English
新闻公告
More

文章编号: 20190602  

文献标识码: A

有机催化原子转移自由基聚合

展开
  • 南京工业大学 材料科学与工程学院 材料化学工程国家重点实验室 江苏先进无机功能复合材料协同创新中心 江苏先进生物与化学制造协同创新中心 南京 210009

收稿日期:2018-11-01

  要求修回日期:2019-01-18

  网络出版日期:2019-04-26

基金资助

国家自然科学基金项目(21604037)

国家自然科学基金项目(51872138)

国家自然科学基金项目(51503098)

江苏省高等学校优势学科建设工程项目

江苏省高校青蓝工程

江苏省六大人才高峰项目(XCL-029)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Organocatalyzed Atom Transfer Radical Polymerization

Expand
  • College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University, Nanjing 210009, China
** E-mail: (Xin Hu);
(Chunhua Lu)

Received:1 Nov. 2018

  rev-requestrev-request:18 Jan. 2019

  Online:26 Apr. 2019

Fund

National Natural Science Foundation of China(21604037)

National Natural Science Foundation of China(51872138)

National Natural Science Foundation of China(51503098)

Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD)

Qing Lan Project

Six Talent Peaks Project in Jiangsu Province(XCL-029)

Copyright

Copyright reserved © 2019.

摘要

过渡金属催化的原子转移自由基聚合(ATRP)是合成结构可控聚合物的重要方法之一,尽管一系列改进ATRP方法可将催化剂的浓度降至ppm级,但不可避免的金属残留仍然是制约ATRP应用的主要瓶颈。近年来,科学家提出并发展了有机催化原子转移自由基聚合(O-ATRP),从根本上规避了金属催化剂的使用与残留。本文对有机催化原子转移自由基聚合的概念、催化体系和聚合机理进行了介绍,同时综述了该新聚合方法在高分子合成与材料制备方面的应用。

关键词: 有机催化 ; 原子转移自由基聚合 ; 光诱导 ; 功能高分子

中图分类号: O621.25+1;O631.5 ()  

本文引用格式

李宁 , 胡欣 , 方亮 , 寇佳慧 , 倪亚茹 , 陆春华 . 有机催化原子转移自由基聚合[J]. 化学进展, 2020 , 31(6) : 791 -799 . DOI: 10.7536/PC181040

Ning Li , Xin Hu , Liang Fang , Jiahui Kou , Yaru Ni , Chunhua Lu . Organocatalyzed Atom Transfer Radical Polymerization[J]. Progress in Chemistry, 2020 , 31(6) : 791 -799 . DOI: 10.7536/PC181040

Abstract

Atom transfer radical polymerization(ATRP) is one of the most robust and versatile tools for the synthesis of well-defined polymers. The traditional ATRP have to be conducted with high concentration of metal catalyst to compensate for the unavoidable radical termination reaction. A series of ATRP variants have been developed to reduce the metal catalyst concentration to 100 ppm or below. However, the contamination of the metal residue still remains. Organocatalyzed ATRP(O-ATRP) provides a green and reliable route to functionalized well-defined polymer without metal residue. The development of organic photoredox catalyst system is the key point of O-ATRP. This review highlights the recent progress in O-ATRP, including the various organic photoredox catalyst systems and polymerization mechanism. Moreover, the applications of O-ATRP in polymer synthesis are discussed.

Contents

1 Introduction
2 Catalysts for organocatalyzed atom transfer radical polymerization(O-ATRP)
2.1 Phenothiazine
2.2 Polynuclear aromatic hydrocarbons
2.3 Dihydrophenazine
2.4 N-Arylphenoxazines
2.5 Fluorescein
2.6 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzee
2.7 p-Anisaldehyde
3 Application of organocatalzyed atom transfer radical polymerization(O-ATRP)
3.1 Continuous flow O-ATRP
3.2 Polymer brush synthesis
3.3 Fluoropolymers
3.4 Functional polymers
3.5 Polymer core-shell nanoparticles
4 Conclusion

1 引言

活性自由基聚合(LRP)是制备结构可控聚合物的重要途径[1],包括原子转移自由基聚合(ATRP)[2, 3]、可逆加成-断裂链转移聚合(RAFT)[4, 5]以及氮氧稳定自由基聚合(NMP)[6, 7]等。ATRP是研究最为广泛和深入的活性聚合方法,然而,聚合产物中不可避免的金属残留成为了限制其应用的主要瓶颈。近年来,电子转移再生催化剂ATRP(ARGET ATRP)[8,9,10,11,12,13,14,15]、引发剂连续再生催化剂ATRP(ICAR ATRP)[16, 17]、零价铜催化的活性自由基聚合(SET-LRP/SARA ATRP)[18,19,20,21,22,23,24]以及光/电调控ATRP(eATRP & photoATRP)[25,26,27,28,29,30]等改进ATRP技术相继被提出,尽管可将金属残留由1000 ppm降低至20 ppm,但仍然无法完全避免金属污染对ATRP聚合产物的影响,尤其是在电子和生物医用材料领域[31,32,33]
探索光诱导无金属ATRP是规避金属残留的理想途径。光由于具有绿色清洁和时空精确控制等优点,引起了学术界广泛的研究兴趣[36,37,38,39]。其良好的光源普适性,可使聚合反应在室温光照条件下进行,反应条件相对温和。光照可以提高催化剂活性、降低催化剂使用量,使聚合反应体系建立休眠种和活性种之间可逆平衡,实现聚合反应活性/可控[40]。2014年以来,Miyake等[38]、Hawker等[39]、Matyjaszewski等[40]、朱秀林等[41]和杨万泰等[42]先后提出并建立了光诱导的有机催化ATRP(O-ATRP)的新方法,取得了重大研究进展[43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58]。本文综述了O-ATRP的概念、催化体系和聚合机理,及其在构筑功能化聚合物方面的应用,并对发展前景进行了展望。

2 有机催化原子转移自由基聚合催化体系

催化剂研究是高分子合成化学中的核心问题。传统ATRP依靠低价过渡金属(Cu(Ⅰ)、Fe(Ⅱ)和Ir(Ⅲ))快速活化烷基卤引发剂生成自由基,引发链增长,产生的高价金属卤化物有效钝化自由基可逆形成休眠种,从而实现活性聚合。受此启发,发展新型有机催化光诱导无金属ATRP的关键也在于探索能够快速活化烷基卤引发剂以及有效钝化自由基的有机小分子催化剂。目前适用于氧化淬灭途径的催化剂有吩噻嗪、吩嗪、吩口恶嗪、蒽和芘等,而适用于还原淬灭途径的催化剂则有荧光素、赤藓红B等,上述催化剂的结构如图1所示。
图1 无金属ATRP的有机催化剂结构式[59]

Fig. 1 Structures of organocatalysts in metal-free ATRP[59]

2.1 吩噻嗪(PTH)

Hawker等[39]发展了10-苯基吩噻嗪(PTH)作为有机催化剂的新型光诱导无金属ATRP体系。在380 nm LED光照条件下,以用量0.1 mol%(1000 ppm)的PTH催化单体MMA、BnMA和DMAEMA发生聚合,所得聚合产物的分子量分布为1.18~1.32。该体系通过调控光的“开/关”实现聚合反应的“开/关”,分子量与单体转化率呈线性增加,表现出一级反应动力学的特征,同时分子扩链反应也证实了聚合产物为活性聚合物,验证了无金属ATRP体系具有“活性”/可控特征。他们提出了10-苯基吩噻嗪催化的无金属ATRP的催化机理(如图2所示):有机光催化剂10-苯基吩噻嗪在相应波长的光照下,从基态被激发到单线态PTH*,其与烷基溴发生反应产生自由基,自由基引发单体聚合成增长自由基,从而发生链增长,同时生成有机光催化剂与溴结合的中间态物质又可钝化增长自由基,从而得到卤素封端的大分子链和处于基态的有机光催化剂,完成整个催化过程,实现聚合可控。
图2 10-苯基吩噻嗪作为催化剂的无金属ATRP[39]

