English
新闻公告
More

文章编号: 20190506  

文献标识码: A

锂离子电池正极界面修饰用电解液添加剂

展开
  • 1. 浙江省化工研究院有限公司 杭州 310023
  • 2. 清华大学核能与新能源技术研究院 北京 100084

收稿日期:2018-08-20

  要求修回日期:2019-01-13

  网络出版日期:2019-03-21

基金资助

科技部国际合作项目(2016YFE0102200)

国家自然科学基金重点项目(U1564205)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery

Expand
  • 1. Zhejiang Chemical Industry Research Institute Co. Ltd., Hangzhou 310023, China
  • 2. Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China
** E-mail: (Guoqiang Ma);
(Xiangming He)

Received:20 Aug. 2018

  rev-requestrev-request:13 Jan. 2019

  Online:21 Mar. 2019

Fund

Ministry of Science and Technology of China(2016YFE0102200)

National Natural Science Foundation of China(U1564205)

Copyright

Copyright reserved © 2019.

摘要

提高电压是提高锂离子电池比能量的重要途径之一。例如,LiNi0.5Mn1.5O4(4.7 V)、LiNiPO4(5.1 V)和富锂锰基等电极材料在较高的充电截止电压下表现出较高的能量密度和较低的成本,具有很好的应用前景。另外,提高LiCoO2和三元电池体系的充电截止电压是提升电池能量密度的简单有效措施。但是,当电池充电截止电压提高时,不仅会造成电解液在正极/电解液界面的氧化分解,还会加速正极中金属阳离子在电解液中的溶解,造成电池循环性能和安全性下降。采用不同的正极界面修饰用电解液添加剂,既可以有效钝化正极/电解液界面,抑制电解液的分解,还可以有效抑制正极结构的破坏。本文从添加剂的分子结构出发,介绍了磺酸酯、硼酸酯、磷酸酯、氟代碳酸酯、腈类、酸酐和锂盐等添加剂在正极界面的相关研究成果,并对不同添加剂的作用机理进行了详细的解释和归纳;另外,介绍了添加剂的联用技术在不同电池体系中的最新研究成果;最后,对新型正极界面修饰用电解液添加剂的开发进行了展望。

关键词: 锂离子电池 ; 电解液 ; 添加剂 ; 高电压

中图分类号: TM911;TQ213;O645.17 ()  

本文引用格式

蒋志敏 , 王莉 , 沈旻 , 陈慧闯 , 马国强 , 何向明 . 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019 , 31(5) : 699 -713 . DOI: 10.7536/PC180815

Zhimin Jiang , Li Wang , Min Shen , Huichuang Chen , Guoqiang Ma , Xiangming He . Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery[J]. Progress in Chemistry, 2019 , 31(5) : 699 -713 . DOI: 10.7536/PC180815

Abstract

Increasing the voltage is one of the important ways to improve the energy density of lithium ion batteries. For example, LiNi0.5Mn1.5O4 (4.7 V), LiNiPO4(5.1 V) and lithium-rich manganese-based materials exhibit high energy density and low cost at high charge cut-off voltage, showing good application prospects. In addition, increasing the charge cut-off voltage of LiCoO2 and NMC battery systems is a simple and effective approach to increase the energy density. However, when the charge cut-off voltage is increased, not only the electrolyte will be oxidatively decomposed at the cathode /electrolyte interface, but also the dissolution of the metal cation from the cathode materials will be accelerated. These are the main causes for the decreased cycle stability and safety. The electrolyte additives can be used for modifying positive electrode interfaces, thus passivating the cathode/electrolyte interface and inhibiting the decomposition of the electrolyte. Moreover, the modified electrolyte can effectively suppress the destruction of the cathode structure. Based on the molecular structure of the additives, the related research results of additives such as sulfonate ester, boric acid ester, phosphate ester, fluorocarbonate, nitrile, anhydride and lithium salt at the positive electrode interface are introduced in this paper. The action mechanisms of different additives are explained and generalized. Furthermore, the combination technology of additives for different batteries are introduced. At last, the development of new electrolyte additives for cathode/electrolyte interface modification are discussed.

Contents

1 Introduction
2 Electrolyte additives
2.1 Sulfonic acid ester
2.2 Phosphoric acid ester
2.3 Boric acid ester
2.4 Fluorocarbonate
2.5 Nitrile
2.6 Anhydride
2.7 Lithium salt
3 Classification of the action mechanism of electrolyte additives
3.1 The mechanism of film formation
3.2 The mechanism of electrolytic stabilizer
3.3 The mechanism of overcharged protective additive
3.4 The mechanism of adsorbing metal ions
3.5 Structures and characteristics of the next generation of electrolyte additives
3.6 Theoretical calculation progress of cathode interface film formation
4 Combination technology of electrolyte additives
4.1 Binary additives
4.2 Ternary additives
5 Conclusions and outlook

1 引言

锂离子电池具有工作电压高、比容量大、循环寿命长、无记忆效应以及对环境友好等优点,是目前最广泛使用的化学储能电池[1, 2]。随着我国经济的快速发展,手机、笔记本电脑、数码相机、摄像机等产品对于锂离子电池的安全性能、能量密度、循环寿命等提出了更高要求,锂离子电池面临着前所未有的挑战[3, 4]。同时基于环保和国家战略考虑,以美国、日本、欧盟以及中国为代表的国家和地区相继出台了一系列政策鼓励新能源汽车的发展。开发兼具高能量密度和安全性的锂离子电池成为现今研究的热点。电池能量密度的提升途径可分为两类:第一,提高现有电池体系的工作电压,如LiCoO2和NMC三元电池体系,其充电电压每提升0.1 V,电池比容量提升接近8%,而其能量密度提升近10%;第二,开发高比容量电池体系,如高镍三元[5]、硅碳[6]、锂空[7]、锂硫[8]等电池体系的使用。LiCoPO4(4.8 V)[9, 10]、LiNi0.5Mn1.5O4(4.7 V)[11, 12]、Li2CoPO4F(5.1 V)[13]、LiNiPO4(5.1 V)[14]等正极材料能提供较高的嵌脱锂电位,但是其高的工作电位远超过传统碳酸酯电解液的电化学窗口(< 4.3 V)[15,16,17]。首先,高电压下电解液容易在正极表面剧烈氧化分解,导致高的界面阻抗和电池容量衰减[18];第二,高电压下金属阳离子在电解液中的溶解,一方面造成正极结构破坏,影响电池循环稳定性,另一方面溶解的金属阳离子会在石墨负极析出为金属枝晶,影响电池安全性[19]。因此,抑制高电压下正极/电解液界面的副反应是提升高电压锂离子电池性能的关键措施。
为了抑制高电压下副反应的发生,需要构建一个稳定的正极/电解液界面,目前方法包括正极保护和电解液添加剂的使用。一方面,利用一些无机化合物(AlPO4[20]、TiO2[21]、AlF3[22]等)对正极表面进行包覆,抑制正极材料中金属元素的溶解和高电压下电解液的氧化,但包覆层一般阻抗较高,引起电池极化增加和倍率性能下降。另一方面,使用适配的电解液添加剂。正极修饰用添加剂种类繁多,包括含S、含P、含B、氟代物、腈类、酸酐类、锂盐类等。按添加剂功能进行分类,最典型的是成膜类添加剂,能优先于溶剂分子氧化,在正极表面成膜。此外,还包括饰膜类、吸附离子类和电解液稳定剂等。选择合适的添加剂,能够实现锂离子电池循环稳定性、高低温性、安全性、倍率性能等的突破。本文介绍了高电压电解液添加剂的最新研究成果;对不同类型的添加剂的作用机理进行解释,对下一代添加剂应具备的功能和对应分子结构进行了展望;并介绍了添加剂联用,利用几种添加剂间的协同作用大幅改善电池性能表现。

2 电解液添加剂

成膜添加剂包括正极型、负极型两类,分别作用于锂离子电池的正极和负极。对于负极表面成膜的研究开始较早,首圈充电过程中电解液中的溶剂和锂盐会在石墨负极表面发生分解,并形成SEI膜(Solid electrolyte interface)[23, 24]。而近几年出现了大量对于正极表面成膜的报道,Goodenough等[25]最先报道了在正极/电解液界面存在一层表面CEI膜(Cathode/electrolyte interface)。之后一系列的报道[26, 27]提供了CEI膜存在的证据,且说明CEI膜能有效抑制正极材料与电解液间副反应的发生,提高正极/电解液界面稳定性。下面对正极界面修饰用电解液添加剂最新研究成果进行总结:

2.1 磺酸酯类

近年来,使用有机磺酸酯作为锂离子电池电解液添加剂的报道很多[28,29,30]。含硫添加剂的一个特点是其分解产物如RSO3Li等离子电导率高[31],可用于改善高电压下电池的界面阻抗问题。此外,含硫添加剂常用于复合添加剂中,具有很好的协同作用[32, 33](详见4.1节)。
(1)MMDS
为抑制LiNi0.5Co0.2Mn0.3O2/石墨锂离子电池在3.0~4.4 V循环的容量衰减,Zuo等[34]在电解液中添加0.5%(后文如未说明,均为质量比)甲烷二磺酸亚甲酯(MMDS,1,图1),电池100圈容量保持率从70.7%升至94.1%。XPS(X射线光电子能谱分析)、EIS(电化学阻抗谱)等结果表明:MMDS的加入以及CEI膜中的LiF含量以及界面阻抗。
图1 含硫、磷、硼官能团的正极用添加剂的结构

Fig. 1 Structures of additives for cathodes containing sulfur, phosphorus and boron groups

