳点

有报道称荧光猝灭可能源于荧光共振能量转移(FRET)[54],或者是由于碳点在固态时π-π*堆叠或团聚引起非辐射能量转移导致荧光猝灭,其机理如图1所示。也有报道对固态碳点发光机理进行探讨[55],认为碳点蓝色发光可能是由于CDs中的碳氧键与环境中极性基团之间相互作用而导致的。还有报道则是将碳点分散在硅胶基体中制成凝胶进行探讨[56,57,58],认为在基质中平衡聚集度是实现高亮度和可调发射的关键,紧密相互作用时将通过重吸收导致荧光猝灭。其他报道将碳点分散在聚合物基质中制成薄膜进行探讨[59,60,61],但这得到的不是固态发光粉体。基于以上荧光猝灭的可能推断,在后处理法中保持固态碳点发光的思路是将碳点嵌入基质的结构中或用基质将碳点均匀分散或用化学方法将基质连接到碳点上或用化学方法改变碳点表面能级,阻止碳点单体的直接接触引起非辐射能量转移,具体分类有基质分散法(吸附法、物理嵌入法、均匀分散法和化学键合法)和表面工程法两大类。
图1 荧光猝灭可能机理图

Fig. 1 Possible mechanism of fluorescence quenching

2.1 基质分散法

基质分散法就是用不同方法将碳点先制备出来,随后在碳点溶液中加入不同种类基质,基质可以是有机物、无机盐或者有机物与无机物的复合材料。碳点与基质间的作用有4种,即基质充分吸附和包裹在碳点上(吸附法)、碳点嵌入基质的空间中(物理嵌入法)、碳点与基质均匀分布(均匀分布法)以及碳点上的官能团与基质中的化学键合在一起(化学键合法)。采用前三种方法制备出的碳点,并未改变原碳点表面官能团的种类和数量,往往通过简单的物理搅拌、过滤、干燥就可得到固态发光粉体,且基质本身并不吸收或发射荧光,因此对碳点的光学性能影响不大。采用化学键合法是对制备出的CDs表面官能团进行修饰,将碳点与基质通过化学键紧密连接在一起,防止碳点直接接触从而实现固态发光。修饰后的碳点表面除了含有原官能团外,在产物中还有可能引入其他官能团,如最常见的氨基、酰基等。这些官能团的吸/供电子能力各不相同,也就决定了碳点不同的表面状态。不同表面状态意味着不同的能级,电子可以在不同能级间跃迁,产生各种发光特性,采用该方法制备出的碳点的光学性能往往也会发生变化。
2.1.1 吸附法
目前报道合成的碳点(CDs)表面往往含有丰富的羟基、羰基和羧基等官能团[62],这些官能团决定了CDs的化学性质。根据CDs不同的化学性质,选用不同的分散基质通过吸附法就可以制备出固态发光碳点粉体。Qu等[63]利用柠檬酸(CA)和尿素通过微波辅助法(MW)制备了在溶液中发绿色光的碳点(g-CDs)。该类碳点表面含有丰富的羧基和酰胺基,而淀粉表面含有大量烃基,可以通过氢键有效吸附g-CDs,将CDs包裹和隔离,经过烘干研磨后得到CDs@淀粉复合荧光粉,其光学图像如图2所示。由于淀粉基质既不吸收激发光也不吸收碳点的发射,因此复合粉体可以高效地发射荧光,保留了碳点在溶液中的荧光强度,同时表现出良好的抗紫外辐照性能。但由于有机淀粉基体的热稳定性较差,荧光强度随温度升高而降低,限制了其在固态照明中的应用。
图2 质量比为1∶450、1∶70、1∶20的CDs@淀粉粉末在日光下

(a)和紫外光下(b)图像;质量比为1∶70的CDs@淀粉粉末在紫外(c和c')、蓝光(d和d')、绿光(e和e')激发下的荧光图像[63]

Fig. 2 Photographs of CDs@starch powder with a mass ratio of 1∶450,1∶70,1∶20 under sunlight

(a) and ultraviolet (b). Fluorescence photographs of CDs@starch powder with a mass ratio of 1∶70 excited by ultraviolet(c and c'), blue light(d and d'), and green light(e and e') [63]. Copyright 2014, Royal Society of Chemistry

纳米颗粒表面拥有一层电位离子,电位离子层通过静电作用,把溶液中电荷相反的离子吸引到周围,纳米颗粒就表现出与电位离子相同的电负性,即Zeta电位。采用不同的合成手段,得到的CDs的Zeta电位电负性不同。考虑到淀粉用作LEDs的热稳定性差,Qu等[64]采用无机物BaSO4作为分散基质,制备的g-CDs含有大量的羧基和羟基,其Zeta电位为-32 mV。为了获得高发光荧光粉,在CDs水溶液中先加入BaCl2溶液,Ba2+通过静电作用被吸附到CDs表面,测得吸附后的Zeta电位为+6 mV,再加入Na2SO4水溶液,S O 4 2 - 会被CDs表面吸附的Ba2+所吸引,发生化学反应使BaSO4在CDs核周围生长,进而原位形成CDs@BaSO4杂化荧光粉。若改变BaCl2和Na2SO4加入顺序,由于吸附的CDs量少、加载率低,则荧光强度会极大的降低。CDs@BaSO4杂化粉体光学性能与溶液中碳点相比没有发生明显的改变。由于BaSO4的无机性质,合成的荧光粉具有良好的热稳定性(最高可达300 ℃)和光稳定性,以及对不同溶剂(强酸/强碱和常见有机溶剂)的高耐受性,其制备方法适用性广,在固态照明中可以得到应用。
有时通过简单的静电吸引并不能达到隔离CDs、保持荧光发射的目的,还需要加入偶联剂使CDs结构保持稳定。Shen等[65]制备出带负电荷的CDs,将得到的CDs溶液稀释后依次在其中加入Zn(Ac)·2H2O、KOH的乙醇溶液连续搅拌,制备出表面带正电荷的ZnO量子点(QDs)。由于静电吸引,两种带相反电荷的量子点相邻。最后,加入3-氨基丙基三乙氧基硅烷(APTES)作为偶联剂,干燥后形成碳-氧化锌交变量子点链(CDs-ZnO@APTES)粉末,其原理如图3a所示。CDs-ZnO@APTES粉体分别在390 nm和300 nm激发波长下,荧光光谱在450 nm和540 nm左右出现两个峰值,分别对应于CDs和ZnO QDs的荧光,如图3b所示。值得注意的是,CDs和ZnO QDs可在365 nm下同时激发。APTES加入量可以调节CDs-ZnO@APTES荧光颜色,从黄色到白色再到蓝色。究其原因是二氧化硅层不足,部分CDs仍保持着相互接触,因而在540 nm处峰值要高;随着APTES加入量增多,CDs被二氧化硅层分离,非辐射能量转移减少,在450 nm处峰值逐渐增大。复合粉体具有良好的耐高温性能,但是没有进行耐酸、碱测试,尤其是用作LEDs荧光粉,没有进行抗紫外线能力测试。
图3 (a) CDs-ZnO@APTES的形成过程示意图;(b) CDs-ZnO@APTES粉末发射激发谱和不同激发波长下的发射光谱[65]

Fig. 3 (a) Schematic of the formation process of the CDs-ZnO@APTES.(b) PLE spectra of the CDs-ZnO@APTES powder and fluorescence spectra with different excitation wavelengths[65]. Copyright 2018,Royal Society of Chemistry

2.1.2 物理嵌入法
Li等[66]利用在N-(β-氨乙基)-R-氨丙基甲基二甲氧基硅烷(AAPMS)中热解柠檬酸来制备CDs。用不同的饱和盐溶液(KBr、KCl、NaCl)作为分散基质,保护CDs免受紫外线和热降解来制备固态发光碳点。固态发光碳点的光学性质没有因为盐晶嵌入而发生显著改变。在紫外光灯照射200 h后,在NaCl基质中保留下的荧光强度约为初始的70%,为三种盐溶液中的最大值。在KBr基质中的固态碳点在80 ℃下热稳定性最好,其荧光强度可达初始的80%。此外,Qu等[67]也做了相关实验,将制备好的CDs溶液与饱和NaCl溶液混合,缓慢蒸发,最后在烧杯壁上形成强绿色发光的晶体,如图4所示。CDs@NaCl复合荧光粉的发光寿命比CDs水溶液长,从而增强荧光量子产率,其CDs加载率为13.5 wt%,明显高于使用淀粉和硫酸钡作分散基质的粉体。虽然饱和盐溶液基复合荧光粉具有良好的抗紫外线能力、热稳定性、有机溶剂的耐受性和结构稳定性,但不耐水、酸、碱,限制了其在水中照明等领域的应用。
图4 CDs@NaCl复合粉体的(a)光学和(b)荧光图像;(c)和(d)为CDs@NaCl复合粉体的SEM图像[67]

Fig. 4 (a) Optical and(b) fluorescent images of resulting CDs@NaCl powder. (c) and (d) SEM images of CDs@NaCl powders.[67] Copyright 2017, Elsevier