Fig. 2 Proposed mechanism for metal-free ATRP with 10-phenylphenothiazine(PTH) photocatalyst[39]

Matyjaszewski等[40]利用10-苯基吩噻嗪实现单体丙烯腈(AN)可控聚合,拓展了无金属残留的丙烯腈基嵌段共聚物在电学方面的应用。此后,考察了吩噻嗪衍生物以及其他相关催化剂(如图3)催化单体甲基丙烯酸甲酯(MMA)聚合的可控性。结合循环伏安法(CV)、激光闪光光解(LFP)、密度泛函理论(DFT)和解离电子转移(DET)深入探究无金属ATRP催化聚合机理。同时,Matyjaszewski等还利用苯基苯并[b]吩噻嗪在可见光区域的强吸收,实现了在392 nm可见光LED下“活性”/可控聚合甲基丙烯酸甲酯(MMA)[61]
图3 吩噻嗪衍生物结构式[60]

Fig. 3 Structures of phenothiazine catalysts studied in metal-free ATRP[60]

2.2 多环芳香族

Miyake等提出了基于0.11 mol%二萘嵌苯催化的可见光/太阳光诱导无金属ATRP体系[38],其通过氧化淬灭途径催化α-溴苯乙酸乙酯(EBPA)引发甲基丙烯酸甲酯(MMA)和其他乙烯基单体实现聚合(如图4),同时Yagci利用该催化体系可合成超支化聚合物[62]。Yagci等利用蒽和芘作为MMA和其他乙烯基单体聚合的有机光催化剂。激发态下的蒽与基态蒽在催化聚合过程中发生[4 + 4]环加成副反应,导致聚合产率低,且所得聚合物的重均分子量为双峰分布[63]。而芘以激发态参与诱导的增长自由基在可逆反应中未形成激发态复合物,芘比蒽表现更强的催化活性。
图4 二萘嵌苯催化的光诱导ATRP[38]

Fig. 4 Metal-free light-mediated ATRP using perylene as an organic photocatalyst[38]

2.3 吩嗪

Miyake等[64]采用可见光介导下的基于4种N-苯基取代基的5,10-二氢吩嗪(DHP)催化剂的无金属催化聚合MMA的ATRP(如图5)。在这4种催化反应体系中,CF3Ph-DHP作为催化剂,所制得的聚合物多分散指数最低(Mw/Mn=1.17)且引发剂引发效率最高(65.9%)。根据DFT理论分析,研究设计合成了两种更有效的催化剂:2-Nap-DHP(5)和1-Nap-DHP(6),PDI和引发剂效率分别为1.23和99.3%。
图5 N-苯基取代基的5,10-二氢吩嗪催化剂结构 (1: 5,10-二对甲氧基苯-5,10-二氢吩嗪;2:5,10-二苯基-5,10-二氢吩嗪;3:5,10-二对三氟甲基苯-5,10-二氢吩嗪;4: 5,10-二对腈基苯-5,10-二氢吩嗪;5: 5,10-二(2-萘基)-5,10-二氢吩嗪;6: 5,10-二(1-萘基)-5,10-二氢吩嗪)以及催化ATRP聚合机理[64]

Fig. 5 PC development for O-ATRP(top and mid).A proposed mechanism for ATRP mediated by a PC via photoexcitation to 1PC*, intersystem crossing(ISC)to the triplet state 3PC*, ET to form the radical cation doublet 2PC·+, and back ET to regenerate PC(bottom) and reversibly terminate polymerization[64]

类似于吩噻嗪催化聚合体系,5,10-二氢吩嗪构建的有机光催化ATRP同样经历氧化淬灭循环,激发态下的吩嗪化合物具有足够强的还原电位,通过还原ATRP引发剂或聚合烷基卤化物引发聚合形成增长自由基,同时,在光致电子转移期间形成的稳定自由基阳离子具有足够高的氧化电势使增长自由基失活。其中,二氢吩嗪的激发态为三重态,其寿命比单线态更长,理论上讲,较长的激发态寿命使较大部分的催化剂参与活化/失活循环,反应的活化以及失活过程更加高效。

2.4 吩口恶嗪

Miyake等利用理论计算与实验相结合考察了吩口恶嗪有机催化ATRP体系的可行性[65],同时探究处于基态和激发态构象的催化剂对聚合活化与失活的影响(如图6)。吩噻嗪核在基态和激发态都为弯曲构象,但处于自由基阳离子状态时则为平面几何形状;相反地,吩口恶嗪催化剂在催化聚合循环期间都保持为平面构象。由于结构重组能存在差异,与吩噻嗪相比,吩口恶嗪和二氢吩嗪可以更快地活化和失活。在此基础上,相比于10-萘基吩口恶嗪,3,7-二(4-(1,1'-联苯))-(10-(1-萘基))-10-吩口恶嗪不仅摩尔消光系数增加,同时也可作为可见光催化剂。其在白光LED照射下成功催化引发DBMM诱导单体MMA进行ATRP,引发剂引发效率更高,且合成的聚合物分子量分布更窄(1.13~1.31)。
图6 10-苯基吩口恶嗪,5,10-二苯基二氢吩嗪和10-苯基吩噻嗪的几何重组能和还原电位以及吩口恶嗪衍生物的最大吸收波长以及消光系数[65]

Fig. 6 Geometric reorganization energies and reduction potentials(vs SCE) for 10-phenylphenoxazine, diphenyl dihydrophenazine, and 10-phenylphenothiazine(top). Extinction coefficients at λmax with the visible absorbance spectrum of functionalized phenoxazine(bottom)[65]

2.5 荧光素

朱秀林和程振平等发展了多种有机催化活性自由基聚合体系[49,50,51,52]。他们[41]提出了荧光素(FL)和给电子体三乙胺(TEA)结合通过还原淬灭途径实现丙烯酸酯类单体的活性聚合。与之前报道的吩噻嗪、吩口恶嗪、二氢吩嗪氧化淬灭途径不同,荧光素以还原淬灭途径催化的光诱导ATRP需要有电子供体参与,其反应过程机理如图7所示:荧光素在可见光照射条件下形成激发态,与过量的电子供体三乙胺发生淬灭形成荧光素自由基阴离子和胺自由基阳离子,荧光素基团阴离子具有足够的负还原电位以还原烷基溴,产生增长的自由基,引发单体发生聚合。同时,三烷基胺自由基阳离子将溴阴离子氧化成溴自由基,调控反应体系内增长自由基浓度,实现光诱导活性自由基聚合。Yagci等和杨明清等通过使用诸如曙红Y(EY)和赤藓红B(EB)等光敏有机催化剂实现了单体St、MMA、HEMA、tBA和AN的聚合[66, 67],激发态染料与电子给体胺发生电子转移,形成的自由基阴离子染料还原引发剂烷基卤化物,产生引发单体聚合的增长自由基,同时从卤化物阴离子到胺自由基阳离子的反电子转移形成休眠种,从而实现单体活性可控聚合(如图8)。
图7 荧光素催化的光诱导无金属ATRP[41]

Fig. 7 Proposed mechanism for metal-free photo-ATRP mediated by fluorescein(FL) in the presence of tertiary-amine reducing agent[41]

图8 染料/胺体系引发光诱导无金属ATRP[66]

Fig. 8 Proposed mechanism of photoinduced, metal-free ATRP using dye/amine initiating system[66]

2.6 2,4,5,6-四(9-咔唑基)-间苯二腈(4CzIPN)