(2)PS
Lee等[35]报道了1, 3-丙磺酸内酯(PS,2,图1)作为添加剂可用于正极成膜,改善了5 V LiNi0.5Mn1.5O4/石墨电池循环性能。Xu等[36]认为电池性能改善原因是PS的加入抑制了电导率较低的LiF生成,界面阻抗降低。Pires等[37]认为PS添加后,正极表面形成了一层含PS组分的表面膜,抑制了正极表面副反应和金属离子溶解。
(3)PES
Li等[38]对丙烯基-1,3-磺酸内酯(PES,3,图1)应用于LiMn2O4/石墨电池高温60 ℃下的作用进行了研究。PES能同时在正、负极表面成膜,1 mol/L LiPF6/EC:EMC电解液中加入5% PES,能显著提高电池在室温和高温下循环性能。通过XPS测试,在正极表面检测到PES的氧化分解产物Li2SO3和ROSO2Li。

2.2 磷酸酯类

含P有机化合物先前被报道作为阻燃添加剂使用[39, 40],因其能抑制有机液态电解液燃烧。随后发现,部分含P添加剂可用于提高电池在高电压下的循环性能,以磷酸酯和亚磷酸酯类最为常见[41,42]
(1)HFiP
Yang等[41]使用三(六氟异丙基)磷酸酯(HFiP,4,图1)作为电解液添加剂有效提高了Li[Li0.2Mn0.56Ni0.16Co0.08]O2电池的高电压性能。添加1% HFiP,循环130圈容量保留率为73.3%,而未添加电解液仅为64.5%。CV(循环伏安测试)结果表明,HFiP优先于溶剂分子发生反应,生成含氟化合物附着于正极表面。SEM(扫描电子显微镜)、XPS、EIS等结果显示正极表面形成了一层稳定的电解质膜,能抑制电解液持续的氧化反应,且膜阻抗更小。
(2)TMSP
亚磷酸酯类添加剂作为一种有效的正极成膜添加剂受到广泛重视,该类添加剂能抑制LiPF6水解,去除HF,降低正极表面膜阻抗,并抑制正极金属离子溶出[42]。Song等[11]使用0.5% 三(三甲基硅基)亚磷酸酯(TMSP,5,图1)提高了5 V LiNi0.5Mn1.5O4电池的循环性能。TMSP中P-O基团极易失电子,具有高的HOMO值,高电压下会在正极表面形成稳定、高导电性界面膜,抑制金属离子溶解及电解液的分解。
(3)TEP
Tu等[43]使用亚磷酸三乙酯(TEP,6,图1)显著提高了Li1.2Mn0.54Ni0.13Co0.13O2(LRO)电池的循环稳定性。不含TEP的Li/LRO电池110圈循环容量保留率仅为32%,而3% TEP添加电池为82.6%。EIS测试发现TEP有效抑制了电池阻抗的增加。性能的改善归因于TEP能有效吸附富锂材料活化过程中产生的O2,且在正极表面形成更稳定的界面膜。
(4)TFEP
Song等[42]将0.5% 三(2,2,2-三氟乙基)亚磷酸酯(TFEP,7,图1)加入1 mol/L的LiPF6电解液,提高了Li/Li0.5Mn1.5O4电池高电压(5.0 V)、高温(60 ℃)性能。利用Gaussian09软件,采用密度泛函理论(DFT)进行前线轨道分析,发现TFEP的HOMO值为-0.2615 eV,远高于碳酸酯溶剂(EC=-0.3155 eV,EMC=-0.2985 eV,DMC=-0.3017 eV),说明TFEP能在正极表面优先于溶剂分子发生氧化。
(5)TAP
Xia等[44]研究发现含三烯丙基磷酸酯(TAP,8,图1)NCM442/石墨软包电池在化成、循环和高温贮存测试中产气量较少、库仑效率和容量保持率更高。然而,TAP的含量过高(>5%)会导致电池阻抗大幅上升。XPS结果说明,TAP结构中的烯丙基可能在循环过程中发生聚合,在电池正、负极表面均形成稳健的界面膜,而含量过高时由于较高的界面膜厚度导致高的阻抗。

2.3 硼酸酯类

含硼类添加剂的中心原子B处于缺电子态,可以络合PF6-与F-,从而提高锂盐的解离度,降低了电极表面LiF含量[45,46,47],改善界面膜离子电导率,抑制电池阻抗的增加,进而提高电池循环稳定性和大倍率性能。
(1)TMSB
Li等[48]通过添加三(三甲基硅烷)硼酸酯(TMSB,9,图1)改善了Li/LiMn2O4电池高电压下循环性能。添加0.5% TMSB,循环180圈后电池容量保持率为95%,而未添加时容量保持率仅为77%。Liu等[49]认为TMSB作为缺电子化合物容易与电负性强的F-结合,增加LiF在电解液中的溶解度,减小LiF在正极表面沉积,从而减少正极界面膜阻抗。
(2)TB
Wang等[50]发现硼酸三甲酯(TB,10,图1)在改善电池循环稳定性的同时并未影响其倍率性能。倍率性能测试结果显示含10% TB的电解液明显改善了电池倍率性能,原因在于TB在参与成膜过程中易结合F-,降低了界面膜中LiF含量,通过界面膜离子电导率的提高改善了电池倍率性能。
(3)TPFPB
Chang等[51]将三(五氟苯基)硼烷(TPFPB,11,图1)应用于LiFePO4半电池中,发现其对电池高温下的循环性能有改善作用。含0.028 mol·L-1TPFPB电池在60 ℃下以1 C倍率循环,相比无添加电池,100圈容量保持率从23.1%提升至46.2%。高温下,电解液会在电极表面分解形成富含Li2CO3,LiF组分的膜,界面阻抗值高。而TPFPB降低了界面膜中LiF含量,改善了Li+在界面膜中的迁移能力。

2.4 氟代碳酸酯类

氟代溶剂及其添加剂在高电压电解液中的应用受到广泛关注[52]。基于F原子的强电负性和弱极性,其具有低凝固点、高闪点、高氧化稳定性以及电解液与电极之间的良好兼容性,相应地提高了电解液低温性能、阻燃性能及电极润湿性[53]。值得注意的是,在电解液中较低含量的含氟化合物作为添加剂使用(相比作为溶剂)是一种更加经济可行的趋势。
(1)FEC
氟代碳酸乙烯酯(FEC,12,图2)的最高占据轨道(HOMO)能级和最低未占据轨道(LUMO)能级都低于EC,氧化稳定性高,还原稳定性低。Zhang等[54]将FEC应用于LiNi0. 5Mn1. 5O4/石墨电池中。相比EC基电解液,FEC基电解液在25 ℃和高温55 ℃下均表现出更优的循环性能。Markevich等[55]的 XPS结果表明高电压(5 V)循环,FEC参与了正极成膜,CEI膜组成主要为PEO类似聚合物和无机碳酸盐。
图2 含氟、腈官能团的正极用添加剂的结构

Fig. 2 Structures of additives for cathodes containing fluorine, nitrile groups

(2)FEMC
Lee等[56]对甲基 2,2,2-三氟乙基碳酸酯(FEMC,13,图2)用于改善电池高电压性能的作用机理进行探究。5% FEMC添加,能在LiNi0.5Co0.2Mn0.3O2正极表面有效成膜。含FEMC电池在3.0~4.6 V下50圈循环容量保留率达84%,而无添加电池仅为74%。IR(红外光谱)及XPS等结果表明FEMC在正极表面形成了富含金属氟化物和含C—F键的化合物,有效抑制了正极金属离子的溶出及结构相变。
(3)TFPC
He等[15]对于三氟甲基碳酸乙烯酯(TFPC,14,图2)进行了探究。使用DFT计算了几种氟代碳酸酯的氧化稳定性,TFPC>FEC>EC>TFP-PC-E(glycidyl 2,2,3,3-tetrafluoropropyl ether)。为验证TFPC在高电压下的稳定性,使用0.5 mol/L LiPF6不同溶剂的电解液,在高温55 ℃下的恒电位漏电流测试(图3),表明高电压下稳定性FEC> TFPC>EC>TFP-PC-E。
图3 F-EMC分别与EC、TFPC、FEC、TFP-PC-E的1∶1混合溶剂电解液的漏电流测试[15]

Fig. 3 Floating test of F-EMC solvent mixed with EC, TFPC, FEC, and TFP-PC-E at 1∶1 ratio[15]

(4)PFO-EC
Zhu等[57]使用0.5% 全氟辛基取代的碳酸乙烯酯(PFO-EC,15,图2)提高了电池在2.2~4.6 V的循环性能,抑制了电池阻抗增加。LSV(线性扫描伏安法)及XPS结果显示,PFO-EC参与了电池正极表面成膜。他们还指出PFO-EC也提高了负极石墨表面SEI膜的稳定性,电池性能的提升得益于正、负极表面成膜的协同效应。

2.5 腈类化合物

腈类有机溶剂通常具有较宽的电化学窗口、高阳极稳定性、低黏度和高沸点等优良特性[58]。能提高电解液的高电压和高温稳定性,抑制电解液中溶剂和锂盐分解,并降低电解液产气,但腈类溶剂存在与负极的兼容问题[59, 60]
(1)SN
Chen等[61]报道了在1 mol/L的LiPF6/EC/DEC电解液中加入1%丁二腈(SN,17,图2),改善了Li1.2Ni0.2Mn0.6O2/Li电池在高电压区间(2.0~5.0 V)的循环性能。热重分析(TG)结果显示,含SN电解液具有更高的热力学稳定性。
(2)DENE
Wang等[62]在电解液中加入0.5% 乙二醇双(丙腈)醚(DENE,18,图2),明显改善了LiNi1/3Co1/3Mn1/3O2/石墨电池在高电压下(3.0~4.5 V,1 C)的循环性能,100圈容量保持率从32.5%提高至83.9%。LSV测试发现,DENE能够优先于碳酸酯溶剂发生氧化分解,分解电位为3.8 V,且电解液的氧化分解电位提高至5.2 V。但DENE的添加量对电池性能影响较大,添加量过高会产生高的膜阻抗和低的离子电导率。
(3)HTN
Wang等[63]使用己烷三腈(HTN,19,图6)作为电解液添加剂,对富锂材料Li1.2Ni0.13Co0.13Mn0.54O2电池在高电压(4.8 V)的循环性能进行研究。含1% HTN电池循环150圈后容量保留率达92.3%,远高于空白电解液。理论计算及XRD、XPS等测试表明正极表面形成界面膜,该膜是由于—CN与正极表面金属离子吸附,能阻止电解液和正极材料的直接接触,从而抑制HF对正极侵蚀和高电压下电解液的分解(图4)。
图4 HTN添加剂在正极表面的成膜机制示意图[63]