多面体低聚倍半硅氧烷(POSS)是一种具有特殊性能纳米结构材料,它具有中空刚性无机硅氧骨架,外围被有机基团包裹,呈笼状或半笼状,具有优越的耐热性。Zboril等[68]先合成了N、S共掺杂蓝色发光CDs,之后以四甲基铵功能化多面体低聚倍半硅氧烷(TMA-POSS)溶液为基体,与CDs水溶液简单混合、干燥后就可以方便地制备出CDs@POSS复合粉(图5所示)。该复合粉体表现出与原始CDs相似的光学特性,荧光量子产率达60%,是目前基于CDs的固态发光最高值。该复合荧光粉可溶于水,在环境条件下至少可以储存6个月,但当温度升高到80 ℃时,发光强度仅为室温时的29%。
图5 (a)TMA-POSS化学结构;(b)CDs@TMA-POSS粉末在日光(上)和紫外光(下)照片;(c)CDs@TMA-POSS的TEM图[68]

Fig. 5 (a)Chemical structure of TMA-POSS.(b) Photographs of CDs@TMA-POSS powders under daylight(top) and UV light(bottom).(c)TEM image of CDs@TMA-POSS[68]. Copyright 2015,Royal Society of Chemistry

Levenstein等[69]采用不同前驱体(叶酸和维生素B)通过水热法制备了CDs,通过沉淀无机物(碱土金属的碳酸盐、硫酸盐、草酸盐)作为分散基质一步直接合成了碳点和无机物纳米复合材料,系统研究了改变基质材料组成来控制纳米复合材料的发光行为。用叶酸为前驱物水热合成的碳点记为F-CDs,利用共聚焦荧光显微镜确定了其在无机物基质中的位置,即所有多晶均含有均匀分布的F-CDs,如图6a~f所示,而所有单晶则在特定区域(如CaSO4·2H2O的{011}面)发出明亮蓝色荧光,如图6g~l所示。在320 nm波长激发下,所有复合材料在稳态光发射谱上都有两个峰值,如图6n~p所示。第一个峰值是发射波长为398 nm处的荧光,对应单纯F-CDs溶液在相同激发波长下的发射。值得让人注意的是,第二个峰值是发射波长为518 nm的磷光,也就是说所有的复合材料在关掉紫外线辐照后均发出绿色磷光,如图6m所示。在阴离子相同情况下,随着阳离子原子序数的增加,复合材料荧光量子产率和荧光寿命中较长荧光寿命的时间与所占比例相应减少。这是由于靠近F-CDs表面的阳离子影响了碳点表面官能团内的电子跃迁,主要是内转移和系间窜跃速率增加而导致荧光降低。具有相同阳离子情况下随着阴离子从草酸盐、碳酸盐到硫酸盐改变,晶体密度逐步增大,室温磷光相对强度增加。这种复合纳米材料的制备不仅毒性低、方法简单,还可以调节发光颜色和寿命,同时还激活了材料的磷光性能,可用于电致发光材料、催化材料等功能材料的制备。
图6 F-CDs@SrCO3 (a)和F-CDs@BaCO3 (d)的SEM;F-CDs@SrCO3(b, c), F-CDs@BaCO3 (e, f),F-CDs@CaSO4 ·2H2O(g, h) 和F-CDs@SrSO4(j, k)的光学显微图像(b, e, g, j)和共聚焦荧光显微镜图像(c, f, h, k);F-CDs@CaSO4 ·2H2O(i) 和 F-CDs@SrSO4 (l)的分布模型;(m) 9种F-CDs/无机纳米复合材料在紫外线激发和去除紫外线激发后的照片;Ca、Sr和Ba的碳酸盐(n)、硫酸盐(o)和草酸盐(p)的 F-CDs/无机物纳米复合材料的稳态光致发光光谱[69]

Fig. 6 SEM of F-CDs @SrCO3(a) and F-CDs@BaCO3(d). Optical microscopy images(b, e, g, j) and confocal fluorescence microscopy images(c, f, h, k) of F-CDs@SrCO3(b, c), F-CDs @BaCO3(e, f),F-CDs@CaSO4 ·2H2O(g, h) and F-CDs@SrSO4(j, k).Distribution models of F-CDs@CaSO4 ·2H2O(i) and F-CDs@SrSO4(l).(m)Photographs of the nine F-CDs/inorganic nanocomposites upon UV excitation and after removal of UV excitation. Steady-state photoluminescence emission spectra of Ca, Sr and Ba carbonates(n), sulphates(o) and oxalates(p) F-CDs/inorganic nanocomposites[69]. Copyright 2019, Nature

2.1.3 均匀分散法
Yang等[70]使用对苯二胺(PPDA)在乙醇中反应,通过一步溶剂热法合成了橙红色荧光CDs。将N-(3-(三甲氧基硅基)丙基)乙二胺(KH-792)直接注入CDs水溶液中,超声后,制备了CDs@SiO2复合材料,保留了CDs在乙醇溶液中的发光特性,如图7所示。该复合粉体耐高温(200 ℃)、发光强度在110 ℃时达到最大值并且随着电压增加(最大3.3 V)而增大。该粉体在紫外辐射60 min后,荧光强度几乎不变。
图7 CDs乙醇溶液(a,a'),CDs粉(b, b'),CDs@SiO2膜(c,c')和CDs@SiO2粉(d,d')在日光(上)和紫外灯(下)的图片[70]

Fig. 7 The pictures of CDs ethanol solution(a, a'), CDs powder(b, b'), CD@SiO2 film(c, c') and CD@SiO2 powder(d, d') under daylight(up) and ultraviolet(down) lamps[70]. Copyright 2018,Elsevier

MOF材料是一种由金属离子和有机配体组成的材料,其本身具有较低的发光量子产率,需要通过掺杂稀土元素来实现WLEDs强发射。Li等[71]提出使用非金属、无毒和成本低的在紫外光激发下显示蓝色发光的CDs来代替稀土元素和在紫外光激发下显示黄光发光的Zr-MOF通过[3-(2-氨基乙基氨基)丙基]三甲氧基硅烷(AEATMS)连接形成CDs@Zr-MOF复合材料。该复合材料在365 nm激发波长下显示出三个峰值,如图8所示,450 nm处发射是对应CDs,550 nm 处的发射对应Zr-MOF,511 nm处的发射是碳点硅胶在450 nm发射时被部分自吸收造成的。CDs@Zr-MOF复合材料具有高显色指数、发光效率,在固态照明中可以得到应用。
图8 (a,b)CDs水溶液和Zr-MOF的激发和发射光谱图;(c) 在365 nm激发下CDs、Zr-MOF、CDs@Zr-MOF荧光发射图;(d)CDs、Zr-MOF和CDs@Zr-MOF荧光衰变图[71]

Fig. 8 (a,b)Excitation and emission spectra of CDs aqueous solution and Zr-MOF.(c) PL emission spectra of CDs, Zr-MOF and CDs@Zr-MOF excited under 365 nm.(d)PL decays of CDs(blue), Zr-MOF(red) and CDs@Zr-MOF(black)[71]. Copyright 2019, Royal Society of Chemistry

采用以上方法处理后得到的碳点,均能在固态下发光,且表现出来的发光特性和其在溶液中的相似,没有发生明显的改变,这些基质使CDs均匀分散,这就很好避免了固态下的荧光猝灭,但是碳点的负载率低,用NaCl作为分散基质的加载率最高仅为13.5 wt%,提高负载率仍然会导致碳点的荧光量子产率严重下降。从表1中可以看出,在实际应用中大部分碳点用于固态发光器件[72],高性能发光器件往往需要整体的强荧光发射,需要发光中心CDs加载率高。由于高浓度的碳点在溶液中碰撞、聚集倾向增大,导致荧光量子产率低,因此高CDs加载率很难实现。虽然固态碳点粉比传统的稀土基荧光粉具有价格便宜、资源丰富、不含重金属成分的优势,但也存在各种性能的不足,比如抗紫外线能力、热稳定性、耐酸碱盐等性能较差,需要进一步优化。
表1 各种前驱体和制备方法得到CDs的光学性能及其应用

Table 1 Summary of optical properties and applications of the CDs from various precursors and preparation methods