由于4CzIPN易合成、成本低、较高的激发态还原电位且在可见光区域有较强的吸收等特点,朱秀林和程振平等利用可见光催化和无金属催化的优势,成功构建了ppm级4CzIPN催化MMA进行ATRP的光诱导聚合体系[68]。反应机理如图9所示:基态4CzIPN受到可见光辐照成激发态,随后处于激发态活化溴代烷烃而生成自由基,进而发生链增长反应,产生自由基的同时生成中间态物质,其能够与链增长自由基发生钝化反应,而自身又回到基态,基态又可进行下一步光氧化还原循环过程,从而实现对该体系的可控聚合。该聚合体系仅需15 ppm的催化剂4CzIPN催化剂,即可在3 h内得到引发效率95%和转化率90%的聚合物。Yagci等构建了高共轭的富电子噻吩并噻吩衍生物的无金属ATRP[69]。聚合研究和DFT计算表明,由于有利的热力学性质,TT-TPA是最有效的活化剂,在光照下有效活化和失活,促使甲基丙烯酸甲酯(MMA)活性聚合,形成具有分子量可控和链端官能度的聚合物。
图9 光诱导4CzIPN催化ATRP机理[68]

Fig. 9 Proposed mechanism of photomediated ATRP with 4CzIPN organic molecules as catalysts[68]

2.7 对茴香醛

杨万泰等长期致力于光诱导聚合反应的研究,取得了一系列重大突破[53,54,55,56,57]。最近,他们利用低成本且商业可得的对茴香醛、对氰基苯甲醛和2,4-二甲氧基苯甲醛3种苯甲醛衍生物作为有机光催化剂,在潜在还原剂N,N-二甲基乙酰胺的作用下,成功实现了全氟-1-碘己烷引发甲基丙烯酸酯类单体的光诱导有机催化活性自由基聚合[42]。聚合机理如图10所示:以对茴香醛催化为例,光照使处于激发态下的自由基阳离子Cat·+还原CF3(CF2)5-I,产生Cat·+I-以及可以引发自由基聚合反应的烷基自由基$CF_3(CF_2)_5^{\cdot}$。而具有氧化性的Cat·+I-中间体可再生成基态催化剂Cat以及休眠种,休眠种与活性种之间的动态可逆平衡使得自由基聚合反应具有可控性。通过此方法合成的聚合物聚乙二醇单甲醚甲基丙烯酸酯(PPEGMA-I)(Mn,GPC =10 200 g·mol-1; PDI=1.33)作为大分子引发剂再次进行扩链反应,单体转化率高达85%且为大分子量的聚合产物PPEGMA(Mn,GPC =44 000 g·mol-1; PDI=1.54),进一步证实了对茴香醛作为光氧化还原催化剂调控的自由基聚合体系的反应活性,通过嵌段共聚反应又可成功制备清洁嵌段共聚物(PPEGMA-b-PMMA,PBnMA-b-PMMA和PPEGMA-b-PBnMA)。尽管该催化体系制备共聚物的过程可控性稍差,但是该研究拓展了无金属光致氧化还原催化剂调控的光引发ATRP聚合反应体系。
图10 对茴香醛调控的光诱导ATRP机理[42]

Fig. 10 Proposed mechanism of photomediated ATRP with benzaldehydic organic molecules as catalysts[42]

3 有机催化原子转移自由基聚合的应用

3.1 连续流动化学技术

连续流反应装置具有极高的比表面积以及高效传热和传质的特点,可以有效地提升反应效率,抑制副反应的发生[70,71]。将连续流反应装置与聚合反应结合可以大幅提高表观聚合反应速率,提升化学选择性,制备具有精确结构以及分子量可控的功能化聚合物[72,73,74,75,76,77,78,79,80,81]。Miyake等提出在连续流装置中进行有机催化原子转移自由基聚合[82],通过改善光照效率进而提高聚合反应性能。该技术利用0.01 mol%的吩噻嗪催化甲基丙烯酸酯单体发生聚合,保持较高引发效率的同时,成功制备了窄分子量分布(PDI=1.05)的聚合物(如图11)。同时,在连续流动反应器中成功地进行了扩链聚合,证实了连续流O-ATRP技术的稳定性和通用性。Junkers等研究了微反应器中10-苯基吩噻催化的O-ATRP,聚合反应时间从12 h减少到2 h[83]
图11 连续流光诱导O-ATRP装置示意图[82]

Fig. 11 Photomediated flow reactors offer significant advantages to batch systems[82]

3.2 制备聚合物刷

Hawker等通过利用10-苯基吩噻作为有机光催化剂的光诱导无金属ATRP体系,调控PMMA聚合物刷生长,并且利用“benchtop”的晶圆装置可构建具有复杂图案的聚合物刷(如图12)[84]。Matyjaszewski等构建10-苯基吩噻嗪(PhPTZ)表面引发原子转移自由基聚合(SI-ATRP)成功制备结构为聚合物-无机物的杂化材料——SiO2表面接枝PMMA聚合物刷[85],探究引发剂结构、SiO2粒径以及催化剂浓度对接枝聚合物刷分子量的影响,当催化剂浓度与单体浓度比为0.02 mol%或0.1 mol%,其聚合物刷数均分子量为3.65×104,分散度为1.43,接枝密度为0.60链/nm2
图12 (a)表面引发无金属ATRP反应结构式;(b)表面引发无金属ATRP示意图;(c)聚合动力学[84]

Fig. 12 (a) Chemical scheme and conditions for metal-free ATRP using α-bromoisobutyrate-based initiator-functionalized silicon substrates.(b) Illustration of surface-initiated, metal-free ATRP.(c) Plot of brush height as a function of irradiation time using varied light intensities in the benchtop chamber[84]

3.3 制备含氟聚合物

陈茂等[86]以10-苯基吩噻嗪及其衍生物为光催化剂,实现了(甲基)丙烯酸氟代烷基酯类单体的活性自由基聚合(如图13)。该反应以含氟硫代碳酸酯或全氟烷基碘为引发转移终止剂/引发剂、分别以10-苯基吩噻嗪以及4-正丁基苯基修饰的10-苯基吩噻嗪为光催化剂、白色LED灯为光源,催化具有不同氟原子数目(n=3~17)的单体进行活性自由基聚合。相较于10-苯基吩噻嗪,4-正丁基修饰的10-苯基吩噻嗪具有更加高效的催化活性,相应聚合物的分子量分布均能控制在1.1左右。该研究为制备含氟丙烯酸酯类聚合物材料提供了一个温和、高效、无金属、精确的合成方法。
图13 流动化学技术合成含氟嵌段共聚物[86]

Fig. 13 Flow setup for the synthesis of a semifluorinated block copolymer[86]

胡欣等[58]采用10-苯基吩噻嗪作为有机催化剂,在紫外光条件下催化商业化含氟聚合物P(VDF-co-CTFE)引发(甲基)丙烯酸脂类单体进行活性自由基聚合,成功制备接枝量可调的功能化含氟接枝共聚物。通过对PVDF基含氟聚合物进行功能化接枝改性,可使聚合物具有高击穿场强与低剩余极化,实现聚合物高储能密度和低能量损耗。利用光诱导无金属活性自由基聚合技术可以完全规避产物中的金属残留,所得产物在介电和储能材料领域具有潜在应用前景。

3.4 功能聚合物

Matyjaszewski等[87]利用10-苯基吩噻嗪的无金属ATRP体系制备出高导电性的新型单离子均聚物电解质聚(环氧乙烷)甲基丙烯酸锂磺酰基(三氟甲基磺酰基)酰亚胺poly(PEOMA-TFSI-Li+),避免过渡金属的残留。同时,Wang等成功利用该催化体系用于三种生物质衍生单体——大豆油(SBMA)、糠醛(FMA)、松香酸(DAEMA)的聚合[88],由于SBMA的长烷基链降低了共聚物的玻璃化转变温度Tg和DAEMA可提高玻璃化转变温度,可以应用于形状记忆聚合物或具有可调Tg的纤维素松香共聚物。