Fig. 4 The schematic for the surface modification mechanism of the HTN additive on the cathode[63]

2.6 酸酐类化合物

(1)SA
Luo等[64]将2%的丁二酸酐(SA,20,图2)加入电解液中,LiNi0.5Mn1.5O4/Li电池200圈循环(3.0~4.9 V,2 C)容量保持率达到92%,而不含SA电解液仅为47%。通过EIS、SEM、XPS等测试表明SA在正极表面形成了致密且稳定的保护膜,提高了高电压下正极材料与电解液的界面稳定性。LSV测试显示SA能优先于溶剂分子在正极表面发生氧化。
(2)GA
Bouayad等[65]使用2%的戊二酸酐(GA,21,图6)有效抑制了LiNi0.4Mn1.6O4/Li4Ti5O12电池的容量衰减和自放电问题。通过XPS、NMR、EIS测试分析,发现GA能降低锂盐(LiPF6)的分解。GA能同时在电池正负极表面成膜,降低电解液和电极材料间反应活性,虽然界面膜较厚,但这层类PEI膜(polymer electrolyte interface)具有极好的离子电导率,因此电化学性能优异(图5)。
图5 含电解液添加剂GA及不含GA的LNM/LTO电池电化学性能对比[65]

Fig. 5 Comparison of electrochemical behaviors of a LNM/LTO cell with and without GA as electrolyte additive[65]

2.7 锂盐添加剂

尽管LiPF6锂盐具有最佳的综合性能表现,但其对水敏感和热稳定性差的问题始终存在[66, 67]。因此锂盐类添加剂(LiBOB[68]、LiDFOB[69]、LiTFSI[70]、LiFSI[71]等)被广泛研究,用于改善电解液性能。
(1)LiBOB
二草酸硼酸锂(LiBOB,22,图6)是一种常见的高电压无机添加剂,电池循环过程中会在正极表面发生氧化,形成一层稳定的表面CEI膜,能抑制电解液发生持续的氧化分解。Ha等[78]发现LiBOB作为正极添加剂具有很好的成膜效果。加入1% LiBOB,LiNi0.5Mn1.5O4电池高温循环性能和库仑效率得到明显提高。XPS分析表明高电压下LiBOB发生氧化,在正极表面形成含硼化合物,阻止了电解液中EC分解。
图6 锂盐型及其他正极用添加剂的结构

Fig. 6 Structures of additives for cathode of Lithium salt type and others

(2)LiDFOB
与LiBOB相比,草酸二氟硼酸锂(LiDFOB,23,图6)能形成更稳定的正极钝化膜,界面阻抗更低[79]。Zhu等[79]使用XPS检测到正极材料表面存在元素B,说明LiDFOB参与了成膜。LiDFOB氧化电位为4.35 V(vs. Li/Li+),在高电位下极易失去一个电子发生开环反应,生成的二氟烷基进一步与EC反应生成与负极表面类似的聚碳酸酯化合物,在正极表面形成三维聚合产物钝化膜,可抑制溶剂分子和锂盐的分解。
(3)LiTFOP
Qin等[80]将四氟草酸磷酸锂(LTFOP,24,图6)应用于Li1.1[Ni1/3Co1/3Mn1/3]0.9O2(NCM)电池,LiTFOP的添加明显改善了电池55 ℃下的循环容量保留率。为探究对电池正极稳定性的影响,利用Li/NCM电池进行研究,55 ℃高温贮藏含添加剂电池具有更高的容量保留率。他们认为LiTFOP会在NCM正极表面发生聚合反应,且形成了一层表面钝化膜。
(4)LiPO2F2
Yang等[81]报道了二氟磷酸锂(LiPO2F2,25,图6)是一种常用低阻抗添加剂。1.6% LiPO2F2使石墨/Li电池160圈容量保持率从82.53%提高至98.04%,使LiCoO2/Li电池160圈容量保持率从89.60%提高至97.53%。AFM、XPS等结果表明LiPO2F2在石墨负极和LiCoO2正极表面成膜,生成更稳定界面膜,且降低了界面膜中LiF含量。

3 电解液添加剂的作用机理分类

由于电池正极侧的CEI膜含量较少且缺少分析手段等原因,早期正极表面CEI膜一直未受关注。关于CEI膜的组成,一般认为正极表面在未经充放电或与电解液接触时主要成分是Li2CO3[82]。随着电池循环和储存时间增加,主要成分为无机盐(LiF、Li2CO3、MnF2)、烷基碳酸盐(ROCOOLi)、聚碳酸酯等[77, 83]。其中LiF、Li2CO3等无机盐组分的电导率较低,阻抗值的上升导致电池容量衰减。而EC分子易发生氧化分解并形成聚碳酸乙烯酯膜[84](图式1),该组分并不稳定,尤其是高电压和高温下易分解再生,导致电解液在正极表面发生持续的氧化分解反应。
图式1 EC分解反应机理[84]

Scheme. 1 Possible mechanism for the EC decomposition[84]

添加剂能对正极表面膜起到很好的修饰作用,提高正极材料/电解液界面膜稳定性。但正极界面修饰用添加剂的作用机制十分复杂。本篇综述从添加剂的结构出发,对其作用原理进行了详细分析。
表1 各种添加剂的正极界面修饰作用及对于锂离子电池作用的性能对比

Table 1 The interface modification on the cathode of different ectrolyte additive and the different performance behavior to batteries

Electrolyte additive Oxidation potential
(V vs. Li+/Li)
Additive effect ref
Main action mechanism Interface film component Reported battery chemistry and the mechanism of the additives
FEC 6.44(PF6-) Film formation PEO-like polymer, carbonate LiNi0.5Mn1.5O4/graphite: Participate in the formation of protective surface film on cathode; enhance voltage stability at elevated temperature. 15
FEMC 6.26(PF6-) Film formation Metal fluorides, C-F containing species LiNi0.5Mn1.5O4/Li and LiNi0.5Mn1.5O4/Li4Ti5O12: Increase oxidation stsbility in high-voltage; enhance cycling performance. 15
VC 4.85[11] Film formation Ploy(VC) LiCoO2/Li: Form effective passivation layers at the surface of both electrodes; not suitable for the condition of high voltage. 11
ADN 6.9[72] Metal ions absorbing -CN
containing species
LiCoO2/MCMB: Improve resistance to aluminum; form a stable solid electrolyte interface especially to cathode of LiCoO2. 72
SUN 6.8[72] Metal ions absorbing -CN
containing species
Li[Li0.2Mn0.56Ni0.16Co0.08]O2/Li: Form a more dense and stabe interface; suppress the decomposition of LiPF6,EC and DMC; enhance capacity performance. 72
BP 4.5[73] Overcharge protection Oligomers having 6-12 benzene rings LiCoO2/graphite: Have lower oxidation potential than solvents; form a thick interfacial film on cathode. 73
HFiP 4.2[74] Film formation CF3-,CF3-CR2- species Li[Li0.2Mn0.56Ni0.16Co0.08]O2/Li: Form a more stable SEI layer; have more stable solid electrolyte impedance and smaller charge transfer resistance. 74
TMSP 4.1[75] Film formation and electrolyte stabilizer Si-O,P-O species LiNi0.5Mn1.5O4/graphite: Alleviate the decomposition of LiPF6 by hydrolysis; eliminate HF promoting Mn/Ni dissolution from the cathode. 75
TMSB 3.76[48] Film formation and electrolyte stabilizer Si-O,B-O species LiMn2O4/Li: Show excellent capacity retention at high temperature; reduce the content of HF. 48
MMDS 4.6[76] Film formation Li2SO3,ROSO2Li,
sulfide component
LiNi0.5Co0.2Mn0.3O2/graphite: Increase capacity retention; improve the conductivity of CEI; suppress the solvent decompdsition at high voltage. 76
SA 4.4[64] Film formation Hydrocarbons,Li2CO3 LiNi0.5Mn1.5O4/Li: Improve high voltage stability; form a modified protective layer. 64
TB 4.3[50] Film formation and electrolyte stabilizer Metal oxide,
B-O species
LiNi1/3Co1/3Mn1/3O2/Li: Improve cyclic stability and rate
capability; form a stable and low impedance film.
50
LiBOB 4.2[74] Film formation and electrolyte stabilizer Li oxalate,
oxalate species
LiNi0.5Mn1.5O4/Li: React with water traces and suppress the formation of POF3; improve high voltage and high temperature stability. 74
LiDFOB 4.35[77] Film formation and electrolyte stabilizer B containing polycarbonate Li1.2Ni0.15Mn0.55Co0.1O2/ Li: Reduces both cell capacity loss and impedance rise; inhibits electrolyte oxidation; reduces dissolution of metal ions. 77

3.1 正极表面成膜类

(1)氧化成膜
一般认为该类添加剂应具有较高HOMO值,高电压下优先于溶剂发生氧化反应,在正极表面形成致密且稳定的钝化膜,覆盖正极表面活性位点,进而避免与电解液的直接接触。同时该钝化膜抑制了正极金属离子的溶解,进而避免正极结构的相变及过渡金属离子对负极SEI膜的破坏[85]。文献报道P系添加剂、S系添加剂、锂盐类添加剂(LiBOB、LiDFOB等)、酸酐类添加剂(SA、GA等)、芳香族化合物(联苯等)能优先于溶剂发生成膜反应。以TMSP[11]为例,其较高的HOMO值与极易失电子的P-O基团有关。较高电压下TMSP会在正极表面优先于溶剂发生氧化,生成烷基磷(RO3P)保护层(图式2)。
图式2 TMSP氧化成膜机理[11]