Precursor Method Synthesized CDs Size/nm Ex/nm Em/nm QY/% Application ref
CA
Urea
starch
water(MW, 750 W,
5 min)
chemical adsorption
g-CDs
CDs@starch
(mass ratio:1:70)
2~20[89]
20~40
(μm)
420
420
540
515
18
50
LEDs,
temperature
sensors
63
CA
Urea
BaCl2,Na2SO4
water(MW, 750 W,
5 min)
electrostatic adsorption
g-CDs
CDs@BaSO4
2~20
60~150
405
405
522
520
17
27
LEDs 64
CA, ethylenediamine
Zn(Ac)·2H2O, KOH
APTES
water(300 ℃, 5 h)
stirring
electrostatic adsorption
CDs
ZnO
CDs-ZnO@APTES
2~10
4~6
2~10
300
370
365
450
540
450~540
49 WLEDs 65
AAPMS, CA
KBr,KCl,NaCl
(240 ℃, 1 h)
physical embedding
CDs
CDs@salt
360
360
440
440
LEDs 58, 66
CA, Urea
NaCl
water(MW, 750 W,
5 min)
physical embedding
g-CDs
CDs@NaCl
2~5
2~5
(μm)
405
405
522
510
14
25
WLEDs 67
CA, L-cysteine
TMA-POSS
water(200 ℃, 3 h)
physical embedding
CDs
CDs@TMA-POSS
(2×105:1)
3.0~6.5 200~400
260~400
420
415
78
60
solid-state lighting
devices
68, 90
sodiumfolate
CaCl2·2H2O,Na2CO3
SrCl2·6H2O,Na2CO3
BaCl2,Na2CO3
CaCl2·2H2O,Na2SO4
SrCl2·6H2O,Na2SO4
BaCl2,Na2SO4
CaCl2·2H2O,Na2C2O4
SrCl2·6H2O,Na2C2O4
BaCl2,Na2C2O4
water(200 ℃, 12 h) F-CNDs
F-CNDs@CaCO3
F-CNDs@SrCO3
F-CNDs@BaCO3
F-CNDs@CaSO4·2H2O
F-CNDs@SrSO4
F-CNDs@BaSO4
F-CNDs@CaC2O4·H2O
F-CNDs@SrC2O4·H2O
F-CNDs@BaC2O4·0.5H2O
3~5 320
320
320
320
320
320
320
320
320
320
398
398
398
398
398
398
398
398
398
398
11
6.8
3.2
0.5
7.2
1.7
0.0
2.7
0.3
0.6
theranostic agents
forbackgroundless bio-imaging
pH-responsive controlled-
release materials
69
Precursor Method Synthesized CDs Size/nm Ex/nm Em/nm QY/% Application ref
PPDA
KH-792
ethanol(180 ℃,6 h)
physical embedding
CDs
CDs@silica powder
4.0~9.0 365~525
385~525
600
597
52.46
41.72
LEDs 70
CA, urea
H4L, benzoic acid
ZrOCl2·8H2O, DMF
AEATMS
ammonia water
(MW,700 W,6 min)
(120 ℃,72 h)
CDs

CDs@Zr-MOF
(dispersed in AEATMS)
4 365

365
450

450
511
550
22

37
WLEDs 71
ethylene glycol
DMF
(200 ℃, 5 h)
ethylenediamine modification
surface functionalization
N-CDs
CDs@DMF
(VN-CDs/VDMF :0.25)
1~5 445
445
new devices
and materials
73, 91
CA
SBA-15
water(200 ℃, 5 h)
ammonia solution
(200 ℃,5 h)
surface functionalization
CDs
CDs@SBA-15
3.0
9.5
400
340
480
410
sensing 74, 92
CA
NH2-POSS
water(200 ℃, 5 h)
surface functionalization
CDs
CDs@NH2-POSS
2~7
2~9
300~380
300~380
445
450
6.4
10.2
composite fillers 75, 93
CA
H2O2
ammonia water
(MW,650 W,5 min)
(70 ℃,2 h)
surface functionalization
CDs
Ox-CDs
Ox-CDs powder
2~4
2~4
2~4
330~370
340~370
270~500
435
435
520
21
17
25
solid-state lightning,
high-speed VLC,
LEDs
76
PVA,EDA

PVA

PVA,DETA

PVA,TEPA
water(220 ℃, 10 h)

water(220 ℃, 10 h)

water(220 ℃, 10 h)

water(220 ℃, 10 h)
CDs220 aqueous solution
CDs220 powder
PVA220 aqueous solution
PVA220 powder
d-CDs220 aqueous solution
d-CDs220 powder
t-CDs220 aqueous solution
t-CDs220 powder
9 340
340

365
350
365
360
365

540

460
450
580
470
550
35

1

20

22
LEDs 78
Tween 80 phosphoric acid,
sulfuric acid(90 ℃, 3 h)
one-step carbonization
CDs(CH2Cl2)

CDs powder
3.5~5.3 363

365
435

455
2.1

2.0
visualizationoffing-erprints,LEDs 79
trisodium

citrate dehydrate
urea
DMF(160 ℃, 4 h)
In-situ embedding
DMAC(160 ℃, 4 h)
In-situ embedding
DEF(160 ℃, 4 h)
In-situ embedding
CDs11 aqueous solution
CDs11powder
CDs12 aqueous solution
CDs12powder
CDs21 aqueous solution
CDs21powder

400

100~500

300~500
422
422
412
412
414
414

537

530

513
20.8
21.6
14.9
18.7
17.5
17.6
WLEDs,
fluorescent plates
80
Al(OiPr)3
H3PO4
HF
Al(OiPr)3
H3PO4
trimethylamine
triethylene glycol
(180 ℃, 3 days)
4,7,10-trioxa-1,
13-tridecanediamine triethylene glycol
(180 ℃, 3 days)
CDs@AlPO-5


CDs@2D-AlPO
3.7 nm


3.5 nm
370


370
430


440
15.53


52.14
smart material in
dual-mode security protection
81
Al(OiPr)3
H3PO4
MgHPO4 ·3H2O,H2O
4,7,10-trioxa-1,
13-tridecanediamine
(180 ℃, 3 days)
In-situ embedding
CDs@MgAPO-5 3.4 nm 370 425 22.77
MA,DTSA acetic acid
(180 ℃,10 h)
H-CDs(acetic acid)
H-CD powder
4~10
4~10
360
559
467
620
5.96 luminescence ink,
encryption tool
82
CA,Urea,CaCl2 vacuum heating v-CDs(ethanol solution) 4.1 380~430 510~514 72 encryption medium 83
CA,L-cysteine
KCl
one-pot microwave
heating(5 min)
CDs solution
(0.2 mg·mL-1)
CDs powder
2.1 340~380

430~500
435

500~620
84

65
WLEDs 84
2.1.4 化学键合法
Hu等[73]通过溶剂热乙二醇(EG)制备CDs,随后用乙二胺对其进行功能化,得到氨基修饰的CDs。将含氨基的CDs与DMF按适当的比例(VN-CDs/VDMF=0.25)混合,得到的析出物干燥后就得到形状规则的碳点粉末,称之为CDs@DMF固体组装件,如图9a所示,其席夫碱反应原理如图9e所示。CDs的表面反应可以保护其在沉淀过程中的荧光特性,如图9d所示,得到的析出物可以在水溶液中重新溶解,其发射波长与CDs溶液相同,荧光强度略有降低。通过调节席夫碱反应可以实现CDs自组装,利用该方法可以实现从溶液中沉淀出固态碳点粉末,且发生席夫碱反应所需要的时间随着CDs加入而增长。
图9 (a,b)固态组装的SEM图像;(c)网状沉淀的SEM,(d)N-CD溶液、固态组装、网状沉淀和不含N-CDs粉末的荧光谱;(e)席夫碱形成原理图[73]

Fig. 9 (a,b) SEM images of the solid assemblies.(c) SEM image of the ramified precipitates.(d) PL spectra of N-CD’s solution, solid assemblies, ramified precipitates and powders without N-CDs.(e) Schematic diagram of Schiff base formation[73]. Copyright 2015, Royal Society of Chemistry

Chang等[74]使用柠檬酸和氨水制备了蓝色发光的负电位CDs。SBA-15是一种介孔材料,其表面积大,孔道内部由于约束效应而表现出不同于孔道外部的特征。CDs表面含有易功能化的羧基和氨基,而在SBA-15内表面有丰富的羟基,它们之间发生相互作用,从而将CDs限制于介孔孔道内。由于CDs表面态发生变化,使得得到的CDs@SBA-15表现出与原CDs不同的光学性能,如图10(b)所示,发射峰位发生了蓝移。固态CDs@SBA-15粉末表现出良好的光电流响应、结构稳定性、热稳定性和光稳定性。此外, Chen等[75]制备了富含羧基的碳点,利用氨基功能化的多面体低聚硅倍半硅氧烷(NH2-POSS)和羧基之间形成酰胺键连接到CDs上形成CDs@NH2-POSS复合粉体,具有超疏水性。该荧光复合粉体连续紫外照射60 min后,保持60%的发光强度。
图10 (a)CDs@SBA-15形成原理图;(b)NCDs和NCDS@SBA-15的荧光激发和发射谱;(c)NCDs@SBA-15在水、浓盐酸和氨水溶液中的荧光谱(λex=340 nm);(d)CDs@SBA-15在紫外灯下照片[74]

Fig. 10 (a) Schematic diagram of CDs@SBA-15, (b) PL excitation and emission spectra of NCDs and NCDs@SBA-15.(c) PL spectra of NCDs@SBA-15 in water, concentrated HCl and ammonia solution(λex=340 nm).(d) Photographs of CDs@SBA-15 under UV light[74]. Copyright 2019, Royal Society of Chemistry

2.2 表面工程法

表面工程法是利用化学手段对碳点表面进行调控,改变表面能级状态,得到固态发光碳点,但是量子产率没有明显提高。Qu等[76]制得蓝色发光的CDs,由于使用了氨水,在官能团中额外引入了氨基。他们认为CDs表面存在非均匀的约束电荷[77],低于由碳核态所具有的能量。当CDs聚合时这些表面状态耦合在一起,打开了非辐射通道,导致在固态时荧光会猝灭。将此碳点溶于H2O2进行加热处理,得到ox-CDs碳点粉末,经检测表面吸电子基团(羰基、羧基和吡啶基)增加,供电子基团(氨基)减少,表面状态能级的位置提高。在聚集态时,非耦合表面态(能级位置提高的表面态)和本征态(碳核)向耦合表面态发生能量转移,且在耦合表面态发生的是辐射复合,导致产生发射不依赖于激发的绿色发射。碳点在溶液中和在固相时,吸收光谱发生了明显的变化,如图11所示。ox-CDs粉末寿命短、显色和信号传输性能良好,但研究者未进行光稳定性和结构稳定性测试。
图11 (a)CDs和ox-CDs水溶液的紫外-可见吸收光谱;(b)CDs和ox-CDs固相的漫反射吸收光谱[76]