3.5 聚合物核壳纳米粒子

赵清香等[89]利用10-苯基吩噻嗪催化诱导甲基丙烯酸甲酯(MMA)构建无金属原子转移自由基聚合形成不同分子量的PMMA聚合物分子链,再将该原子链原位覆盖于Fe3O4纳米颗粒表面,通过调整不同沸点的溶剂和光照时间制备出尺寸可调的核@壳结构的Fe3O4@PMMA纳米粒子(如图14)。Chen等[90]使用有机染料荧光素(FL)、曙红Y(EY)和罗丹明6G(R6G)催化的PET-ATRP技术合成核壳结构的Fe3O4@PDA@PGMA,同时还可以通过乙二胺(EDA)改性Fe3O4@PDA@PGMA,改善该聚合物磁性纳米粒子的亲水性、分散性以及与铀酰离子的结合能力。通过这种将无金属PET-ATRP与环保型PDA化学相结合的方法,将为磁性纳米粒子和其他先进纳米材料的表面修饰工程提供更多的路径。
图14 无金属催化的ATRP原位制备Fe3O4@PMMA核@壳结构纳米杂化材料的合成路线[89]

Fig. 14 Schematic stepwise representation of the synthetic route to core/shell PMMA-capped Fe3O4 nanoparticles by metal-free ATRP based on PTH as photocatalyst[89]

4 结论

有机催化原子转移自由基聚合(O-ATRP)是高效制备无金属残留结构可控聚合物的良好方法。光的绿色清洁与优异的时空控制性为可控合成结构精确的功能聚合物及制备功能聚合物材料开辟了新途径。将连续流技术与有机催化光控ATRP结合,可极大改善光照的均匀性,实现对聚合反应的高精度时空控制,同时连续流技术为大规模制备具有精确结构的聚合物材料奠定了良好的基础。由于O-ATRP具有反应条件温和、产物无金属残留的特点,也为探索合成生物医学复合材料、电学器件材料等研究带来机遇。通过设计催化体系,有望提高光诱导有机催化体系的水氧容忍性,拓展单体种类与光源范围,改善引发效率、单体转化率、分子量分布,并实现同一光诱导有机催化体系下不同可控聚合反应之间的偶合以及聚合诱导自组装。
[1]
Matyjaszewski K, Tsarevsky N V . J. Am. Chem. Soc., 2014,136(18):6513. https://www.ncbi.nlm.nih.gov/pubmed/24758377

DOI: 10.1021/ja408069v   PMID: 24758377

This Perspective presents recent advances in macromolecular engineering enabled by ATRP. They include the fundamental mechanistic and synthetic features of ATRP with emphasis on various catalytic/initiation systems that use parts-per-million concentrations of Cu catalysts and can be run in environmentally friendly media, e.g., water. The roles of the major components of ATRP--monomers, initiators, catalysts, and various additives--are explained, and their reactivity and structure are correlated. The effects of media and external stimuli on polymerization rates and control are presented. Some examples of precisely controlled elements of macromolecular architecture, such as chain uniformity, composition, topology, and functionality, are discussed. Syntheses of polymers with complex architecture, various hybrids, and bioconjugates are illustrated. Examples of current and forthcoming applications of ATRP are covered. Future challenges and perspectives for macromolecular engineering by ATRP are discussed.

[2]
Matyjaszewski K . Macromolecules, 2012,45(10):4015.
[3]
Abreu C M R, Mendonça P V, Serra A C, Popov A V, Matyjaszewski K, Guliashvili T, Coelho J F J . ACS Macro Lett., 2012,1(11):1308.
[4]
Hentschel J, Bleek K, Ernst O, Lutz J, Börner H G . Macromolecules, 2008,41(4):1073.
[5]
Wang M Q, Jiang X W, Luo Y J, Zhang L F, Cheng Z P, Zhu X L . Polym. Chem., 2017,8(38):5918.
[6]
Sciannamea V, Jérôme R, Detrembleur C . Chem. Rev., 2008,108(3):1104. https://www.ncbi.nlm.nih.gov/pubmed/18254646

DOI: 10.1021/cr0680540   PMID: 18254646

[7]
Audran G, Bagryanskaya E G, Brémond P, Edeleva M V, Marque S R A, Parkhomenko D A, Rogozhnikova O Y, Tormyshev V M, Tretyakov E V, Trukhin D V, Zhivetyeva S I . Polym. Chem., 2016,7(42):6490. https://www.ncbi.nlm.nih.gov/pubmed/28989533

DOI: 10.1039/C6PY01303A   PMID: 28989533

kd of C-ON bond homolysis in these alkoxyamines were measured and found to be equal to those for alkoxyamines without trityl. The electron paramagnetic resonance (EPR) spectra of the products of alkoxyamine homolysis (trityl-TEMPO and trityl-SG1 biradicals) were recorded, and the corresponding exchange interactions were estimated. The decomposition of trityl-alkoxyamine showed more than an 80% yield of biradicals, meaning that the C-ON bond homolysis is the main reaction. The suitability of these labelled initiators/controllers for polymerisation was exemplified by means of successful nitroxide-mediated polymerisation (NMP) of styrene. Thus, this is the first report of a spin-labelled alkoxyamine suitable for NMP.]]>

[8]
Nicolaÿ R, Kwak Y, Matyjaszewski K . Angewandte Chemie International Edition, 2010,49(3):541. https://www.ncbi.nlm.nih.gov/pubmed/20013835

DOI: 10.1002/anie.200905340   PMID: 20013835

[9]
Jakubowski W, Min K, Matyjaszewski K . Macromolecules, 2006,39(1):39.
[10]
Jakubowski W, Matyjaszewski K . Angewandte Chemie International Edition, 2006,45(27):4482. https://www.ncbi.nlm.nih.gov/pubmed/16770821

DOI: 10.1002/anie.200600272   PMID: 16770821

[11]
Simakova A, Averick S E, Konkolewicz D, Matyjaszewski K . Macromolecules, 2012,45(16):6371.
[12]
Kwak Y, Magenau A J D, Matyjaszewski K . Macromolecules, 2011,44(4):811. https://www.ncbi.nlm.nih.gov/pubmed/11315920

DOI: 10.1002/1529-0131(200104)44:4<811::AID-ANR137>3.0.CO;2-F   PMID: 11315920

Most observational studies suggest that postmenopausal women taking hormone replacement therapy have a reduced risk of radiographic knee and hip osteoarthritis (OA). There are no randomized trial data on the association of hormone treatment with knee or hip OA, and no studies have been published regarding the relationship of hormone treatment to knee or hip symptoms. This study examined the association of hormone treatment with prevalent knee symptoms and disability related to knee pain as assessed at the final visit of the Heart and Estrogen/Progestin Replacement Study (HERS).

[13]
Matyjaszewski K, Dong H C, Jakubowski W, Pietrasik J, Kusumo A . Langmuir, 2007,23(8):4528. https://www.ncbi.nlm.nih.gov/pubmed/17371060

DOI: 10.1021/la063402e   PMID: 17371060

Atom-transfer radical polymerization (ATRP) is one of the controlled/living radical polymerizations yielding well-defined (co)polymers, nanocomposites, molecular hybrids, and bioconjugates. ATRP, as in any radical process, has to be carried out in rigorously deoxygenated systems to prevent trapping of propagating radicals by oxygen. Herein, we report that ATRP can be performed in the presence of limited amount of air and with a very small (typically ppm) amount of copper catalyst together with an appropriate reducing agent. This technique has been successfully applied to the preparation of densely grafted polymer brushes, poly(n-butyl acrylate) homopolymer, and poly(n-butyl acrylate)-block-polystyrene copolymer from silicon wafers (0.4 chains/nm2). This simple new method of grafting well-defined polymers does not require any special equipment and can be carried out in vials or jars without deoxygenation. The grafting for "everyone" technique is especially useful for wafers and other large objects and may be also applied for molecular hybrids and bioconjugates.