Scheme. 2 Schematic representation of possible mechanisms for electrochemical oxidative decomposition of TMSP[11]

值得注意的是,上述添加剂除发生自身氧化成膜反应外,也能引发EC开环参与成膜,因此添加剂在正极表面成膜是十分复杂的过程,可将其区分为成膜和饰膜两种路径[36]
(2)不饱和键聚合成膜
碳酸亚乙烯酯(VC,26,图6)是一种公认的负极成膜添加剂,在较低的电压和温度下,1%或2%VC几乎对所有电池体系的电化学性能都有一定改善[86],随后研究者在正极表面也发现了VC的分解产物。VC成膜原因是易聚合的乙烯基,能在电池正、负极表面形成聚合物膜。VC的成膜机理解释有多种[87],一种观点认为VC中的碳碳双键由自由基引发聚合反应,形成的聚合物A以重复的EC单元构成;另一种观点则认为VC得失电子引发开环反应,从而形成聚合物B(如图式3)。El Quatani等[87]通过XPS、容量微分等数据证实VC成膜是由自由基反应引发的,电极表面产物主要以聚合物A形式存在。然而,VC的缺点是高温或高电压下的电化学性能较差,实际应用中还需要复合其他添加剂使用[88]
图式3 VC添加剂可能的聚合产物(A)自由基聚合物,(B)线性聚合物[87]

Scheme. 3 Main possible VC degradation products:(A)radical polymer,(B)linear polymer[87]

(3)氟代碳酸酯成膜
F代添加剂在不同温度、电极及正负极界面上的作用机理不同[86],且不同类型的F代添加剂间也存在较大差异。环状氟代碳酸酯(FEC)易在正极表面生成含PEO(poly(ethylene oxide))类似结构和无机碳酸盐的固态界面,能有效抑制正极与电解液间的副反应,进而提升电池高电压下性能[52, 55]。而链状氟代碳酸酯Di-(2,2,2 trifluoroethyl)carbonate(DFDEC,16,图2)、FEMC等具有不同的作用机制[89],能有效抑制电池在高电压下电压平台衰减,提高电池循环性能和倍率性能。性能改善的原因在于一方面DFDEC可以促使正极侧形成比较稳定的金属氟化物界面,抑制金属离子向负极迁移。同时,DFDEC还可以在EC的帮助下形成氟代碳酸锂类,显著降低正极侧CEI膜的阻抗,作用机理如图式4(以DFDEC为例)。
图式4 DFDEC氧化分解及与EC反应生成稳定SEI膜过程[89]

Scheme. 4 Electrochemical oxidative decomposition of DFDEC and its further reaction with EC to form a stable SEI[89]

3.2 电解液稳定剂类

正极修饰用添加剂对于高电压下电池性能的改善,不只是表面成膜机理,而是多方面作用的结果。一些添加剂能与电解液中的PF6-、F-结合,降低电解液中HF含量,抑制正极材料中金属离子的溶解,并溶解界面膜中LiF等组分。本课题组将该类添加剂定义为电解液稳定剂,这类添加剂包括TMSB、TPFPB、PS、TMSP、LiBOB等。
LiPF6基电解液中,不稳定的P—F键极易与电解液中微量水发生反应[90]:
LiPF6+H2O→POF3 +LiF+2HF,
PF5+H2O→POF3 +2HF
生成的HF能促进正极金属离子溶解,Mn2+迁移到石墨负极,引起不可逆容量的产生和负极严重的副反应。此外,HF还会与CEI膜反应,例如:
Li2CO3+2HF→2LiF+H2O+CO2↑,
增加界面膜中LiF含量,并对界面膜造成破坏。因此,选择合适的正极修饰用添加剂对高电压电池性能尤为重要。
TMSB、TPFPB等含B添加剂作为缺电子化合物[48],易与电解液中的PF6-和F-结合,从而溶解CEI膜中的LiF组分,实现高的离子导通率,提高电池循环性能。一些研究者认为硼酸酯类添加剂是一种成膜添加剂[91, 92],能在正极表面形成保护膜,但其作用机理未明确。但是更多研究者则认为含B化合物由于缺电子的B中心,使其可作为阴离子受体,提高锂盐的解离度及锂离子迁移数,其作用机理更多在表面化学反应,降低体相及电极界面阻抗,而不是一种成膜添加剂,发生氧化还原反应。
Song等[42]认为亚磷酸酯类添加剂能去除电解液中的HF(如图式5),从而降低正极界面膜中LiF含量,且抑制HF对过渡金属的腐蚀。此外,Yim等[93]认为亚磷酸酯类添加剂的作用机理还包括:三价P易被氧化,从而消耗正极界面产生的氧气;亲电子的P和Si易与LixOy反应,减少其引起的电解液分解。
图式5 亚磷酸酯类添加剂去除电解液中HF的机理[42]

Scheme. 5 Proposed mechanisms for the functions of phosphite-based additives for the HF removal[42]

Pieczonka等[94]对LiBOB抑制Mn2+溶出的机理进行了解释(图式6)。LiBOB作为电解液添加剂,能有效捕获LiPF6的分解产物PF5,阻止溶剂分子受PF5催化发生大量的氧化分解,并降低HF含量,抑制HF腐蚀正极材料。
图式6 LiBOB添加剂用于改善高电压正极电化学性能的机理[94]

Scheme. 6 Proposed mechanisms for the LiBOB additive for improvement in electrochemical performance of high-voltage cathode[94]

3.3 过充保护添加剂类

苯的衍生物联苯(BP,27,图6)等及杂环类化合物呋喃(Oxole,28,图6)、噻吩(Thiophene,29,图6)等最初被报道作为过充保护剂使用[95],在电池过充时通过一定的方式阻断电流,从而提高电池安全性。目前研究发现少量的过充添加剂可提高电池高电压循环性能。Lee等[96]认为噻吩改善高电压下稳定性的原因是噻吩在电解液分解之前发生电聚合,导电膜包覆在正极表面,阻止电解液持续分解。Shima等[97]对BP、环己基苯(CHB,30,图6)在正极表面成膜的机理进行了解释(图式7),高电压下该类添加剂易发生聚合成膜。值得注意的是,过充保护添加剂使用量过高时,容易形成很厚的正极界面膜,影响Li+的导通性,导致电池电化学性能劣化[98, 99],因此合理调控含量十分重要。
图式7 BP和CHB的反应机理[97]

Scheme. 7 Proposed reaction mechanisms of BP and CHB[97]

3.4 吸附离子类

腈类具有较宽的电化学反应窗口,可用作电解液的共溶剂或者添加剂,能明显改善电池高温和高电压下性能。因其能吸附正极表面的金属离子并形成络合物,从而保护正极材料,通常被称作正极络合添加剂[60, 100]。其作为高电压添加剂的作用机制包括以下几个方面。
(1)去除电解液中的H2O和HF。电解液中存在微量水分和酸,会加剧电解液和电极表面副反应,而腈类能有效去除电解液中水分和酸(图式8),从而提高电池在高电压和高温下的稳定性[61]
图式8 腈类添加剂去除电解液中HF的机理[61]

Scheme. 8 Proposed mechanisms for the functions of nitrile-based additives for the HF removal[61]

(2)吸附正极表面金属离子。尽管腈类不发生优先的氧化成膜,但相关报道验证了腈类改善正极/电解液界面稳定性[61]。Kim等[101, 102]认为具有较强电负性的-CN会与正极表面过渡金属离子形成很强的键(图7),腈类化合物覆盖在正极活性物质表面,抑制高温、高电压下电解液与正极材料间副反应的发生(包括电解液的分解、HF对正极材料结构的破坏等)。目前二氰基腈类已经成熟地应用于高电压LiCoO2体系软包电池中,随着电压逐步提高,多氰基化合物或含其他官能团的氰基化合物越来越多地被应用。
图7 腈类对于正极界面的保护作用(a)不含腈电解液(b)含长链腈电解液(c)含较短链腈电解液[102]

Fig. 7 Effects of nitriles protecting cathode surface from electrolyte(a) nitrile-absent electrolyte and nitrile-present electrolytes of(b) long-chain nitriles and(c) short-chain nitriles[102]

3.5 下一代电解液添加剂应具备的结构及特征

根据上述对于正极添加剂结构与作用机理的总结,作者认为筛选合适的添加剂应基于构效关系,通过引入合适的官能团进行结构设计,从而使添加剂在电解液中能够具备相应功能。下一代的正极界面修饰用添加剂还应具备以下特征:
(1)化学性质稳定。添加剂不会与电解液中其他组分发生反应。
(2)与电池负极兼容。在充放电过程中,正极成膜添加剂不会对电池负极造成不利影响。
(3)含添加剂组分的CEI膜需要具备较高的电子电导率和Li+导通性能。
(4)具备多种官能团,满足多功能电解液添加剂要求,能够对电解液多方面性能进行改善。例如将F取代(F原子强电负性所具备的优点)扩展到更多结构中(如含P、S、B、N等物质)。