Fig. 11 (a) UV-visible absorption spectra of CDs and ox-CDs aqueous solutions.(b) Diffuse reflection absorption spectra of solid phases of CDs and ox-CDs[76]. Copyright 2018, Wiley

用后处理法制备固态碳点是需要对先制备出的碳点进行后处理,后处理的目的是增加碳点粒子间距或者改变碳点表面状态能级,得到的固态碳点可以用于固态照明设备或是离子传感检测。在制备过程中发现除个别方法外,普遍存在与原碳点相比量子产率不高的问题,且操作不易控制、步骤繁琐、成本增加,这为碳点的量产增加了困难。

3 直接合成法制备固态发光碳点

针对后处理法制备过程中存在的各种问题,研究者提出了新的研究方法,即利用前驱体原料一步直接合成固态发光碳点。Lei等[78]通过水热法以聚乙烯醇(PVA)为主要碳源和以乙二胺(EDA)为氮源制备了水溶性发黄色荧光的CDs220,分别以二乙烯五胺(DETA)、四乙烯五胺(TEPA)为氮源制备了发橙色(d-CDs220)、黄色(t-CDs220)碳点粉末,又以PVA单独为前驱体制备了发白光的粉末(PVA220),如图12a所示。CDs由石墨化碳核和非石墨化的PVA链修饰的表面组成,PVA链阻碍了石墨化碳核的直接接触。CDs粉体荧光发射波长与在水溶液中相比红移了111 nm,这是由于CDs溶液的吸收光谱和发射光谱在短波长处有重叠,当碳点从溶液变为固相粉末时,与吸收重叠的短波长可能正是由于粉末颗粒之间的距离减小引起福斯特能量转移而减弱,长波长相对增强,固态碳点发射谱整体表现出红移。通过表面氮掺杂或粒子间距控制实现了可调谐的固态荧光。该固态碳点不仅可以用于LEDs颜色转换层,还可以制成气凝胶用于传感器。
图12 (a),(b)CDs220乙醇溶液的TEM图;(c)不同浓度CDs220水溶液和CDs220粉末在340 nm激发下的荧光发射图谱;(d)d-CDs220(1),t-CDs220(2),CDs220(3),PVA220(4)和CDs220@淀粉(5)在日光(上)和紫外光(下)的图像;(e)以上粉体的固态荧光图谱[78]

Fig. 12 (a), (b) TEM images of CDs220 ethanol solution.(c) Fluorescence emission spectra of CDs220 aqueous solution and CDs220 powders excited at 340 nm.(d) Images of d-CDs220(1), t-CDs220(2), CDs220(3), PVA220(4) and CDs220@starch(5) under daylight(top) and ultraviolet(bottom). (e) Solid-state fluorescence spectra of the above powders[78]. Copyright 2015, Wiley

Shen等[79]以聚氧乙烯山梨醇单油酸酯(Tween 80)为原料,采用表面具有大量长烷基链作为保护基团的白色发光碳点(WCDs),如图13所示,极大简化了反应步骤。不同长度的烷基链并不影响制备的CDs的发射特性,其在固态时和溶解在二氯甲烷中的发光特性相近。CDs在氯仿、二氯甲烷、丙酮等多种有机溶剂中均能有效溶解,值得注意的是长烷基链的表面基团使CDs亲脂而不亲水,这就增强了碳点在疏水介质中的使用。
图13 CDs粉末制备路线原理图[79]

Fig. 13 Schematic diagram of CDs powders preparation route[79]. Copyright 2018,Elsevier

Shan等[80]将柠檬酸三钠和尿素在不同溶剂中反应生成CDs,过量的柠檬酸三钠在高温下在CDs周围结晶,在晶体生长过程中CDs可原位嵌入柠檬酸三钠基质中,反应原理如图14所示,最后从反应溶液中析出具有可调谐固态荧光的复合CDs粉。以二甲基甲酰胺(DMF)、二甲基乙酰胺(DMAC)、二乙基二酰胺(DEF)分别为反应溶剂得到的荧光碳点粉末记为CDs11、CDs12、CDs21。这些粉体发光颜色可明显由黄色向绿色转变,在紫外灯下照射2 h,发光强度不变,但随电流增加,CDs21发光强度增加,CDs11、CDs12发光强度明显降低,且热稳定性差。
图14 (a) CDs11粉的原位形成过程示意图;(b)CDs12粉末TEM图;(c)CDs21粉末TEM图[80]

Fig. 14 (a) Schematic of in situ formation process of CDs11 powder.(b) TEM image of CDs12 powder.(c) TEM image of CDs21 powder[80]. Copyright 2018, Elsevier

Li等[81]设计使用磷铝基分子筛作为碳点的分散基质,使用不同有机结构导向剂(三乙胺和4,7,10-三氧-1,13-十三烷二胺)和不同溶剂(三甘醇和水),采用溶剂热法和水热法原位合成具有热活化延迟荧光(TADF)性质的三种不同形态的CDs@zeolite复合材料,分别为CDs@AlPO-5,CDs@2D-AlPO和CDs@MgAPO-5,其形貌如图15(a~c)所示。CDs@AlPO-5呈六角棱柱体状,在室温下其延迟荧光寿命最长为350 ms;CDs@2D-AlPO呈平板状结构,量子产率最高达52.14%;CDs@MgAPO-5呈多面体形态。分子筛的纳米空间可以高效地稳定CDs的三重态,阻碍空气中氧对三重态的猝灭,从而实现了TADF的逆向跨系统窜越过程。这三种复合材料在370 nm紫外光激发下都显示蓝色发射,其TADF性能在环境条件下可以稳定保持半年以上,可以作为一种用于双模式安全保护的智能材料。
图15 (a) CDs@AlPO-5复合材料的SEM图(左)和在紫外、蓝光和绿光激发下的荧光图(右);(b)CDs@2D-AlPO复合材料的SEM图(左)和在紫外、蓝光和绿光激发下的荧光图(右);(c)CDs@MgAPO-5复合材料的SEM图(左)和在紫外、蓝光和绿光激发下的荧光图(右);(d)CDs@AlPO-5在室温下的荧光衰变图[81]

Fig. 15 (a)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs @AlPO-5 composite.(b)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs@2D-AlPO composite.(c)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs@MgAPO-5.(d)PL decays of CDs@AlPO-5 at room temperature[81]. Copyright 2017, Science

Liu等[82]在乙酸溶液中通过一步法以三聚氰胺(MA)和二硫代水杨酸(DTSA)为原料制备出H-CDs,其原理如图16a所示。将其完全均匀分散在乙酸溶液时,透明的H-CDs溶液显示出蓝色发射。当连续不断地加入水时,由于反应后氨基和羧基消失,导致其疏水性,透明的H-CDs溶液逐渐变浑浊,H-CDs石墨化碳核进行π-π堆叠,通过ACQ关闭蓝色发射,同时轴对称杂环化合物二硫键轴的分子内旋转(RIR)受到限制,粉末团聚在一起显示红色荧光,如图16(b,c)所示。制备的H-CDs粉末表现出明显不同于透明溶液的发光行为,其发射波长红移154nm,利用该性质可以实现信息的双加密。
图16 (a)蓝色H-CDs单体和红色团聚体;(b)H-CDs从分散到团聚体形成原理图;(c)蓝色荧光猝灭和红色荧光打开原理(左)和H-CDs的表面和核心结构(右)[82]

Fig. 16 (a) The schematic diagram of blue H-CDs monomers and red aggregates.(b) The schematic diagram of H-CDs formation from dispersion to aggregate.(c) Principle of blue fluorescence quenching and red fluorescence opening(left) and proposed surface and core structure of H-CDs(right)[82]. Copyright 2019,Nature