[14]
Bhut B V, Conrad K A, Husson S M . J. Membrane Sci., 2012,390/391:43.
[15]
Liu X H, Li Y, Chu Z Y, Fang Y C, Zheng H L . J. Appl. Biomater. Func., 2018,16(1_suppl):163. https://www.ncbi.nlm.nih.gov/pubmed/29618253

DOI: 10.1177/2280800018757337   PMID: 29618253

Bacterial cellulose (BC) aerogels have received more and more attention due to their renewability, biodegradability and other excellent properties in recent years. Modification of BC aerogels using different methods would expand their applications. However, many problems exist for these modifications, such as a low grafting ratio, the larger dosage of metal catalyst required and so on. Activator regeneration by electron transfer (ARGET) for atom transfer radical polymerization (ATRP) is a novel ATRP method which could significantly reduce the amount of metal catalyst required and achieve a high grafting ratio.

[16]
Konkolewicz D, Magenau A J D, Averick S E, Simakova A, He H K, Matyjaszewski K . Macromolecules, 2012,45(11):4461. https://pubs.acs.org/doi/10.1021/ma300887r

DOI: 10.1021/ma300887r

[17]
Cohen-Karni D, Kovaliov M, Ramelot T, Konkolewicz D, Graner S, Averick S . Polym. Chem., 2017,8(27):3992. http://xlink.rsc.org/?DOI=C7PY00669A

DOI: 10.1039/C7PY00669A

[18]
Fleischmann S, Rosen B M, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(5):1190. http://doi.wiley.com/10.1002/pola.v48%3A5

DOI: 10.1002/pola.v48:5

[19]
Nguyen N H, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2011,49(22):4756. http://doi.wiley.com/10.1002/pola.v49.22

DOI: 10.1002/pola.v49.22

[20]
Fleischmann S, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(10):2243.
[21]
Zhang Z B, Wang W X, Xia H D, Zhu J, Zhang W, Zhu X L . Macromolecules, 2009,42(19):7360. https://www.ncbi.nlm.nih.gov/pubmed/18939571

DOI: 10.1021/es800306m   PMID: 18939571

Biological treatment plants are frequently used to degrade organic substances in wastewater from wood refinement processes. Aeration ponds in such plants provide an optimal growth environment for many microorganisms, including Legionella species. To investigate whether legionellae could be dispersed as aerosols from the ponds and transported by the wind, the wetted-wall cyclone SASS 2000(PLUS) and the impactors MAS-100 and STA-204 were used to collect air samples directly above, upwind, and downwind of aeration ponds during a 4-month period. Computational fluid dynamics was used a priori to estimate the aerosol paths and to determine suitable air-sampling locations. Several Legionella species, including Legionella pneumophila, were identified in air samples at the biological treatment plant using microbiological and molecular methods. L. pneumophila was identified up to distances of 200 m downwind from the ponds, but, in general, not upwind nor outside the predicted aerosol paths. The highest concentration level of viable legionellae was identified directly above the aeration ponds (3300 CFU/m3). This level decreased as the distance from the aeration ponds increased. Molecular typing indicated that a single clone of L. pneumophila was dispersed from the ponds during the period of the study. Thus, our study demonstrated that aerosols generated at aeration ponds of biological treatment facilities may contain L. pneumophila, which then can be transported by the wind to the surroundings. The methods used in this study may be generically applied to trace biological aerosols that may pose a challenge to environmental occupational health.

[22]
Percec V, Guliashvili T, Ladislaw J S, Wistrand A, Stjerndahl A, Sienkowska M J, Monteiro M J, Sahoo S . J. Am. Chem. Soc., 2006,128(43):14156. https://www.ncbi.nlm.nih.gov/pubmed/17061900

DOI: 10.1021/ja065484z   PMID: 17061900

Conventional metal-catalyzed organic radical reactions and living radical polymerizations (LRP) performed in nonpolar solvents, including atom-transfer radical polymerization (ATRP), proceed by an inner-sphere electron-transfer mechanism. One catalytic system frequently used in these polymerizations is based on Cu(I)X species and N-containing ligands. Here, it is reported that polar solvents such as H(2)O, alcohols, dipolar aprotic solvents, ethylene and propylene carbonate, and ionic liquids instantaneously disproportionate Cu(I)X into Cu(0) and Cu(II)X(2) species in the presence of a diversity of N-containing ligands. This disproportionation facilitates an ultrafast LRP in which the free radicals are generated by the nascent and extremely reactive Cu(0) atomic species, while their deactivation is mediated by the nascent Cu(II)X(2) species. Both steps proceed by a low activation energy outer-sphere single-electron-transfer (SET) mechanism. The resulting SET-LRP process is activated by a catalytic amount of the electron-donor Cu(0), Cu(2)Se, Cu(2)Te, Cu(2)S, or Cu(2)O species, not by Cu(I)X. This process provides, at room temperature and below, an ultrafast synthesis of ultrahigh molecular weight polymers from functional monomers containing electron-withdrawing groups such as acrylates, methacrylates, and vinyl chloride, initiated with alkyl halides, sulfonyl halides, and N-halides.

[23]
Guliashvili T, Mendonça P V, Serra A C, Popov A V, Coelho J F J . Chemistry - A European Journal, 2012,18(15):4607.
[24]
Konkolewicz D, Wang Y, Zhong M J, Krys P, Isse A A, Gennaro A, Matyjaszewski K . Macromolecules, 2013,46(22):8749.
[25]
Bortolamei N, Isse A A, Magenau A J D, Gennaro A, Matyjaszewski K . Angewandte Chemie International Edition, 2011,50(48):11391. https://www.ncbi.nlm.nih.gov/pubmed/21922623

DOI: 10.1002/anie.201105317   PMID: 21922623

[26]
Park S, Chmielarz P, Gennaro A, Matyjaszewski K . Angewandte Chemie International Edition, 2015,54(8):2388. https://www.ncbi.nlm.nih.gov/pubmed/25565188

DOI: 10.1002/anie.201410598   PMID: 25565188

Simplification of electrochemically mediated atom transfer radical polymerization was achieved efficiently under either potentiostatic or galvanostatic conditions using an aluminum wire sacrificial anode (seATRP) immersed directly into the reaction flask without separating the counter electrode. seATRP polymerizations were carried out under different applied potentials, Eapps = E1/2, Epc, Epc -40 mV, and Epc -80 mV. As the rate of polymerization (Rp) can be modulated by applying different Eapp potentials, more reducing conditions resulted in faster Rp. The polymerization results showed similar narrow molecular-weight distribution throughout the reactions, similar to results observed for n-butyl acrylate (BA) polymerization under conventional eATRP. High-molecular-weight PBA and diblock copolymers were synthesized by seATRP with more than 90% monomer conversion. Furthermore, galvanostatic conditions were developed for synthesizing PBA with the two-electrode system.

[27]
Discekici E H, Anastasaki A, Kaminker R, Willenbacher J, Truong N P, Fleischmann C, Oschmann B, Lunn D J, Read De Alaniz J, Davis T P, Bates C M, Hawker C J .J. Am. Chem. Soc., 2017,139(16):5939.
[28]
Taskin O S, Yilmaz G, Tasdelen M A, Yagci Y . Polym. Int., 2014,63(5):902.
[29]
Konkolewicz D, Schröder K, Buback J, Bernhard S, Matyjaszewski K . ACS Macro Lett., 2012,1(10):1219.
[30]
Tasdelen M A, Ciftci M, Yagci Y . Macromol. Chem. Phys., 2012,213(13):1391. http://doi.wiley.com/10.1002/macp.201200204

DOI: 10.1002/macp.201200204

[31]
Dadashi-Silab S, Doran S, Yagci Y . Chem. Rev., 2016,116(17):10212. https://www.ncbi.nlm.nih.gov/pubmed/26745441

DOI: 10.1021/acs.chemrev.5b00586   PMID: 26745441

Photochemical reactions, particularly those involving photoinduced electron transfer processes, establish a substantial contribution to the modern synthetic chemistry, and the polymer community has been increasingly interested in exploiting and developing novel photochemical strategies. These reactions are efficiently utilized in almost every aspect of macromolecular architecture synthesis, involving initiation, control of the reaction kinetics and molecular structures, functionalization, and decoration, etc. Merging with polymerization techniques, photochemistry has opened up new intriguing and powerful avenues for macromolecular synthesis. Construction of various polymers with incredibly complex structures and specific control over the chain topology, as well as providing the opportunity to manipulate the reaction course through spatiotemporal control, are one of the unique abilities of such photochemical reactions. This review paper provides a comprehensive account of the fundamentals and applications of photoinduced electron transfer reactions in polymer synthesis. Besides traditional photopolymerization methods, namely free radical and cationic polymerizations, step-growth polymerizations involving electron transfer processes are included. In addition, controlled radical polymerization and "Click Chemistry" methods have significantly evolved over the last few decades allowing access to narrow molecular weight distributions, efficient regulation of the molecular weight and the monomer sequence and incredibly complex architectures, and polymer modifications and surface patterning are covered. Potential applications including synthesis of block and graft copolymers, polymer-metal nanocomposites, various hybrid materials and bioconjugates, and sequence defined polymers through photoinduced electron transfer reactions are also investigated in detail.