3.6 正极界面成膜机理的理论计算研究进展

应用于锂离子电池成膜功能分子的理论计算方法主要有Hartree-Fock、 DFT以及MP2 等。理论计算一方面可作为真实实验的补充,更为深入地探索和理解成膜机理;另一方面,可以在尚无实验的情况下对功能分子的化学性质进行预测。因此将理论模拟计算应用于新型电解液添加剂的开发可以大幅减少实验工作量,加快添加剂开发进度。
理论计算通过研究几个重要量子化学参数,HOMO、LOMO、偶极矩、电荷、反应过程的热力学势等来阐明界面膜的形成机理以及功能分子的作用机理。Li等[103]使用一种新型添加剂反丁烯二腈(FN)改善4.5 V下循环正极材料的结构完整性。为确定FN在LiCoO2正极表面的作用机理,对Co3+、EC、EMC、DEC、FN及它们的配合物进行计算。其中Co3+… FN配合物的结合能(-17.721 eV)最大,进而FN在正极表面富集并成膜,而界面稳定性的提高得益于界面膜中-CN官能团极高的化学稳定性。
理论计算在高电压添加剂/溶剂的作用机理方面也有相关研究报道[104]。Wang等[105]通过理论计算研究砜类溶剂和碳酸酯溶剂的电化学稳定性。结果表明,纯溶剂状态下,碳酸酯溶剂的氧化电位普遍高于砜类溶剂,具体表现为EC=PC(7.1 V)> DMC(6.9 V)> EMS(甲基乙基砜,6.5 V)> TMS(环丁砜,6.3 V)> MTS(1-甲基三亚甲基砜,5.5 V),表明碳酸酯抗氧化能力更强。然而,当锂盐(LiBF4、LiPF6、LiClO4)溶解进入碳酸酯溶剂,锂盐阴离子使碳酸酯溶剂的氧化电位急剧下降,对砜类溶剂的影响则很小。这是由于电池充放电过程中上述锂盐与碳酸酯类溶剂发生副反应产生HF、HClO4,弱化了溶剂的抗氧化能力。
理解电解液添加剂改善循环性能的机理,可以指导我们挑选出关键官能团、元素,设计出更加稳定的电极/电解液界面。已报道的正极界面修饰用添加剂包括LiBOB、FEC、TMSB、TMSP等,但是缺少系统的研究。Wang等[106]使用DFT计算方法对EC、EMC、TMSP、TMSB的单电子氧化行为进行研究。无论PF6-存在与否,得到的计算氧化电位EMC>EC>TMSP>TMSB(图8)。TMSB表现出最强的氧化反应活性,且界面膜表面含大量B和Si组分,能够降低电极极化,提高电池循环稳定性。
图8 EC、EMC、TMSB和TMSP与PF6-络合的优化分子结构及其计算氧化电位(vs. Li/Li+)[106]

Fig. 8 Optimized structure of EC, EMC, TMSB and TMSP with PF6- and the calculated oxidation potential(vs. Li/Li+)[106]

基于Gaussian软件强大的计算功能结合密度泛函理论对电解液的分子行为和氧化电位进行预测已经取得比较丰富的成果。但是,目前理论计算应用于电解液体系研究,分子构型选择还相对简单,对于添加剂的分解路径研究也不够深入。相信随着计算机技术的发展和量子化学理论的完善,理论计算对于添加剂的开发工作可以提供更大的帮助。

4 添加剂联用技术

向电解液中添加某些添加剂,可改善高电压锂离子电池的性能,但在实际应用中,单一添加剂的应用对长周期循环性能及综合性能的改善,始终有一定的局限。两种或者多种添加剂的联用,利用了各个物质间的协同作用,是一种改善电池性能最简单有效的方法[107, 108]

4.1 二元复合添加剂

4.1.1 VC+TMSP
Sinha等[109]在研究中发现,VC和TMSP两种添加剂具有很好的协同作用,TMSP可抑制正极界面Mn溶解,而VC可减少负极Mn沉积,因此提高了电池在60 ℃的电化学性能。Han等[110]对两者的协同作用进行了解释,TMSP易氧化在正极表面成膜,但较难被还原(还原电位低于EC)。而VC能够优先于EC发生还原反应,两种添加剂的复合能够发挥各自的优势。
4.1.2 FEC+LiBF4
王超等[111]将FEC和四氟硼酸锂(LiBF4)两种添加剂联合使用。FEC具有较好的负极成膜效果,但是其在高电压或高温下的稳定性较差。FEC在石墨负极处失去F,分解成与VC具有类似结构的物质,该物质会于4.3 V(vs. Li/ Li+)电压或更高时在正极处发生分解产生气体。高温情况下FEC分解产气更加严重,影响电池的循环性能,而LiBF4的加入能够抑制FEC的分解,进而抑制气体的产生。
4.1.3 MMDS+TMSB
范伟贞等[112]将电解液添加剂MMDS和TMSB联用,改善了4.5 V石墨/LiNi1/3Co1 /3Mn1/3O2锂离子电池的循环性能。添加 1.0% MMDS和添加0.5% MMDS + 0.5% TMSB,在LiNi1/3Co1 /3Mn1/3O2正极和石墨负极表面均形成了Li2SO4和RSO3Li,说明 MMDS能同时参与正、负极界面膜的形成。值得注意的是,使用MMDS和TMSB复合添加剂时,界面膜中RSO3Li的含量降低,相对于RSO3Li而言,Li2SO4具有更好的稳定性和导锂能力,说明利用添加剂之间的协同作用,可取得大于两者单独使用的效果。

4.2 三元复合添加剂

4.2.1 VC211
Ma等[113]在二元复合添加剂的基础上,提出了VC211(2% VC+1% MMDS+1% TMSP)三元复合添加剂,应用于全电池。使用VC211的电池,相比仅含VC或二元复合添加剂电池具有更好的电化学性能表现:减少了较高电压下电池副反应的发生(例如电解液分解);提高了高温下充电状态石墨负极的稳定性;提高了电池库仑效率并降低了电池阻抗。此种VC211复合添加剂组合还包括2% VC+1% DTD+1% TMSP等。
4.2.2 PES211
Xia等[114]发现含VC复合添加剂在化成和循环过程中会大量产气,而PES被证明产气量比VC少,其在NCM和石墨负极表面会形成含S的保护膜,可抑制产气和阻抗增大。因而PES替代VC形成添加剂组合PES211(2% PES+1% MMDS+1% TMSP),在电压大于4.3 V时无明显的放热及阻抗变化。Ma等[115]实验证明PES211复合添加剂能够明显改善软包电池在高电压(>4.2 V)和高温度(>55 ℃)下的性能表现,提高了嵌锂态石墨负极在高温下(>200 ℃)的热稳定性。此外,Nelson等[116]将PES211中的MMDS替换为DTD,发现能降低高电压停留阶段的阻抗,并改善循环性能。

5 结论与展望

有机碳酸酯电解液在高电压下的氧化分解及正极中过渡金属离子的溶出是限制高电压锂离子电池发展的重要原因。正极界面修饰用添加剂的使用是改善电池性能行之有效的方法。本课题组先后研究了BMI(4,4'-双马来酰亚胺基二苯甲烷)[117]和BMP(2,2-双[4-(4-马来酰亚胺苯氧基)苯基]丙烷)[118]作为电解液添加剂能在正极表面形成新的界面膜,明显改善电池高电压下循环性能。该类添加剂能够稳定电极/电解液界面,实现电解液在高电压下的稳定存在,且不同添加剂的作用机制不尽相同,与其功能分子结构有关。例如含有易失电子官能团添加剂(TMSP中的P—O)通常能优先于溶剂分子发生氧化成膜;含有不饱和键官能团添加剂(VC中的C=C)会在正极表面聚合成膜;含—CN官能团添加剂能够去除电解液中的水分和酸,吸附正极表面金属离子;含缺电子官能团添加剂能够溶解CEI膜中的LiF,降低电池阻抗;含F官能团添加剂可以提高电解液的低温、抗氧化、阻燃和电极润湿性。因此可以通过官能团的修饰,在已有功能分子结构基础上增加、减少或变换某些官能团,进而设计、优选出具有特定功效的多功能添加剂。理论计算是添加剂作用机理研究的有效手段,并可大幅减小实验工作量,加快电解液开发进度。在单一添加剂的应用基础上,二元及多元添加剂的联用技术应该受到足够重视,利用不同添加剂间的协同作用,可极大地提升电池的综合电化学性能。
虽然目前正极界面修饰用添加剂的种类繁多且功能齐全,但是仍面临着众多问题:第一,添加剂的研发需考虑不同的电池体系的影响,需考虑不同的正极材料、溶剂对于添加剂的作用的影响;第二,需兼顾添加剂对于电池正极和负极的作用;第三,在更高电压、温度下,目前添加剂的作用远未达到预期效果。总之,随着人类对于电池性能要求的不断提高,电解液添加剂的突破与进展势必成为推动锂离子电池发展的重要因素之一。
[1]
Armand M, Tarascon J M . Nature, 2008,451:652. https://www.ncbi.nlm.nih.gov/pubmed/18256660

DOI: 10.1038/451652a   PMID: 18256660

[2]
Zhang X, Ross P N, Kostecki R, Kong F, Sloop S, Kerr J B, Striebel K, Cairns E J, McLarnon F . Journal of the Electrochemical Society, 2001,148(5):147.
[3]
李伟善(Li W S) . 新能源进展 (Journal of Circuits and Systems), 2013,1(1):95.
[4]
Goodenough J B, Park K S . Journal of the American Chemical Society, 2013,135(4):1167. https://www.ncbi.nlm.nih.gov/pubmed/23294028

DOI: 10.1021/ja3091438   PMID: 23294028

Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) &amp;gt; 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.

[5]
Yim T, Kang K S, Mun J, Lim S H, Woo S G, Kim K J, Park M S, Cho W, Song J H, Han Y K, Yu J S, Kim Y J . Journal of Power Sources, 2016,302:431. https://linkinghub.elsevier.com/retrieve/pii/S0378775315304389

DOI: 10.1016/j.jpowsour.2015.10.051

[6]
Lin Y M, Klavetter K C, Abel P R, Davy N C, Snider J L, Heller A, Mullins C B . Chemical Communications, 2012,48(58):7268. https://www.ncbi.nlm.nih.gov/pubmed/22706565

DOI: 10.1039/c2cc31712e   PMID: 22706565

Electrodes composed of silicon nanoparticles (SiNP) were prepared by slurry casting and then electrochemically tested in a fluoroethylene carbonate (FEC)-based electrolyte. The capacity retention after cycling was significantly improved compared to electrodes cycled in a traditional ethylene carbonate (EC)-based electrolyte.