Qu等[83]设计出一种新的合成碳点的方法,即将柠檬酸、尿素和氯化钙混合物的水溶液在真空加热,温度为120 ℃条件下形成膨胀的泡沫,再继续提高加热温度就可以得到不同发光颜色的泡沫。合成的CDs泡沫可以磨成粉,易溶于水。140 ℃时样品在450 nm处发射单一的蓝光,推断是由分子荧光团的发射形成,200 ℃时样品在520 nm处发射绿光,这是由于酰胺基的减少、芳香族碳sp2 C的出现。他们认为出现固态荧光的原因是碳点表面丰富的官能团可以防止碳核中sp2域的π-π*堆叠,碳点颗粒中只有一种类型的复合中心。该碳点在乙醇中稳定性好,便于储存,纯化后PLQY高(65%),并且抗紫外线照射能力良好。Chen等[84]利用柠檬酸、L-半胱氨酸和KCl微波法设计了和Qu等相类似的实验,制备了亲水性亮黄色发光的固态碳点,量子产率为65%。
与后处理法相比,采用前驱体直接合成固态碳点法具有工艺简单、稳定发光[85, 86]的优异性能。碳点的应用从固态照明转移到信息加密、指纹检测应用上来。直接制备法和后处理法相同之处在于实现固态发光的基本思路都是通过各种手段调控碳点颗粒之间的距离,调控碳点的表面能级状态,避免能量发生内转移或重吸收而导致猝灭;不同之处在于直接法是固态碳点由前驱体直接生成,操作简单,发光稳定,而后处理法是需要将碳点先制备出来,随后加载到基质中(表面工程法除外),普遍都存在加载率不高的情况,且操作繁琐,成本增加,不易控制。开发工艺简单、制备效率高、量子产率高的制备方法以及扩大其应用范围,是碳点发展的新方向。与碳点材料的ACQ性能不同,Tang等[87, 88]研究发现了一系列对称分子在溶解状态下不发光,但在聚集状态下发射。这种非发光对称分子通过聚集形成而被诱导发射现象称为聚集诱导发射(AIE)。该理论尚未在碳点的SSF中得到应用,这也为CDs发展打开了新思路。

4 结论

自CDs首次被发现以来,由于其优异的荧光性能,受到研究者越来越多的关注,然而研究主要集中在液相体系中对CDs的发光行为和发光机理进行探索,当把液相碳点转变成固态粉末时,会发生荧光猝灭。因此碳点在生物成像、光催化、固态照明等领域中的广泛应用受到了限制。合成固态发光碳点的反应几乎均是在液相体系中进行,反应结束后再进行各种处理(蒸发、冷冻干燥)成粉末进行应用。研究发现,不同的前驱体、不同的制备方法、不同的处理方法,得到的固态CDs光学性能各不相同。近年来国内外在制备固态发光碳点方法上取得了一定的进展,根据碳点不同性质分别采用后处理法、前驱体直接合成法对制备的CDs进行处理,得到在固态下发光的碳点。这些引人注目的发展为CDs的多学科应用提供了巨大的机遇,开发工艺简单、制备效率高、具有聚集诱导发射增强的碳点,扩大其应用范围,是碳点发展的新方向。
[1]
Sun Y P, Zhou B, Lin Y, Wang W, Shiral F K A, Pankaj P, Mohammed J M, Barbara A H, Wang X, Wang H F, Luo P G, Yang H, Muhammet E K, Chen B L, Veca L M, Xie S Y. Journal of the American Chemical Society, 2006,128:7756. https://pubs.acs.org/doi/10.1021/ja062677d

DOI: 10.1021/ja062677d

[2]
Bhattacharyya S, Ehrat F, Urban P, Teves R, Wyrwich R, Doblinger M, Feldmann J, Urban A S, Stolarczyk J K. Nature Communications, 2017,8(1):1401. http://www.nature.com/articles/s41467-017-01463-x

DOI: 10.1038/s41467-017-01463-x

[3]
Li W D, Liu Y, Wu M, Feng X L, Redfern S A T, Shang Y, Yong X, Feng T L, Wu K F, Liu Z Y, Li B J, Chen Z M, Tse J S, Lu S Y, Yang B. Advanced Materials, 2018,30(31):1800676. http://doi.wiley.com/10.1002/adma.v30.31

DOI: 10.1002/adma.v30.31

[4]
Liu C A, Fu Y J, Xia Y J, Zhu C, Hu L L, Zhang K, Wu H H, Huang H, Liu Y, Xie T F, Zhong J, Kang Z H. Nanoscale, 2018,10(5):2454. http://xlink.rsc.org/?DOI=C7NR08000J

DOI: 10.1039/C7NR08000J

[5]
Zhang J Y, Wu S H, Lu X M, Wu P, Liu J W. Nano Letters, 2019,19(5):3214 https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00725

DOI: 10.1021/acs.nanolett.9b00725

[6]
金静(Jin J), 朱守俊(Zhu S J), 宋玉彬(Song Y B), 宋薇(Song W), 杨柏(Yang B), 赵冰(Zhao B). 光谱学与光谱分析 (Spectroscopy and Spectral Analysis), 2016,36:291.
[7]
白静静(Bai J J), 胡国胜(Hu G S), 张静婷(Zhang J T), 刘冰肖(Liu B X), 王玉龙(Wang Y L), 李振中(Li Z Z). 光子学报 (Acta Photonica Sinica), 2019,48(4):0416001
[8]
Jiang K, Sun S, Zhang L, Wang Y H, Cai C Z, Lin H W. ACS Applied Materials & Interfaces, 2015,7(41):23231. https://pubs.acs.org/doi/10.1021/acsami.5b07255

DOI: 10.1021/acsami.5b07255

[9]
Miao X, Yan X L, Qu D, Li D B, Tao F F, Sun Z C. ACS Applied Materials & Interfaces, 2017,9(22):18549. https://pubs.acs.org/doi/10.1021/acsami.7b04514

DOI: 10.1021/acsami.7b04514

[10]
Chen J, Wei J S, Zhang P, Niu X Q, Zhao W, Zhu Z Y, Ding H, Xiong H M. ACS Applied Materials & Interfaces, 2017,9(22):18429. https://pubs.acs.org/doi/10.1021/acsami.7b03917

DOI: 10.1021/acsami.7b03917

[11]
曲松楠(Qu S N), 刘星元(Liu X Y), 申德振(Shen D Z). 发光学报 (Chinese Journal of Luminescence), 2014,35:1019.
[12]
Liu J J, Li D W, Zhang K, Yang M X, Sun H C, Yang B. Small, 2018,14(15):1703919. http://doi.wiley.com/10.1002/smll.201703919

DOI: 10.1002/smll.201703919

[13]
Yang L, Jiang W H, Qiu L P, Jiang X W, Zuo D Y, Wang D K, Yang L. Nanoscale, 2015,7(14):6104. http://xlink.rsc.org/?DOI=C5NR01080B

DOI: 10.1039/C5NR01080B

[14]
Yang W N, Zhang H, Lai J X, Peng X Y, Hu Y P, Gu W, Ye L. Carbon, 2018,128:78. https://linkinghub.elsevier.com/retrieve/pii/S0008622317311831

DOI: 10.1016/j.carbon.2017.11.069

[15]
Strauss V, Marsh K, Kowal M D, El-Kady M, Kaner R B. Advanced Materials, 2018,30(8):1704449. http://doi.wiley.com/10.1002/adma.v30.8

DOI: 10.1002/adma.v30.8

[16]
Wang F, Chen Y H, Liu C Y, Ma D G. Chemical Communications, 2011,47(12):3502. http://dx.doi.org/10.1039/c0cc05391k

DOI: 10.1039/c0cc05391k

We demonstrate the first white light-emitting device originating from single carbon dot components. A maximum external quantum efficiency of 0.083% at a current density of 5 mA cm(-2) with a color-rendering index of 82 is realized, indicating that carbon dots have great potential to be an alternative phosphor for fabricating white light electroluminescent devices.

[17]
Zhang D Z, Liu C Y, Li K Z, Chen Y, Ruan S P, Zhang X D, Li C N. Nanoscale, 2018,10(14):6459. http://xlink.rsc.org/?DOI=C8NR00214B

DOI: 10.1039/C8NR00214B

[18]
Li L, Chen Y H, Liu Z H, Chen Q, Wang X D, Zhou H P. Advanced Materials, 2016,28(44):9862 http://doi.wiley.com/10.1002/adma.201603021

DOI: 10.1002/adma.201603021

[19]
Sun C, Zhang Y, Ruan C, Yin C Y, Wang X Y, Wang Y D, Yu W W. Advanced Materials, 2016,28(45):10088. http://doi.wiley.com/10.1002/adma.201603081

DOI: 10.1002/adma.201603081

[20]
Wang Y L, Yan L P, Ji G Q, Wang C, Gu H M, Luo Q, Chen Q, Chen L W, Yang Y Z, Ma C Q, Liu X G. ACS Applied Materials & Interfaces, 2019,11(2):2243. https://pubs.acs.org/doi/10.1021/acsami.8b17128

DOI: 10.1021/acsami.8b17128

[21]
Hu S L, Guo Y, Dong Y G, Yang J L, Liu J, Cao S R. Journal of Materials Chemistry, 2012,22(24):12053. http://dx.doi.org/10.1039/c2jm30584d

DOI: 10.1039/c2jm30584d

The effects of the structures on the energy gaps in luminescent carbon nanoparticles (CNPs) were investigated. On the one hand, we fabricated CNPs with the different structures and a uniform size and then analyzed their photoluminescence (PL) behaviors. On the other hand, we calculated the dependence of the structures on the energy gaps in CNPs by a simple quantitative model. Both the experimental and calculated results show that the luminescent CNPs contain a mixture of sp(2) and sp(3) bonding and hence their PL behaviors and energy gaps are determined by the fraction of sp(2)-hybridized carbon atoms.