[32]
Hu X, Li J J, Li H Y, Zhang Z C . J. Polym. Sci. Pol. Chem., 2012,50(15):3126.
[33]
Hu X, Tan S B, Gao G X, Xie Y C, Wang Q Z, Li N, Zhang Z C . J. Polym. Sci. Pol. Chem., 2014,52(23):3429.
[34]
Silvi M, Arceo E, Jurberg I D, Cassani C, Melchiorre P . J. Am. Chem. Soc., 2015,137(19):6120. https://www.ncbi.nlm.nih.gov/pubmed/25748069

DOI: 10.1021/jacs.5b01662   PMID: 25748069

摘要

Disclosed herein is a photo-organocatalytic enantioselective α- and γ-alkylation of aldehydes and enals, respectively, with bromomalonates. The chemistry uses a commercially available aminocatalyst and occurs under illumination by a fluorescent light bulb in the absence of any external photoredox catalyst. Mechanistic investigations reveal the previously hidden ability of transiently generated enamines to directly reach an electronically excited state upon light absorption while successively triggering the formation of reactive radical species from the organic halides. At the same time, the ground state chiral enamines provide effective stereochemical induction for the enantioselective alkylation process.

[35]
Hu X, Cui G P, Zhu N, Zhai J L, Guo K . Polymers, 2018,10:68.
[36]
Wang G, Chen D, Zhang L H, Wang Y D, Zhao C W, Yan X, He B, Ma Y H, Yang W T . J. Mater. Sci., 2018,53(2):880.
[37]
Xu T C, Zhang L F, Cheng Z P, Zhu X L . RSC Adv., 2017,7(29):17988.
[38]
Miyake G M, Theriot J C . Macromolecules, 2014,47(23):8255.
[39]
Treat N J, Sprafke H, Kramer J W, Clark P G, Barton B E, Read De Alaniz J, Fors B P, Hawker C J . J. Am. Chem. Soc., 2014,136(45):16096. https://www.ncbi.nlm.nih.gov/pubmed/25360628

DOI: 10.1021/ja510389m   PMID: 25360628

Overcoming the challenge of metal contamination in traditional ATRP systems, a metal-free ATRP process, mediated by light and catalyzed by an organic-based photoredox catalyst, is reported. Polymerization of vinyl monomers are efficiently activated and deactivated with light leading to excellent control over the molecular weight, polydispersity, and chain ends of the resulting polymers. Significantly, block copolymer formation was facile and could be combined with other controlled radical processes leading to structural and synthetic versatility. We believe that these new organic-based photoredox catalysts will enable new applications for controlled radical polymerizations and also be of further value in both small molecule and polymer chemistry.

[40]
Pan X C, Lamson M, Yan J J, Matyjaszewski K . ACS Macro Lett., 2015,4(2):192.
[41]
Liu X D, Zhang L F, Cheng Z P, Zhu X L . Polym. Chem., 2016,7(3):689.
[42]
Ma W C, Zhang X H, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T . Polym. Chem., 2017,8(23):3574.
[43]
Miyake G M, Theriot J C, Boyer C A . ACS Macro. Lett., 2018,7(6):662. https://www.ncbi.nlm.nih.gov/pubmed/30705782

DOI: 10.1021/acsmacrolett.8b00281   PMID: 30705782

N,N-Diaryl dihydrophenazines are employed as organic photoredox catalysts (PCs) for photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The ability of these PCs to mediate PET-RAFT is heavily dependent on the ability of the PC to access a photoexcited intramolecular charge transfer state. The use of PCs displaying intramolecular charge transfer in the excited state allows for efficient PET-RAFT of a variety of monomers, including vinyl acetate, and in a wide range of solvents. The ability of these PCs to also mediate organocatalyzed atom transfer radical polymerization (O-ATRP) is exploited to perform a sequential PET-RAFT/O-ATRP block copolymerization of PMA-b-PMMA using the same PC for both polymerizations.]]>

[44]
McCarthy B G, Miyake G M . ACS Macro Lett. 2018,7(8):1016 https://www.ncbi.nlm.nih.gov/pubmed/31827976

DOI: 10.1021/acsmacrolett.8b00497   PMID: 31827976

N-aryl phenoxazines as photoredox catalysts (PCs) to synthesize poly(methyl methacrylate) in a controlled fashion with initiator efficiency (I* = Mn,theo/Mn × 100) ranging from 84 to 99% and dispersity being ∼1.2-1.3. Reduction of the reaction vial headspace was key for enabling the polymerization to proceed in a controlled fashion, as has been observed in Cu catalyzed controlled radical polymerizations. The ability to synthesize block copolymers and turn the polymerization on and off via manipulation of the light source was demonstrated. Six core modified N-aryl phenoxazines were able to catalyze O-ATRP under air, albeit with most PCs achieving I*s ∼ 5% lower under air compared to when the reaction was performed under nitrogen.]]>

[45]
Du Y, Pearson R M, Lim C, Sartor S M, Ryan M D, Yang H S, Damrauer N H, Miyake G M . Chem. Eur. J. 2017,23(46):10962. https://www.ncbi.nlm.nih.gov/pubmed/28654171

DOI: 10.1002/chem.201702926   PMID: 28654171

Photoredox catalysis is a versatile approach for the construction of challenging covalent bonds under mild reaction conditions, commonly using photoredox catalysts (PCs) derived from precious metals. As such, there is need to develop organic analogues as sustainable replacements. Although several organic PCs have been introduced, there remains a lack of strongly reducing, visible-light organic PCs. Herein, we establish the critical photophysical and electrochemical characteristics of both a dihydrophenazine and a phenoxazine system that enables their success as strongly reducing, visible-light PCs for trifluoromethylation reactions and dual photoredox/nickel-catalyzed C-N and C-S cross-coupling reactions, both of which have been historically exclusive to precious metal PCs.

[46]
McCarthy B G, Pearson R M, Lim C, Sartor S M, Damrauer N H, Miyake G M . J. Am. Chem. Soc. 2018,140(15):5088. https://www.ncbi.nlm.nih.gov/pubmed/29513533

DOI: 10.1021/jacs.7b12074   PMID: 29513533

Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.

[47]
Theriot J C, McCarthy B G, Lim C, Miyake G M . Macromol. Rapid Commun. 2017,38(13):1700040
[48]
Buss B L, Beck L R, Miyake G M . Polym. Chem., 2018,9(13):1658 https://www.ncbi.nlm.nih.gov/pubmed/29628993

DOI: 10.1039/C7PY01833A   PMID: 29628993

Synthetic routes to higher ordered polymeric architectures are important tools for advanced materials design and realization. In this study, organocatalyzed atom transfer radical polymerization is employed for the synthesis of star polymers through a core-first approach using a visible-light absorbing photocatalyst, 3,7-di(4-biphenyl)-1-naphthalene-10-phenoxazine. Structurally similar multifunctional initiators possessing 2, 3, 4, 6, or 8 initiating sites were used in this study for the synthesis of linear telechelic polymers and star polymers typically possessing dispersities lower than 1.5 while achieving high initiator efficiencies. Furthermore, no evidence of undesirable star-star coupling reactions was observed, even at high monomer conversions and high degrees of polymerization. The utility of this system is further exemplified through the synthesis of well-defined diblock star polymers.