[7]
Kraytsberg A, Ein-Eli Y . Journal of Power Sources, 2011,196(3):886. 5ff43c19-ecc2-492b-8b62-99fd70511a82http://dx.doi.org/10.1016/j.jpowsour.2010.09.031

DOI: 10.1016/j.jpowsour.2010.09.031

Li-air batteries are potentially viable ultrahigh energy density chemical power sources, which could potentially offer specific energies up to similar to 3000 Wh kg(-1) being rechargeable. The modern state of art and the challenges in the field of Li-air batteries are considered. Although their implementation holds the greatest promise in a number of applications ranging from portable electronics to electric vehicles, there are also impressive challenges in development of cathode materials and electrolyte systems of these batteries. (C) 2010 Elsevier B.V.

[8]
Ma G Q, Wen Z Y, Jin J, Wu M F, Zhang G X, Wu X W, Zhang J C . Solid State Ionics, 2014,262:174. 1945c94f-6826-4930-8f4e-532c39663e30http://dx.doi.org/10.1016/j.ssi.2013.10.012

DOI: 10.1016/j.ssi.2013.10.012

N-Methyl-(n-butyl) pyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI), a kind of ionic liquid, is used as the additive in the electrolyte of Li-S battery. The changing of viscosity and conductivity of the electrolyte with different content of PYR14TFSI addition is tested. And the electrochemical impedance, the cycle performance and the columbic efficiency of the Li-S battery with different content of PYR14TFSI additive in the electrolyte are also tested. The results show that the addition of PYR14TFSI can not only inhibit the dissolution of lithium polysulfides (Li2Sx), but also decrease the migration rate of polysulfides ions in the electrolyte. Therefore, shuttle phenomenon in the lithium-sulfur battery is suppressed effectively with the addition of PYR14TFSI. Consequently, a coulombic efficiency nearing 100% and long cycling stability are achieved. (C) 2013 Elsevier B.V.

[9]
Hu M, Pang X, Zhou Z . Journal of Power Sources, 2013,237:229.
[10]
Lloris J M, Vicente C P R, Tirado J L . Electrochemical and Solid-State Letters, 2002,5(10):A234.
[11]
Song Y M, Han J G, Park S, Lee K T, Choi N S . J. Mater. Chem. A, 2014,2(25):9506.
[12]
Xia Y, Sakai T, Fujieda T, Wada M, Yoshinaga H . Electrochemical and Solid-State Letters, 2001,4(2):A9. https://iopscience.iop.org/article/10.1149/1.1339238

DOI: 10.1149/1.1339238

[13]
Wang D, Xiao J, Xu W, Nie Z, Wang C, Graff G, Zhang J G . Journal of Power Sources, 2011,196(4):2241. 52b7b67f-fc47-4d65-873f-593b4b2439d5http://dx.doi.org/10.1016/j.jpowsour.2010.10.021

DOI: 10.1016/j.jpowsour.2010.10.021

In this paper we report the electrochemical characteristics of a novel cathode material Li2CoPO4F prepared by solid-state reactions The solid-state reaction mechanism involved in synthesizing the Li2CoPO4F also is analyzed in this paper When cycled between 2 0 V and 5 0 V during cyclic voltammetry measurements the Li2CoPO4F samples present one fully reversible anodic reaction at 481 V When cycled between 2 0 V and 5 5V peaks occurring at 481 V and 51 V in the first anodic scan evolved to one broad oxidative mound-like pattern in subsequent cycles Correspondingly the X-ray diffraction (XRD) pattern of the Li2CoPO4F electrode discharged from 5 5V to 2 0 v is slightly different from the patterns exhibited by a fresh sample and the sample discharged from 5 0V to 2 0V This difference may correspond to a structural relaxation that appears above 5V In the constant current cycling measurements the Li2CoPO4F samples exhibited a capacity as high as 109 mAh g(-1) and maintained a good cyclability between 2 0 V and 5 5V vs Li/Li+ XRD measurements confirmed that the discharged state is Li2CoPO4F Combining these XRD results and electrochemical data proved that up to 1 mol l i(+) is extractable when charged to 5 5 V Published by Elsevier B V

[14]
Zhou F, Cococcioni M, Kang K, Ceder G . Electrochemistry Communications, 2004,6(11):1144. 45064e28-7dc8-4814-bdd5-a903d85c1164http://www.sciencedirect.com/science/article/pii/S1388248104002401

DOI: 10.1016/j.elecom.2004.09.007

Abstract

The Li intercalation potential of LiMPO4 and LiMSiO4 compounds with M = Fe, Mn, Co and Ni is computed with the GGA + U method. It is found that this approach is considerably more accurate than standard LDA or GGA methods. The calculated potentials for LiFePO4, LiMnPO4 and LiCoPO4 agree to within 0.1 V with experimental results. The LiNiPO4 potential is predicted to be above 5 V. The potentials of the silicate materials are all found to be rather high, but LiFeSiO4 and LiCoSiO4 have negligible volume change upon Li extraction.

]]>

[15]
He M, Hu L, Xue Z, Su C C, Redfern P, Curtiss L A, Polzin B, Cresce A V, Xu K, Zhang Z . Journal of the Electrochemical Society, 2015,162(9):A1725.
[16]
Xu K, Angell C A . Journal of the Electrochemical Society, 1998,145(4):L70.
[17]
Moshkovich M, Cojocaru M, Gottlieb H E, Aurbach D . Journal of Electroanalytical Chemistry, 2001,497(1):84.
[18]
Yang L, Markmaitree T, Lucht B L . Journal of Power Sources, 2011,196(4):2251.
[19]
邢丽丹(Xing L D), 许梦清(Xu M Q), 李伟善(Li W S), . 中国科学:化学 (Scientia Sinica Chimica), 2014,44(8):1289.
[20]
Wu Y, Vadivel Murugan A, Manthiram A . Journal of the Electrochemical Society, 2008,155(9):A635.
[21]
Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y . Solid State Ionics, 2008,179(27/32):1794.
[22]
Park B C, Kim H B, Myung S T, Amine K, Belharouak I, Lee S M, Sun Y K . Journal of Power Sources, 2008,178(2):826.
[23]
Peled E . Journal of the Electrochemical Society, 1979,126(12):2047.
[24]
马国强(Ma G Q), 蒋志敏(Jiang Z M), 陈慧闯(Chen H C), 王莉(Wang L), 董经博(Dong J B), 张建君(Zhang J J), 徐卫国(Xu W G), 何向明(He X M) . 无机材料学报 (Journal of Inorganic Materials), 2018,33(7):699.
[25]
Thomas M, Bruce P G, Goodenough J B . Journal of the Electrochemical Society, 1985,132(7):1521.
[26]
Guyomard D, Tarascon J M . Journal of the Electrochemical Society, 1992,139(4):937.
[27]
Guyomard D, Tarascon J M . Journal of the Electrochemical Society, 1993,140(11):3071.
[28]
Xu M Q, Li W S, Zuo X X, Liu J S, Xu X . Journal of Power Sources, 2007,174(2):705.
[29]
Li B, Xu M, Li B, Liu Y, Yang L, Li W, Hu S . Electrochimica Acta, 2013,105(26):1.
[30]
Petibon R, Madec L, Rotermund L M, Dahn J R . Journal of Power Sources, 2016,313:152. https://linkinghub.elsevier.com/retrieve/pii/S0378775316301616

DOI: 10.1016/j.jpowsour.2016.02.054

[31]
Zhang B, Metzger M, Solchenbach S, Payne M, Meini S, Gasteiger H A, Garsuch A, Lucht B L . Journal of Physical Chemistry C, 2015,119(21):11337.
[32]
Downie L, Hyatt S R, Wright A, Dahn J R . Journal of Physical Chemistry C, 2014,118(51):29533.
[33]
Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2014,161(14):A2250.
[34]
Zuo X, Fan C, Xiao X, Liu J, Nan J . ECS Electrochemistry Letters, 2012,1(3):A50. https://iopscience.iop.org/article/10.1149/2.006203eel

DOI: 10.1149/2.006203eel

[35]
Lee H, Choi S, Choi S, Kim H J, Choi Y, Yoon S, Cho J J . Electrochemistry Communications, 2007,9(4):801. bc2e7ae5-aa8c-4cee-baa6-c285637692a2http://www.sciencedirect.com/science/article/pii/S1388248106005200

DOI: 10.1016/j.elecom.2006.11.008

Abstract

This study demonstrates that proper SEI layer on graphite anode is essential in LiNi0.5Mn1.5O4(LNMO)/graphite 5 V lithium-ion batteries. Succinic anhydride (SA) and 1,3-propane sultone (PS) were found to greatly extend cycle life and suppress swelling behavior of LNMO/graphite cells. The benefits of SA and PS were ascribed not only to the stable SEI layer they form on graphite but also to their stability toward the oxidation at high voltage. Using 1 M LiPF6 EC/EMC (1/2, v/v) solutions with SA and PS, LNMO/graphite Al-laminated pouch cell with nominal capacity of 600 mA h exhibited about 80% capacity retention after 100 cycles. This is the first report on the successful LNMO/graphite 5 V LIB to our best knowledge.