[22]
Hu S L, Dong Y G, Yang J L, Liu J, Tian F, Cao S R. Asian Journal of Chemistry, 2012,7(11):2711.
[23]
Ray S C, Saha A, Nikhil R J, Rupa S. The Journal of Physical Chemistry C, 2009,113:18546. https://pubs.acs.org/doi/10.1021/jp905912n

DOI: 10.1021/jp905912n

[24]
Tian L, Ghosh D, Chen W, Pradhan S, Chang X J, Chen S W. Chemistry of Materials, 2009,21(13):2803. https://pubs.acs.org/doi/10.1021/cm900709w

DOI: 10.1021/cm900709w

[25]
Hu C, Yu C, Li M Y, Wang X N, Yang J Y, Zhao Z B, Eychmuller A, Sun Y P, Qiu J S. Small, 2014,10(23):4926. http://dx.doi.org/10.1002/smll.201401328

DOI: 10.1002/smll.201401328

The desired control of size, structure, and optical properties of fluorescent carbon dots (CDs) is critical for understanding the fluorescence mechanism and exploring their potential application. Herein, a top-down strategy to chemically tailor the inexpensive coal to fluorescent CDs by a combined method of carbonization and acidic oxidation etching is reported. The size and optical properties of the as-made CDs are tuned by controlling the structures of graphitic crystallites in the starting precursor. The coal-derived CDs exhibit two different distinctive emission modes, where the intensity of the short-wavelength emission is significantly enhanced by partial reduction treatment. The evolution of the electronic structure and the surface states analysis show that two different types of fluorescence centers, nano-sized sp(2) carbon domains and surface defects, are responsible for the observed emission characteristics. The reduced CDs are demonstrated as an effective fluorescent sensing material for label-free and selective detection of Cu(II) ions with a detection limit as low as 2.0 nM, showing a great promise for real-world sensor applications.

[26]
Deng J H, Lu Q J, M N X, Li H T, Liu M L, Xu M C, Tan L, Xie Q J, Zhang Y Y, Yao S Z. Chemistry, 2014,20(17):4993.
[27]
Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H, Yang X B, Lee S T. Angewandte Chemie International Edition, 2010,49(26):4430. http://doi.wiley.com/10.1002/anie.200906154

DOI: 10.1002/anie.200906154

[28]
Zhang Y L, Wang L, Zhang H C, Liu Y, Wang H Y, Kang Z H, Lee S T. RSC Advances, 2013,3(11):3733. http://dx.doi.org/10.1039/c3ra23410j

DOI: 10.1039/c3ra23410j

Reported here is a green synthesis of graphitic carbon quantum dots (GCQDs) as a fluorescent sensing platform for the highly sensitive and selective detection of Fe3+ ions. Through the electrochemical ablation of graphite electrodes in ultrapure water, uniform GCQDs with graphitic crystallinity and oxygen containing groups on their surfaces have been successfully prepared. The absence of acid, alkali, salt and organic compounds in the starting materials effectively avoids complex purification procedures and environmental contamination, leading to a green and sustainable synthesis of GCQDs. The oxygen functional groups (e. g., hydroxyl, carboxyl) contribute to the water solubility and strong interaction with metal ions, which enable the GCQDs to serve as a fluorescent probe for the highly sensitive and selective detection of Fe3+ ions with a detection limit as low as 2 nM. The high sensitivity of our GCQDs could be attributed to the formation of complexes between Fe3+ ions and the phenolic hydroxyls of GCQDs. The fluorescence lifetime of GCQDs in the presence and absence of Fe3+ was tested by time-correlated single-photon counting (TCSPC), which confirmed a dynamic fluorescence quenching mechanism.

[29]
Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B P, Pang D W. Advanced Materials, 2011,23(48):5801. http://dx.doi.org/10.1002/adma.201102866

DOI: 10.1002/adma.201102866

The size of C-nanodots can be electrochemically tuned by changing the applied potential during their preparation. The higher the applied potential, the smaller the resulting C-nanodots. Moreover, the surface oxidation degree of the C-nanodots can also be electrochemically tuned. The redshift of emission independent of the size provides an insight into the luminescence mechanism of C-nanodots.

[30]
Guo Y M, Wang Z, Shao H W, Jiang X Y. Carbon, 2013,52:583. http://dx.doi.org/10.1016/j.carbon.2012.10.028

DOI: 10.1016/j.carbon.2012.10.028

We have developed a simple, one-step hydrothermal method for the synthesis of highly fluorescent carbon nanoparticles (F-CNPs) with a high quantum yield (68%) and good photostability. The method requires less reaction time and a lower reaction temperature as compared with the previous reported methods. The as-prepared F-CNPs exhibit excellent emission property and high stability, as well as excitation-independent emission behavior. Moreover, it is attractive that F-CNPs can be used as an effective fluorescent probe for the detection of mercury ions with good selectivity and sensitivity in an aqueous solution. (C) 2012 Elsevier Ltd.

[31]
卢思宇(Lu S Y), 杨柏(Yang B). 高分子学报 (Acta Polymerica Sinica), 2017,7:1200.
[32]
Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Inter. Ed., 2015,54(18):5450.
[33]
Li D, Jing P T, Sun L H, An Y, Shan X Y, Lu X H, Zhou D, Han D, Shen D Z, Zhai Y C, Qu S N, Zboril R, Rogach A L. Advanced Materials, 2018,30(13):1705913. https://onlinelibrary.wiley.com/toc/15214095/30/13

DOI: 10.1002/adma.v30.13

[34]
Ding H, Wei J S, Zhang P, Zhou, Z Y, Gao Q Y, Xiong H M. Small, 2018,14(22):1800612. http://doi.wiley.com/10.1002/smll.v14.22

DOI: 10.1002/smll.v14.22

[35]
Yang S H, Sun X H, Wang Z Y, Wang X Y, Guo G S, Pu Q S. Nano Research, 2018,11(3):1369. https://doi.org/10.1007/s12274-017-1751-8

DOI: 10.1007/s12274-017-1751-8

[36]
Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angewandte Chemie International Edition, 2012,51(49):12215. http://doi.wiley.com/10.1002/anie.v51.49

DOI: 10.1002/anie.v51.49

[37]
Wang L, Zhu S J, Wang H Y, Qu S N, Zhang Y L, Zhang J H, Chen Q D, Xu H L, Han W, Yang B, Sun H B. ACS Nano, 2014,8(3):2541. https://pubs.acs.org/doi/10.1021/nn500368m

DOI: 10.1021/nn500368m

[38]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc, 2004,126:12736. https://pubs.acs.org/doi/10.1021/ja040082h

DOI: 10.1021/ja040082h

[39]
Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Advanced Materials, 2018,30(1):1704740. http://doi.wiley.com/10.1002/adma.201704740

DOI: 10.1002/adma.201704740

[40]
胡胜亮(Hu S L), 白培康(Bai P K), 孙景(Sun J), 曹士锐(Cao S R). 化学进展 (Progress in Chemistry), 2010,22:345. http://www.progchem.ac.cn//CN/abstract/abstract10278.shtml

与其它荧光纳米粒子相比,荧光碳纳米颗粒不仅具有良好生物相容性和易于表面功能化等优点,还具有发光稳定并可实现上转换荧光发射的特性,所以在生物医药领域具有重要的应用价值。结合近年来的最新研究成果,本文综述了金刚石、石墨和非晶等不同结构的荧光碳纳米颗粒的制备方法及其局限性;分析了不同结构碳纳米颗粒的荧光发射特性和在生物技术中应用的优缺点;阐述了荧光碳纳米颗粒在今后研究中需要解决的问题和发展方向。

[41]
Wang B B, Jin J C, Xu Z Q, Jiang Z W, Li X, Jiang F L, Liu Y. Journal of Colloid and Interface Science, 2019,551:101. https://linkinghub.elsevier.com/retrieve/pii/S0021979719305259

DOI: 10.1016/j.jcis.2019.04.088

[42]
Bao L, Liu C, Zhang Z L, Pang D W. Advanced Materials, 2015,27(10):1663. http://doi.wiley.com/10.1002/adma.201405070

DOI: 10.1002/adma.201405070

[43]
Ding Y F, Zheng J X, Wang J L, Yang Y Z, Liu X G. Journal of Materials Chemistry C, 2019,7(6):1502 http://xlink.rsc.org/?DOI=C8TC04887H

DOI: 10.1039/C8TC04887H

[44]
Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016,10(1):484. https://pubs.acs.org/doi/10.1021/acsnano.5b05406

DOI: 10.1021/acsnano.5b05406

[45]
Yuan F L, Wang Z B, Li X H, Li Y C, Tan Z A, Fan L Z, Yang S H. Advanced Materials, 2017,29(3):1604436. http://doi.wiley.com/10.1002/adma.v29.3

DOI: 10.1002/adma.v29.3

[46]
Wang Z F, Yuan F L, Li X, Li H, Y, Zhong H Z, Fan L Z, Yang S H. Advanced Materials, 2017,29(37):1702910. https://onlinelibrary.wiley.com/toc/15214095/29/37

DOI: 10.1002/adma.v29.37

[47]
Lu S Y, Sui L Z, Liu J J, Zhu S J, Chen A, Jin M X, Yang B. Advanced Materials, 2017,29(15):1603443. http://doi.wiley.com/10.1002/adma.201603443

DOI: 10.1002/adma.201603443

[48]
Ehrat F, Bhattacharyya S, Schneider J, Lof A, Wyrwich R, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Letters, 2017,17(12):7710. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b03863

DOI: 10.1021/acs.nanolett.7b03863

[49]
Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. Journal of the American Chemical Society, 2012,134(2):747. http://dx.doi.org/10.1021/ja204661r

DOI: 10.1021/ja204661r

We present a systematic investigation of the formation mechanism of carbogenic nanoparticles (GNPs), otherwise referred to as C-dots, by following the pyrolysis of citric acid (CA)-ethanolamine (EA) precursor at different temperatures. Pyrolysis at 180 degrees C leads to a CNP molecular precursor with a strongly intense photoluminescence (PL) spectrum and high quantum yield formed by dehydration of CA EA. At higher temperatures (230 degrees C) a carbogenic core starts forming and the PL is due to the presence of both molecular fluorophores and the carbogenic core. CNPs that exhibit mostly or exclusively PL arising from carbogenic cores are obtained at even higher temperatures (300 and 400 degrees C, respectively). Since the molecular fluorophores predominate at low pyrolysis temperatures while the carbogenic core starts forming at higher temperatures, the PL behavior of CNPs strongly depends on the conditions used for their synthesis.