[49]
Xu Q H, Tian C, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2019,40(2):1800327. https://www.ncbi.nlm.nih.gov/pubmed/30027663

DOI: 10.1002/marc.201800327   PMID: 30027663

A series of hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) macroinitiators and stabilizers are synthesized in methanol through in situ photo-controlled bromine-iodine transformation living radical polymerization, where ethyl α-bromophenylacetate (EBPA) is the initial initiator and is converted to an iodo-type initiator in the presence of NaI. The subsequent photo-controlled polymerization-induced self-assembly (photo-PISA) process is achieved by adding a second monomer, hydrophobic benzyl methacrylate (BnMA), under irradiation with blue light emitting diode (LED) light at room temperature. The effect of the target degree of polymerization (DP) of PPEGMA, PBnMA, as well as the solids content on the self-assembly behavior of block copolymer PPEGMA-b-PBnMA is evaluated by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS) characterization. Resulting uniform spherical micelles and vesicle aggregates are observed.

[50]
Tu K, Xu T C, Zhang L F, Cheng Z P, Zhu X L . RSC Adv., 2017,7(39):24040. http://xlink.rsc.org/?DOI=C7RA03103C

DOI: 10.1039/C7RA03103C

[51]
Xu T C, Tu K, Cheng J N, Ni Y Y, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2018,39(15):1800151. https://www.ncbi.nlm.nih.gov/pubmed/29900627

DOI: 10.1002/marc.201800151   PMID: 29900627

Through the construction of an organic photocatalysis system, photoredox catalyst (PC)/additive, where PC stands for photoredox catalyst, an organocatalyzed step transfer-addition and radical-termination (O-START) polymerization irradiated by blue LED light at room temperature is realized. Different types of α,ω-diiodoperfluoroalkane A and α,ω-unconjugated diene B are copolymerized through O-START efficiently, and generate various kinds of functional semifluorinated polymers, including polyolefins and polyesters. The process is affected by several factors; solvents, additives, and feed ratio of A to B. After optimization of all these components, the polymerization efficiency is greatly improved, generating polymers with both relatively high yield and molecular weight. Considering the mild reaction condition, easy operation process, and free-of-metal-catalyst residues in the polymer product, the organocatalytic polymerization strategy provides a simple and efficient approach to functional semifluorinated polymer materials and hopefully opens up their application in high-tech fields.

[52]
Huang Z C, Zhang L F, Cheng Z P, Zhu X L . Polymers, 2017,9(12):4.
[53]
Wang Y A, Shi Y, Fu Z F, Yang W T . Polym. Chem., 2017,8(39):6073.
[54]
Yang Q, Zhang X H, Ma W C, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T . J. Polym. Sci. Pol. Chem., 2018,56(2):229.
[55]
Yang Q, Zhang X H, Ma Y H, Chen D, Yang W T . J. Polym. Sci. Pol. Chem., 2018,56(18):2072.
[56]
He B, Zhu X, Zhao C W, Ma Y H, Yang W T . Science China Chemistry, 2018,61(12):1600.
[57]
Zhu X, He B, Zhao C W, Ma Y H, Yang W T . Langmuir, 2017,33(22):5577. https://www.ncbi.nlm.nih.gov/pubmed/28514852

DOI: 10.1021/acs.langmuir.7b00594   PMID: 28514852

The use of the mixed catalytic system with several enzymes can provide multiple benefits in terms of the cost, simplification of a multistep reaction, and effectiveness of complex chemical reactions. Although study of different enzyme coimmobilization systems has attracted increasing attention in recent years, separately immobilizing enzymes which can not coexist on one support is still one of the great challenges. In this paper, a simple and effective strategy was introduced to separately encapsulate incompatible trypsin and transglutaminase (TGase) into different poly(ethylene glycol) (PEG) network layer grafted on low-density polyethylene (LDPE) film via visible light induced living photografting polymerization. As a proof of concept, this dual-enzyme separately loaded film was used to catalyze the synthesis of a new target antitumor drug LTV-azacytidine. The final results demonstrated that this strategy could maintain higher activities of both enzymes than the mixed coimmobilization method. And the mass spectra analysis results demonstrated that LTV-azacytidine was successfully synthesized. We believe that this facile and mild separately immobilizing incompatible enzyme strategy has great application potential in the field of biocatalysis.

[58]
Hu X, Zhang Y J, Cui G P, Zhu N, Guo K . Macromol. Rapid Comm., 2017,38(21):1700399.
[59]
Pan X C, Fantin M, Yuan F, Matyjaszewski K . Chem. Soc. Rev., 2018,47(14):5457. https://www.ncbi.nlm.nih.gov/pubmed/29868657

DOI: 10.1039/c8cs00259b   PMID: 29868657

Spatial and temporal regulations of ATRP by external stimuli are presented. Various ATRP techniques, eATRP, photoATRP, and mechanoATRP, are controlled by electrical current, light, and mechanical forces, respectively. Conversely, ARGET and SARA ATRP are controlled by chemical reducing agents. ICAR ATRP is a thermally regulated process through decomposition of a radical initiator. The aim of this review is to highlight the use of external regulations in ATRP and to summarize the state-of-the-art and future perspectives, focusing on mechanistic aspects, synthetic procedures, preparation of polymers with complex architectures and functional materials, and their applications.

[60]
Pan X C, Fang C, Fantin M, Malhotra N, So W Y, Peteanu L A, Isse A A, Gennaro A, Liu P, Matyjaszewski K . J. Am. Chem. Soc., 2016,138(7):2411. https://www.ncbi.nlm.nih.gov/pubmed/26820243

DOI: 10.1021/jacs.5b13455   PMID: 26820243

Photoinduced metal-free atom transfer radical polymerization (ATRP) of methyl methacrylate was investigated using several phenothiazine derivatives and other related compounds as photoredox catalysts. The experiments show that all selected catalysts can be involved in the activation step, but not all of them participated efficiently in the deactivation step. The redox properties and the stability of radical cations derived from the catalysts were evaluated by cyclic voltammetry. Laser flash photolysis (LFP) was used to determine the lifetime and activity of photoexcited catalysts. Kinetic analysis of the activation reaction according to dissociative electron-transfer (DET) theory suggests that the activation occurs only with an excited state of catalyst. Density functional theory (DFT) calculations revealed the structures and stabilities of the radical cation intermediates as well as the reaction energy profiles of deactivation pathways with different photoredox catalysts. Both experiments and calculations suggest that the activation process undergoes a DET mechanism, while an associative electron transfer involving a termolecular encounter (the exact reverse of DET pathway) is favored in the deactivation process. This detailed study provides a deeper understanding of the chemical processes of metal-free ATRP that can aid the design of better catalytic systems. Additionally, this work elucidates several important common pathways involved in synthetically useful organic reactions catalyzed by photoredox catalysts.

[61]
Dadashi-Silab S, Pan X C, Matyjaszewski K . Chemistry - A European Journal, 2017,23(25):5972.
[62]
Aydogan C, Yilmaz G, Yagci Y . Macromolecules, 2017,50(23):9115.
[63]
Allushi A, Jockusch S, Yilmaz G, Yagci Y . Macromolecules, 2016,49(20):7785.
[64]
Theriot1 J C, Lim C H, Yang H, Ryan M D, Musgrave C B, Miyake G M . Science, 2016,352(6289):1082. https://www.ncbi.nlm.nih.gov/pubmed/27033549

DOI: 10.1126/science.aaf3935   PMID: 27033549

Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities.