]]>

[36]
许梦清(Xu M Q), 邢丽丹(Xing L D), 李伟善(Li W S) . 化学进展 (Progress in Chemistry), 2009,21(10):2017.
[37]
Pires J, Timperman L, Castets A, Peña J S, Dumont E, Levasseur S, Dedryvere R, Tessier C, Anouti M . RSC Advances, 2015,5(52):42088.
[38]
Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W . Journal of Materials Chemistry A, 2013,1(41):12954.
[39]
Nam N D, Park I J, Kim J G . ECS Transactions, 2011,33(22):7.
[40]
Ma Y, Yin G, Zuo P, Tan X, Gao Y, Shi P . Electrochemical and Solid-State Letters, 2008,11(8):A129. https://iopscience.iop.org/article/10.1149/1.2931972

DOI: 10.1149/1.2931972

[41]
Tan S, Zhang Z, Li Y, Li Y, Zheng J, Zhou Z, Yang Y . Journal of the Electrochemical Society, 2012,160(2):A285.
[42]
Song Y M, Kim C K, Kim K E, Hong S Y, Choi N S . Journal of Power Sources, 2016,302:22.
[43]
Tu W, Xia P, Zheng X, Ye C, Xu M, Li W . Journal of Power Sources, 2017,341:348.
[44]
Xia J, Madec L, Ma L, Ellis L D, Qiu W, Nelson K J, Lu Z, Dahn J R . Journal of Power Sources, 2015,295:203.
[45]
Zuo X, Fan C, Liu J, Xiao X, Wu J, Nan J . Journal of Power Sources, 2013,229(3):308.
[46]
Yan C, Ying X, Xia J, Gong C, Chen K . Journal of Energy, 2016,4:015.
[47]
Pang C, Xu G, An W, Ding G, Liu X, Chai J, Ma J, Liu H, Cui G . Energy Technology, 2017,5(11):1979.
[48]
Li J, Xing L, Zhang R, Chen M, Wang Z, Xu M, Li W . Journal of Power Sources, 2015,285:360.
[49]
Liu Y, Tan L, Li L . Journal of Power Sources, 2013,221:90.
[50]
Wang Z, Xing L, Li J, Li B, Xu M, Liao Y, Li W . Electrochimica Acta, 2015,184:40.
[51]
Chang C C, Chen T K . Journal of Power Sources, 2009,193(2):834.
[52]
Markevich E, Salitra G, Aurbach D . ACS Energy Letters, 2017,2(6):1337.
[53]
马国强(Ma G Q), 王莉(Wang L), 张建君(Zhang J J), 陈慧闯(Chen H C), 何向明(He X M), 丁元胜(Ding Y S) . 化学进展 (Progress in Chemistry), 2016,28(9):1299.
[54]
Hu L, Zhang Z, Amine K . Electrochemistry Communications, 2013,35:76.
[55]
Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt M A, Aurbach D . Langmuir, 2014,30(25):7414. https://www.ncbi.nlm.nih.gov/pubmed/24885475

DOI: 10.1021/la501368y   PMID: 24885475

The effect of fluorinated ethylene carbonate (FEC) as a cosolvent in alkyl carbonates/LiPF6 on the cycling performance of high-voltage (5 V) cathodes for Li-ion batteries was investigated using electrochemical tools, X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HRSEM). An excellent cycling stability of LiCoPO4/Li, LiNi0.5Mn1.5O4/Si, and LiCoPO4/Si cells and a reasonable cycling of LiCoPO4/Si cells was achieved by replacing the commonly used cosolvent ethylene carbonate (EC) by FEC in electrolyte solutions for high-voltage Li-ion batteries. The roles of FEC in the improvement of the cycling performance of high-voltage Li-ion cells and of surface chemistry on the cathode are discussed.

[56]
Lee Y M, Nam K M, Hwang E H, Kwon Y G, Kang D H, Kim S S, Song S W . The Journal of Physical Chemistry C, 2014,118(20):10631.
[57]
Zhu Y, Casselman M D, Li Y, Wei A, Abraham D P . Journal of Power Sources, 2014,246:184.
[58]
尹成果(Yin C G), 马玉林(Ma Y L), 程新群(Cheng X Q), 尹鸽平(Yin G P) . 化学进展 (Progress in Chemistry), 2013,25(1):54.
[59]
Abu-Lebdeh Y, Davidson I . Journal of Power Sources, 2009,189(1):576.
[60]
Abu-Lebdeh Y, Davidson I . Journal of the Electrochemical Society, 2009,156(1):A60.
[61]
Chen R, Liu F, Chen Y, Ye Y, Huang Y, Wu F, Li L . Journal of Power Sources, 2016,306:70.
[62]
Wang C, Yu L, Fan W, Liu J, Ouyang L, Yang L, Zhu M . ACS Applied Materials & Interfaces, 2017,9(11):9630. https://www.ncbi.nlm.nih.gov/pubmed/28221019

DOI: 10.1021/acsami.6b16220   PMID: 28221019

1/3Co1/3Mn1/3O2/graphite pouch batteries cycled under high voltage. Mixing 0.5 wt % EDPN into the electrolyte greatly improved the capacity retention, from 32.5% to 83.9%, of cells cycled for 100 times in the range 3.0-4.5 V with a rate of 1C. The high rate performance (3C and 5C) was also improved, while the cycle performance was similar to that of the cell without EDPN when cycled between 3.0 and 4.2 V. Further evidence of a stable protective interphase film can be formed on the LiNi1/3Co1/3Mn1/3O2 electrode surface due to the presence of EDPN in the electrolyte. This process effectively suppresses the oxidative decomposition of electrolyte and the growth in the charge-transfer resistance of the LiNi1/3Co1/3Mn1/3O2 electrode and greatly improves the high-voltage electrochemical properties for the cells. In contrast, EDPN has no positive effect on the cyclic performance of the LiNi0.5Co0.2Mn0.3O2-based cell under high operating voltage.]]>

[63]
Wang L, Ma Y, Li Q, Zhou Z, Cheng X, Zuo P, Du C, Gao Y, Yin G . Journal of Power Sources, 2017,361:227. https://linkinghub.elsevier.com/retrieve/pii/S0378775317308583

DOI: 10.1016/j.jpowsour.2017.06.075

[64]
Luo R, Xu D, Zeng X, Li X, Zeng J, Liao S . Ionics, 2015,21(9):2535.
[65]
Bouayad H, Wang Z, Dupré N, Dedryvère R, Foix D, Franger S, Martin J F, Boutafa L, Patoux S, Gonbeau D . Journal of Physical Chemistry C, 2014,118(9):4634. https://pubs.acs.org/doi/10.1021/jp5001573

DOI: 10.1021/jp5001573

[66]
Aravindan V, Gnanaraj J, Madhavi S, Liu H K . Chemistry, 2011,17(51):14326. https://www.ncbi.nlm.nih.gov/pubmed/22114046

DOI: 10.1002/chem.201101486   PMID: 22114046

This paper presents an overview of the various types of lithium salts used to conduct Li(+) ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato)borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated.

[67]
Kawamura T, Kimura A, Egashira M, Okada S, Yamaki J I . Journal of Power Sources, 2016,104(2):260. https://linkinghub.elsevier.com/retrieve/pii/S0378775301009600

DOI: 10.1016/S0378-7753(01)00960-0

[68]
Li C, Hou Q, Li S, Tang F, Wang P . Journal of Alloys & Compounds, 2017,723:887.
[69]
Zhang L, Ma Y, Cheng X, Zuo P, Cui Y, Guan T, Du C, Gao Y, Yin G . Solid State Ionics, 2014,263(10):146.
[70]
Kanamura K, Umegaki T, Shiraishi S, Ohashi M, Takehara Z I . Journal of the Electrochemical Society, 2002,149(2):A185.
[71]
胡锋波(Hu F B), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q) . 化工进展 (Progress in Chemistry), 2011,10:2097.
[72]
Tan S, Ji Y J, Zhang Z R, Yang Y . Chemphyschem, 2014,15(10):1956. https://www.ncbi.nlm.nih.gov/pubmed/25044525

DOI: 10.1002/cphc.201402175   PMID: 25044525

Developing a stable and safe electrolyte that works at voltages as high as 5 V is a formidable challenge in present Li-ion-battery research because such high voltages are beyond the electrochemical stability of the conventional carbonate-based solvents available. In the past few years, extensive efforts have been carried out by the research community toward the exploration of high-voltage electrolytes. In this review, recent progress in the study of several promising high-voltage electrolyte systems, as well as their recipes, electrochemical performance, electrode compatibility, and characterization methods, are summarized and reviewed. These new electrolyte systems include high-voltage film-forming additives and new solvents, such as sulfones, ionic liquids, nitriles, and fluorinated carbonates. It appears to be very difficult to find a good high-voltage (∼5 V) electrolyte with a single-component solvent at the present stage. Using mixed fluorinated-carbonate solvents and additives are two realistic solutions for practical applications in the near term, while sulfones, nitriles, ionic liquids and solid-state electrolyte/polymer electrolytes are promising candidates for the next generation of high-voltage electrolyte systems.

[73]
Abe K, Ushigoe Y, Yoshitake H, Yoshio M . Journal of Power Sources, 2006,153(2):328.
[74]
Xu K . Chemical Reviews, 2014,114(23):11503. https://www.ncbi.nlm.nih.gov/pubmed/25351820

DOI: 10.1021/cr500003w   PMID: 25351820

[75]
Jie Z, Wang J, Yang J, Nuli Y . Electrochimica Acta, 2014,117(4):99.
[76]
Zheng X, Huang T, Pan Y, Wang W, Fang G, Wu M . Journal of Power Sources, 2015,293:196. https://linkinghub.elsevier.com/retrieve/pii/S0378775315009520

DOI: 10.1016/j.jpowsour.2015.05.061

[77]
Choi N S, Han J G, Ha S Y, Park I, Back C K . RSC Advances, 2015,5(4):2732.
[78]
Ha S Y, Han J G, Song Y M, Chun M J, Han S I, Shin W C, Choi N S . Electrochimica Acta, 2013,104:170.
[79]
Zhu Y, Li Y, Bettge M, Abraham D P . Journal of the Electrochemical Society, 2012,159(12):A2109. https://iopscience.iop.org/article/10.1149/2.083212jes

DOI: 10.1149/2.083212jes

[80]
Qin Y, Chen Z, Liu J, Amine K . Electrochemical and Solid-State Letters, 2010,13(2):A11. https://iopscience.iop.org/article/10.1149/1.3261738

DOI: 10.1149/1.3261738

[81]
Yang G H, Shi J L, Shen C, Wang S W, Xia L, Luo H, Xia Y G . RSC Advances, 2017,7(42):26052. http://xlink.rsc.org/?DOI=C7RA03926C