[50]
Essner J B, Kist J A, Polo-Parada L, Baker, G A. Chemistry of Materials, 2018,30(6):1878. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b04446

DOI: 10.1021/acs.chemmater.7b04446

[51]
Wang X, Cao L, Lu F S, Meziani M J, Li H T, Qi G, Zhou B, Harruff B A, Kermarrec F, Sun Y P. Chemical Communications, 2009,25:3774.
[52]
Hu S L, Chang Q, Lin K, Yang J L. Carbon, 2016,105:484. https://linkinghub.elsevier.com/retrieve/pii/S0008622316303499

DOI: 10.1016/j.carbon.2016.04.078

[53]
丁艳丽(Ding Y L), 胡胜亮(Hu S L), 常青(Chang Q). 高等学校化学学报 (Chemical Journal of Chinese Universities), 2015,36:619. http://www.cjcu.jlu.edu.cn/CN/abstract/abstract25698.shtml

DOI: 10.7503/cjcu20140930

通过混合氨基修饰碳点(N-CDs)与酞菁锌(PcZn)合成了静电结合的N-CDs/PcZn复合结构. 利用荧光光谱、紫外-可见吸收光谱、循环伏安测试和光催化活性表征证实了N-CDs的光激发电子通过界面转移到了PcZn分子上, 然后在PcZn上发生辐射复合, 导致PcZn的荧光发射增强. 由于N-CDs上的激发电子转移到了PcZn分子上, 促使了其与空穴的分离, 阻碍了N-CDs上的辐射复合发生, 因此提高了N-CDs/PcZn复合体系的光催化活性. 反应温度会影响N-CDs/PcZn复合体系的稳定性和光转换能力, 在常温下制备的N-CDs/PcZn复合结构具有最佳的光物理与化学性能.

[54]
Yuan Y S, Jiang J Z, Liu S P, Yang J D, Zhang H, Yan J J, Hu X L. Sensors and Actuators B: Chemical, 2017,242:545. https://linkinghub.elsevier.com/retrieve/pii/S092540051631841X

DOI: 10.1016/j.snb.2016.11.050

[55]
Deng Y H, Chen X, Wang F, Zhang X A, Zhao D X, Shen D Z. Nanoscale, 2014,6(17):10388. http://dx.doi.org/10.1039/c4nr02544j

DOI: 10.1039/c4nr02544j

Fluorescent carbon dots (CDs) have received great research interest in recent years, with applications in areas such as bio-imaging and chemical sensing. However, solid state photoluminescence of CDs and its related applications (e. g. optoelectronics) is a less explored territory. Here, we have systematically studied the photo emission of CDs in solid state. We found that their blue emission is highly dependent on whether the environment contains polar groups or not. Mechanism studies show that the blue emission of CDs may come from their C=O bonds conjugated with aromatic carbons, and the interaction between polar groups in environment and C=O bonds in CDs is responsible for the environment-dependent photo emission. Our conclusion here should assist the development of CDs' solid state applications.

[56]
Xie Z, Wang F, Liu C Y. Advanced Materials, 2012,24(13):1716. http://doi.wiley.com/10.1002/adma.201104962

DOI: 10.1002/adma.201104962

[57]
Wang Y, Kalytchuk S, Zhang Y, Shi H C, Kershaw S V, Rogach A L. The Journal of Physical Chemistry Letters, 2014,5(8):1412. https://pubs.acs.org/doi/10.1021/jz5005335

DOI: 10.1021/jz5005335

[58]
Gan Z X, Liu L Z, Wang L, Luo G S, Mo C L, Chang C L. Physical Chemistry Chemical Physics, 2018,20(26):18089. http://xlink.rsc.org/?DOI=C8CP02069H

DOI: 10.1039/C8CP02069H

[59]
Bhunia S K, Nandi S, Shikler R, Jelinek R. Nanoscale, 2016,8(6):3400. http://xlink.rsc.org/?DOI=C5NR08400H

DOI: 10.1039/C5NR08400H

[60]
Wang W T, Kim T H, Yan Z F, Tade M O, Li Q. Advanced Materials Research, 2012,557/559:739. https://www.scientific.net/AMR.557-559

DOI: 10.4028/www.scientific.net/AMR.557-559

[61]
Wang Y L, Zhao Y Q, Zhang F, Chen L, Yang Y Z, Liu X G. New Journal of Chemistry, 2016,40(10):8710. http://xlink.rsc.org/?DOI=C6NJ01753C

DOI: 10.1039/C6NJ01753C

[62]
Nie H, Li M J, Li Q S, Liang S J, Tan Y Y, Sheng L, Shi W, Zhang S X A. Chemistry of Materials, 2014,26(10):3104. http://dx.doi.org/10.1021/cm5003669

DOI: 10.1021/cm5003669

Two types of carbon dots (C dots) exhibiting respective excitation-independent blue emission and excitation-dependent full-color emissions have been synthesized via a mild one-pot process from chloroform and diethylamine. This new bottom-up synthetic strategy leads to highly stable crystalline C dots with tunable surface functionalities in high reproducibility. By detailed characterization and comparison of the two types of C dots, it is proved concretely that the surface functional groups, such as C=O and C=N, can efficiently introduce new energy levels for electron transitions and result in the continuously adjustable full-color emissions. A simplified energy level and electron transition diagram has been proposed to help understand how surface functional groups affect the emission properties. By taking advantage of the unique excitation-dependent full-color emissions, various new applications can be anticipated. Here, as an example, a ratiometric pH sensor using two emission wavelengths of the C dots as independent references has been constructed to improve the reliability and accuracy, and the pH sensor is applied to the measurement of intracellular pH values and cancer diagnosis.

[63]
Sun M Y, Qu S N, Hao Z D, Ji W Y, Jing P T, Zhang H, Zhang L G, Zhao J L, Shen D Z. Nanoscale, 2014,6(21):13076. http://dx.doi.org/10.1039/c4nr04034a

DOI: 10.1039/c4nr04034a

A new type of environmentally friendly phosphor based on carbon nanodots (CDs) has been developed through the dispersion of CDs by integrating the CDs with starch particles. The starch particles contain large numbers of hydroxyl groups around the surfaces, which can effectively absorb the CDs, whose surfaces are functionalized by lots of carboxyl and amide groups, through hydrogen bonding. Effective dispersion of CDs on the surfaces of starch particles can suppress the non-radiative decay processes and photoluminescence (PL) quenching induced by aggregation of CDs. The starch matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which leads to efficient PL emitting. As a result, the starch/CD phosphors with a quantum yield of similar to 50% were obtained. The starch/CD phosphors show great potential in phosphor-based light emitting diodes, temperature sensors, and patterning.

[64]
Zhou D, Zhai Y C, Qu S N, Li D, Jing P T, Ji W Y, Shen D Z, Rogach A L. Small, 2017,13(6):1602055. http://doi.wiley.com/10.1002/smll.v13.6

DOI: 10.1002/smll.v13.6

[65]
Liu K K, Li X M, Cheng S B, Zhou R, Liang Y C, Dong L, Shan C X, Zeng H B, Shen D Z. Nanoscale, 2018,10(15):7155. http://xlink.rsc.org/?DOI=C8NR01209A

DOI: 10.1039/C8NR01209A

[66]
Kim T H, Wang F, McCormick P, Wang L Z, Brown C, Li Q. Journal of Luminescence, 2014,154:1. http://dx.doi.org/10.1016/j.jlumin.2014.04.002

DOI: 10.1016/j.jlumin.2014.04.002

UV and thermal stable, photoluminescent carbon dots (CDs) prepared by embedding CDs in ionic salt crystals such as NaCl, KCL, KBr are demonstrated. The salt crystal embedding matrix does not interfere with CDs strong emission, and provides effective protection to CDs from the environment. The degradation of 20% of the initial luminescence intensity of salt-encapsulated CDs (S-CDs) is 15 times slower under UV and 6 times slower under heat compared to that of CDs in silica matrix. We also demonstrate that the S-CDs can be applied as a color-converting phosphor for typical GaN UV light emitting diodes (LEDs) with significant improvements in stability as well as processability. (C) 2014 Elsevier B.V.