[65]
Pearson R M, Lim C H, McCarthy B G, Musgrave C B, Miyake G M .J. Am. Chem. Soc., 2016,138(35):11399.
[66]
Kutahya C, Aykac F S, Yilmaz G, Yagci Y . Polym. Chem., 2016,7(39):6094.
[67]
Niu T F, Jiang J Y, Li S Y, Ni B Q, Liu X M, Chen M Q . Macromol. Chem. Phys., 2017,218(15):1700169. http://doi.wiley.com/10.1002/macp.v218.15

DOI: 10.1002/macp.v218.15

[68]
Huang Z C, Gu Y, Liu X D, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2017,38(10):1600461.
[69]
Kutahya C, Allushi A, Isci R, Kreutzer J, Ozturk T, Yilmaz G, Yagci Y . Macromolecules, 2017,50(17):6903.
[70]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K . Chem. Eng. J., 2018,333:43.
[71]
Hu X, Zhu N, Fang Z, Li Z J, Guo K . Eur. Polym. J., 2016,80:177.
[72]
Zhu N, Zhang Z L, Feng W Y, Zeng Y Q, Li Z Y, Fang Z, Zhang K, Li Z J, Guo K . RSC Adv., 2015,5(40):31554.
[73]
Zhu N, Feng W Y, Hu X, Zhang Z L, Fang Z, Zhang K, Li Z J, Guo K . Polymer, 2016,84:391.
[74]
Zhu N, Hu X, Zhang Y J, Zhang K, Li Z J, Guo K . Polym. Chem., 2016,7(2):474. http://xlink.rsc.org/?DOI=C5PY01728A

DOI: 10.1039/C5PY01728A

[75]
Zhu N, Liu Y H, Feng W Y, Huang W J, Zhang Z L, Hu X, Fang Z, Li Z J, Guo K . Eur. Polym. J., 2016,80:234
[76]
Hu X, Zhu N, Fang Z, Guo K . Reaction Chemistry & Engineering, 2017,2(1):20.
[77]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K . Macromol. Rapid Comm., 2018,39(8):1700807. https://www.ncbi.nlm.nih.gov/pubmed/29450925

DOI: 10.1002/marc.201700807   PMID: 29450925

Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence.

[78]
Zhu N, Hu X, Fang Z, Guo K . ChemPhotoChem, 2018,2(10):831.
[79]
Huang W J, Zhu N, Liu Y H, Wang J, Zhong J, Sun Q, Sun T, Hu X, Fang Z, Guo K . Chem. Eng. J., 2019,356:592.
[80]
赵婉如(Zhao W R), 胡欣(Hu X), 朱宁(Zhu N), 方正(Fang Z), 郭凯(Guo K) . 化学进展 (Progress in Chemistry), 2018,30(9):1330.
[81]
刘一寰(Liu Y H), 胡欣(Hu X), 朱宁(Zhu N), 郭凯(Guo K) . 化学进展 (Progress in Chemistry), 2018,30(8):1133.
[82]
Ramsey B L, Pearson R M, Beck L R, Miyake G M . Macromolecules, 2017,50(7):2668. https://www.ncbi.nlm.nih.gov/pubmed/29051672

DOI: 10.1021/acs.macromol.6b02791   PMID: 29051672

Organocatalyzed atom transfer radical polymerization (O-ATRP) has emerged as a metal-free variant of historically transition-metal reliant atom transfer radical polymerization. Strongly reducing organic photoredox catalysts have proven capable of mediating O-ATRP. To date, operation of photoinduced O-ATRP has been demonstrated in batch reactions. However, continuous flow approaches can provide efficient irradiation reaction conditions and thus enable increased polymerization performance. Herein, the adaptation of O-ATRP to a continuous flow approach has been performed with multiple visible-light absorbing photoredox catalysts. Using continuous flow conditions, improved polymerization results were achieved, consisting of narrow molecular weight distributions as low as 1.05 and quantitative initiator efficiencies. This system demonstrated success with 0.01% photocatalyst loadings and a diverse methacrylate monomer scope. Additionally, successful chain-extension polymerizations using 0.01 mol % photocatalyst loadings reveal continuous flow O-ATRP to be a robust and versatile method of polymerization.

[83]
Ramakers G, Krivcov A, Trouillet V, Welle A, Möbius H, Junkers T . Macromol. Rapid Comm., 2017,38(21):1700423.
[84]
Discekici E H, Pester C W, Treat N J, Lawrence J, Mattson K M, Narupai B, Toumayan E P, Luo Y, McGrath A J, Clark P G, Read De Alaniz J, Hawker C J . ACS Macro Lett., 2016,5(2):258.
[85]
Yan J J, Pan X C, Schmitt M, Wang Z Y, Bockstaller M R, Matyjaszewski K . ACS Macro Lett., 2016,5(6):661.
[86]
Gong H H, Zhao Y C, Shen X W, Lin J, Chen M . Angewandte Chemie International Edition, 2018,57(1):333. https://www.ncbi.nlm.nih.gov/pubmed/29135062

DOI: 10.1002/anie.201711053   PMID: 29135062

Fluorinated polymers are important materials that are widely used in many areas. Herein, we report the development of a metal-free photocontrolled radical polymerization of semifluorinated (meth)acrylates with a new visible-light-absorbing organocatalyst. This method enabled the production of a variety of semifluorinated polymers with narrow molar-weight distributions from semifluorinated trithiocarbonates or perfluoroalkyl iodides. The high performance of "ON/OFF" control and chain-extension experiments further demonstrate the utility and reliability of this method. Furthermore, to streamline the preparation of semifluorinated polymers, a scalable continuous-flow approach has been developed. Given the broad interest in fluorinated materials and photopolymerization, we expect that this method will facilitate the development of advanced materials with unique properties.

[87]
Li S P, Mohamed A I, Pande V, Wang H, Cuthbert J, Pan X C, He H K, Wang Z Y, Viswanathan V, Whitacre J F, Matyjaszewski K . ACS Energy Letters, 2018,3(1):20.
[88]
Wang J F, Yuan L, Wang Z K, Rahman M A, Huang Y C, Zhu T Y, Wang R B, Cheng J J, Wang C P, Chu F X, Tang C B . Macromolecules, 2016,49(20):7709.
[89]
Wang X B, You N, Lan F Q, Fu P, Cui Z, Pang X C, Liu M Y, Zhao Q X . RSC Adv., 2017,7(13):7789.
[90]
Yang Y, Liu X G, Ye G, Zhu S, Wang Z, Huo X M, Matyjaszewski K, Lu Y X, Chen J . ACS Appl. Mater. Inter., 2017,9(15):13637. https://www.ncbi.nlm.nih.gov/pubmed/28345352

DOI: 10.1021/acsami.7b01863   PMID: 28345352

Developing green and efficient technologies for surface modification of magnetic nanoparticles (MNPs) is of crucial importance for their biomedical and environmental applications. This study reports, for the first time, a novel strategy by integrating metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with the bioinspired polydopamine (PDA) chemistry for controlled architecture of functional polymer brushes from MNPs. Conformal PDA encapsulation layers were initially generated on the surfaces of MNPs, which served as the protective shells while providing an ideal platform for tethering 2-bromo-2-phenylacetic acid (BPA), a highly efficient initiator. Metal-free PET-ATRP technique was then employed for controlled architecture of poly(glycidyl methacrylate) (PGMA) brushes from the core-shell MNPs by using diverse organic dyes as photoredox catalysts. Impacts of light sources (including UV and visible lights), photoredox catalysts, and polymerization time on the composition and morphology of the PGMA brushes were investigated. Moreover, the versatility of the PGMA-functionalized core-shell MNPs was demonstrated by covalent attachment of ethylenediamine (EDA), a model functional molecule, which afforded the MNPs with improved hydrophilicity, dispersibility, and superior binding ability to uranyl ions. The green methodology by integrating metal-free PET-ATRP with facile PDA chemistry would provide better opportunities for surface modification of MNPs and miscellaneous nanomaterials for biomedical and electronic applications.

/