[67]
Zhai Y C, Zhou D, Jing P T, Li D, Zeng H B, Qu S N. Journal of Colloid and Interface Science, 2017,497:165. https://linkinghub.elsevier.com/retrieve/pii/S0021979717302503

DOI: 10.1016/j.jcis.2017.03.007

[68]
Wang Y, Kalytchuk S, Wang L Y, Zhovtiuk O, Cepe K, Zboril R, Rogach A L. Chemical Communication, 2015,51(14):2950. http://xlink.rsc.org/?DOI=C4CC09589H

DOI: 10.1039/C4CC09589H

[69]
Green D C, Holden M A, Levenstein M A, Zhang S H, Johnson B R G, Gala de Pablo J, Ward A, Botchway S W, Meldrum F C. Nature Communications, 2019,10(1):206. https://doi.org/10.1038/s41467-018-08214-6

DOI: 10.1038/s41467-018-08214-6

[70]
Wang J L, Zhang F, Wang Y L, Yang Y Z, Liu X G. Carbon, 2018,126:426. https://linkinghub.elsevier.com/retrieve/pii/S0008622317310424

DOI: 10.1016/j.carbon.2017.10.041

[71]
Wang A W, Hou Y L, Kang F W, Lyu F C, Xiong Y, Chen W C, Lee C S, Xu Z T, Rogach A L, Lu J, Li Y Y. Journal of Materials Chemistry C, 2019,7(8):2207. http://xlink.rsc.org/?DOI=C8TC04171G

DOI: 10.1039/C8TC04171G

[72]
Zhang Q H, Tian Y, Wang C F, Chen S. RSC Advances, 2016,6(53):47616. http://xlink.rsc.org/?DOI=C6RA05689J

DOI: 10.1039/C6RA05689J

[73]
Hu S L, Ding Y L, Chang Q, Trinchi A, Lin K, Yang J L, Liu J. Nanoscale, 2015,7(10):4372. http://xlink.rsc.org/?DOI=C4NR07119K

DOI: 10.1039/C4NR07119K

[74]
Chang Q, Yang S S, Xue C R, Li N, Wang Y Z, Li Y, Wang H Q, Yang J L, Hu S L. Nanoscale, 2019,11(15):7247. http://xlink.rsc.org/?DOI=C9NR01224A

DOI: 10.1039/C9NR01224A

[75]
Wang D, Liu J G, Chen J F, Dai L M. Advanced Materials Interfaces, 2016,3(1), 1500439. http://doi.wiley.com/10.1002/admi.201500439

DOI: 10.1002/admi.201500439

[76]
Zhou Z J, Tian P F, Liu X Y, Mei S L, Zhou D, Li D, Jing P T, Zhang W L, Guo R Q, Qu S N, Rogach A L. Advanced Science, 2018,5(8):1800369. http://doi.wiley.com/10.1002/advs.v5.8

DOI: 10.1002/advs.v5.8

[77]
Li D, Han D, Qu S N, Liu L, Jing P T, Zhou D, Ji W Y, Wang X Y, Zhang T F, Shen D Z. Light: Science & Applications, 2016,5(7):e16120.
[78]
Chen Y H, Zheng M T, Xiao Y, Dong H W, Zhang H R, Zhuang J L, Hu H, Lei B F, Liu Y L. Advanced Materials, 2015,28(2):312. http://doi.wiley.com/10.1002/adma.201503380

DOI: 10.1002/adma.201503380

[79]
Jiang B P, Yu Y X, Guo X L, Ding Z Y, Zhou B, Liang H, Shen X C. Carbon, 2017,128:12. https://linkinghub.elsevier.com/retrieve/pii/S0008622317311843

DOI: 10.1016/j.carbon.2017.11.070

[80]
Shen C L, Zang J H, Lou Q, Su L X, Li Z, Liu Z Y, Dong L, Shan C X. Carbon, 2018,136:359. https://linkinghub.elsevier.com/retrieve/pii/S0008622318304743

DOI: 10.1016/j.carbon.2018.05.015

[81]
Liu J C, Wang N, Yu Y, Yan Y, Zhang H Y, Li J Y, Yu J H. Science Advances, 2017,3(5):e1603171. https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1603171

DOI: 10.1126/sciadv.1603171

[82]
Yang H Y, Liu Y L, Guo Z Y, Lei B F, Zhuang J L, Zhang X J, Liu Z M, Hu C F. Nature Communication, 2019,10(1):1789. https://doi.org/10.1038/s41467-019-09830-6

DOI: 10.1038/s41467-019-09830-6

[83]
Zhou D, Jing P T, Wang Y, Zhai Y C, Li D, Xiong Y, Baranov A V, Qu S N, Rogach A L. Nanoscale Horizons, 2019, 4, ( 2):388. http://xlink.rsc.org/?DOI=C8NH00247A

DOI: 10.1039/C8NH00247A

[84]
Zhang Y Q, Zhuo P, Yin H, Fan Y, Zhang J H, Liu X Y, Chen Z Q. ACS Applied Materials & Interfaces, 2019,11(27):24395. https://pubs.acs.org/doi/10.1021/acsami.9b04600

DOI: 10.1021/acsami.9b04600

[85]
Wang H J, Yu T T, Chen H L, Nan W B, Xie L Q, Zhang Q Q. Dyes and Pigments, 2018,159:245 https://linkinghub.elsevier.com/retrieve/pii/S0143720818309987

DOI: 10.1016/j.dyepig.2018.06.039

[86]
Zhang Y Q, Li C F, FanY, Wang C B, Yang R F, Liu X Y, Zhou L. Nanoscale, 2016,8(47):19744. http://xlink.rsc.org/?DOI=C6NR06553H

DOI: 10.1039/C6NR06553H

[87]
Yeh H C, Wu W C, Chen C T. Chemical Communications, 2003, ( 3):404.
[88]
Hong Y N, Lam J W Y, Tang B Z. Chemical Communications, 2009, ( 29):4332.
[89]
Qu S N, Liu X Y, Guo X Y, Chu M H, Zhang L G, Shen D Z. Advanced Functional Materials, 2014,24(18):2689. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201303352/abstract

DOI: 10.1002/adfm.201303352

In this work, the optical properties of carbon nanoparticles (CNPs) can be modulated by the dopant-N atom and sp(2) C-contents. CNPs prepared with the low urea mass ratio of 0.2:1 (CNP1) exhibit blue emission (maximum PL quantum yield: 15%). Increasing sp(2) C- and dopant-N atom contents, as determined in CNPs prepared with high urea mass ratio of 2:1 (CNP2), lead to green emission (maximum PL quantum yield up to 36% in ethanol aqueous solution). Amplified spontaneous emission (ASE) can be observed only in CNP2 ethanol aqueous solution. Green lasing emission is achieved from CNP2 ethanol aqueous solution in a linear long Fabry-Perot cavity, indicating the potential of CNP2 as a gain medium for lasing. CNP2 shows superior photostability compared with C545T dye. The green emission from CNP2 is speculated to arise from electron-hole recombination (intrinsic state emission). The high PL quantum yield and small overlap between absorption and emissions of CNP2 ethanol aqueous solution are the key factors in realizing lasing emission.

[90]
Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013,52(30):7800. http://doi.wiley.com/10.1002/anie.v52.30

DOI: 10.1002/anie.v52.30

[91]
Hu S L, Tian R X, Dong Y G, Yang J L, Liu J, Chang Q. Nanoscale, 2013,5(23):11665. http://dx.doi.org/10.1039/c3nr03893a

DOI: 10.1039/c3nr03893a

摘要

To demonstrate the effects of surface atoms on photoluminescence (PL) and photocatalytic activities of luminescent carbon dots (CDs), we design and tailor the surface groups of CDs with heteroatoms by a facile and effective approach. The coexistence of O and N radicals in CDs results in strong PL while CDs containing O and Cl radicals show high photocatalytic activity. This is attributed to the different degrees and directions of energy band bending from inner to surface induced by O, N, and Cl radicals at the surface of CDs. The coexistence of both upward and downward band bending that are caused by the O and Cl radicals, respectively, in CDs is similar to an internal electronic field that facilitates the separation of electron-hole pairs and carrier migration, leading to high photocatalytic activity. These results may also be used for designing and tailoring optical-electronic properties of carbon nanostructures.

[92]
Tian R X, Hu S L, Wu L L, Chang Q, Yang J L, Liu J. Applied Surface Science, 2014,301:156. http://dx.doi.org/10.1016/j.apsusc.2014.02.028

DOI: 10.1016/j.apsusc.2014.02.028

摘要

A facile and green method to tailor surface groups of carbon quantum dots (CQDs) is developed by hydrothermal treatment in an autoclave. The photoluminescence (PL) behaviors of CQDs depend on the types of surface groups. Highly efficient photoluminescence is obtained through amino-hydrothermal treatment of the CQDs reduced by NaBH4. The effects of surface groups on PL behavior are attributed to the degrees of energy band bending induced by surface groups. (C) 2014 Elsevier B.V.

[93]
Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013,52(14):3953. http://doi.wiley.com/10.1002/anie.v52.14

DOI: 10.1002/anie.v52.14

/


AI


AI小编
你好!我是《化学进展》AI小编,有什么可以帮您的吗?