DOI: 10.1039/C7RA03926C

[82]
李建刚(Li J G), 杨冬平(Yang D P), 万春荣(Wan C R), 杨张平(Yang Z P) . 电池 (Battery Bimonthly), 2004,34(2):135.
[83]
庄全超(Zhuang Q C), 许金梅(Xu J M), 樊小勇(Fan X Y), 魏国祯(Wei G Z), 董全峰(Dong Q F), 姜艳霞(Jiang Y X), 黄令(Huang L), 孙世刚(Sun S G) . 中国科学 (Scientia Sinica), 2007,37(1):18.
[84]
Xing L, Li W, Wang C, Gu F, Xu M, Tan C, Jin Y . Journal of Physical Chemistry B, 2009,113(52):16596. https://www.ncbi.nlm.nih.gov/pubmed/19947609

DOI: 10.1021/jp9074064   PMID: 19947609

The electrochemical oxidative stability of solvent molecules used for lithium ion battery, ethylene carbonate (EC), propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate in the forms of simple molecule and coordination with anion PF(6)(-), is compared by using density functional theory at the level of B3LYP/6-311++G (d, p) in gas phase. EC is found to be the most stable against oxidation in its simple molecule. However, due to its highest dielectric constant among all the solvent molecules, EC coordinates with PF(6)(-) most strongly and reaches cathode most easily, resulting in its preferential oxidation on cathode. Detailed oxidative decomposition mechanism of EC is investigated using the same level. Radical cation EC(*+) is generated after one electron oxidation reaction of EC and there are five possible pathways for the decomposition of EC(*+) forming CO(2), CO, and various radical cations. The formation of CO is more difficult than CO(2) during the initial decomposition of EC(*+) due to the high activation energy. The radical cations are reduced and terminated by gaining one electron from anode or solvent molecules, forming aldehyde and oligomers of alkyl carbonates including 2-methyl-1,3-dioxolane, 1,3,6-trioxocan-2-one, 1,4,6,9-tetraoxaspiro[4.4]nonane, and 1,4,6,8,11-pentaoxaspiro[4.6]undecan-7-one. The calculation in this paper gives a detailed explanation on the experimental findings that have been reported in literatures and clarifies the mechanism on the oxidative decomposition of EC.

[85]
Haregewoin A M, Wotango A S, Hwang B J . Energy. Environ. Sci., 2016,9(6):1955. http://xlink.rsc.org/?DOI=C6EE00123H

DOI: 10.1039/C6EE00123H

[86]
邓邦为(Deng B W), 万琦(Wan Q), 瞿美臻(Qu M Z), 彭工厂(Peng G C) . 化学学报 (Acta Chimica Sinica), 2018,76(4):259. d9014313-625f-4378-9b36-530b6b55f454http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract346508.shtml

DOI: 10.6023/A17110517

xCoyMz]O2(0 < x,y,z < 1,M=Mn,缩写NMC;M=Al,缩写NCA)}具有能量密度高、循环性能好、价格适中等优异的综合性能,是目前锂离子电池(LIBs)中最具应用前景的一类正极材料.随着纯电动汽车(EVs)及混合电动汽车(HEVs)的快速发展,人们对LIBs的能量密度、循环寿命以及安全性要求不断提高.然而,在传统电解液体系中,三元正极材料在高电压、高温下会发生剧烈的结构变化和界面副反应,给实际应用带来巨大挑战,尤其是高镍三元材料的循环寿命和安全性.其中,开发适配的电解液添加剂是提高锂离子电池电化学性能最经济有效的方法之一.从物质本征结构出发,综述了近5年来包括碳酸亚乙烯酯(VC)、氟代物、新型锂盐、含P、含B、含S、腈类等及其复合物作为电解液添加剂在NMC及NCA正极材料中的应用及作用机理,并进行总结与展望.]]>

[87]
El Ouatani L, Dedryveère R, Siret C, Biensan P, Reynaud S, Iratçabal P, Gonbeau D . Journal of The Electrochemical Society, 2009,156(2):A103.
[88]
Madec L, Petibon R, Tasaki K, Xia J, Sun J P, Hill I G, Dahn J R . J. Physical Chemistry Chemical Physics Pccp, 2015,17(40):27062.
[89]
Pham H Q, Nam K M, Hwang E H, Kwon Y G, Jung H M, Song S W . Journal of the Electrochemical Society, 2014,161(14):A2002. 404a25b3-2f5f-4382-9e73-679a36361110http://dx.doi.org/10.1149/2.1141412jes

DOI: 10.1149/2.1141412jes

High-capacity Li-rich layered composite oxide, xLi(2)MnO(3) center dot (1-x)LiMO2 (M = Mn, Ni, Co), is a promising candidate cathode material for high-energy electrochemical energy storage. Enabling the high-performance of high-voltage cathode relies on an electrolyte breakthrough and the solid electrolyte interface (SEI) stabilization. In this study, the 0.6Li(2)MnO(3) center dot 0.4LiNi(0.45)Co(0.25)Mn(0.3)O(2) (Li1.2Mn0.525Ni0.175Co0.1O2, LMNC) cathode is operated at 2.5-4.8 V with 5 wt% fluorinated linear carbonate, di-(2,2,2 trifluoroethyl) carbonate (DFDEC), as a high-voltage electrolyte additive, for the first time and applied to a high-energy lithium-ion battery. The cathode with DFDEC outperforms that in electrolyte only, delivering a high capacity of 250 mAhg(-1) with an excellent charge-discharge cycling stability at the rate of 0.2C. Upon the use of DFDEC, the cathode surface is effectively passivated by a stable SEI composed of DFDEC decomposition products, which inhibit a detrimental metal dissolution and structural cathode degradation. A full-cell based on the SEI-stabilized LMNC cathode and graphite anode successfully demonstrates doubled energy density (similar to 278 Whkg(-1)) compared to similar to 136 Whkg(-1) of a commercialized cell of graphite//LiCoO2 and an excellent cycling stability. (C) 2014 The Electrochemical Society.

[90]
Terborg L, Weber S, Blaske F, Passerini S, Winter M, Karst U, Nowak S . Journal of Power Sources, 2013,242(4):832. https://linkinghub.elsevier.com/retrieve/pii/S0378775313009154

DOI: 10.1016/j.jpowsour.2013.05.125

[91]
Rong H, Xu M, Xie B, Liao X, Huang W, Xing L, Li W . Electrochimica Acta, 2014,147(147):31.
[92]
Lee Y M, Lee Y G, Kang Y M, Cho K Y . Electrochemical and Solid-State Letters, 2010,13(13):A55.
[93]
Yim T, Woo S G, Lim S, Cho W, Song J, Han Y K, Kim Y J . Journal of Materials Chemistry A, 2015,3(11):6157.
[94]
Pieczonka N P W, Yang L, Balogh M P, Powell B R, Chemelewski K, Manthiram A, Krachkovskiy S A, Goward G R, Liu M, Kim J H . Journal of Physical Chemistry C, 2013,117(44):22603.
[95]
张玲玲(Zhang L L), 马玉林(Ma Y L), 杜春雨(Du C Y), 尹鸽平(Yin G P) . 化学进展 (Progress in Chemistry), 2014,26(4):553.
[96]
Lee K S, Sun Y K, Noh J, Song K S, Kim D W . Electrochemistry Communications, 2009,11(10):1900.
[97]
Shima K, Shizuka K, Ue M, Ota H, Hatozaki T, Yamaki J I . Journal of Power Sources, 2006,161(2):1264.
[98]
陈仕玉(Chen S Y), 王兆翔(Wang Z X), 赵海雷(Zhao H L), 陈立泉(Chen L Q) . 化学进展 (Progress in Chemistry), 2009,21(4):629.
[99]
Lee H, Lee J H, Ahn S, Kim H J, Cho J J . Electrochemical and Solid-State Letters, 2006,9(9):A307.
[100]
Ji Y, Zhang Z, Gao M, Li Y, McDonald M J, Yang Y . Journal of the Electrochemical Society, 2015,162(4):A774.
[101]
Kim Y S, Kim T H, Lee H, Song H K . Energy & Environmental Science, 2011,4(10):4038.
[102]
Kim Y S, Lee H, Song H K . ACS Applied Materials & Interfaces, 2014,6(11):8913. https://www.ncbi.nlm.nih.gov/pubmed/24836760

DOI: 10.1021/am501671p   PMID: 24836760

Non-flammability of electrolyte and tolerance of cells against thermal abuse should be guaranteed for widespread applications of lithium-ion batteries (LIBs). As a strategy to improve thermal stability of LIBs, here, we report on nitrile-based molecular coverage on surface of cathode active materials to block or suppress thermally accelerated side reactions between electrode and electrolyte. Two different series of aliphatic nitriles were introduced as an additive into a carbonate-based electrolyte: di-nitriles (CN-[CH2]n-CN with n = 2, 5, and 10) and mono-nitriles (CH3-[CH2]m-CN with m = 2, 5, and 10). On the basis of the strong interaction between the electronegativity of nitrile functional groups and the electropositivity of cobalt in LiCoO2 cathode, aliphatic mono- and di-nitrile molecules improved the thermal stability of lithium ion cells by efficiently protecting the surface of LiCoO2. Three factors, the surface coverage θ, the steric hindrance of aliphatic moiety within nitrile molecule, and the chain polarity, mainly affect thermal tolerance as well as cell performances at elevated temperature.

[103]
Wang X S, Zheng X W, Liao Y H, Huang Q M, Xing L D, Xu Q M, Li W S . Journal of Power Sources, 2017,338:108.
[104]
Shao N, Sun X G, Dai S, Jiang D . The Journal of Physical Chemistry B, 2011,115(42):12120. https://www.ncbi.nlm.nih.gov/pubmed/21919491

DOI: 10.1021/jp204401t   PMID: 21919491

Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

[105]
Wang Y, Xing L, Li W, Bedrov D . The Journal of Physical Chemistry Letters, 2013,4(22):3992. https://www.ncbi.nlm.nih.gov/pubmed/26276483

DOI: 10.1021/jz501973d   PMID: 26276483

We report, from a theoretical point of view, the first comparative study between the highly water-stable hydroxamate and the widely used carboxylate, in addition to the robust phosphate anchors. Theoretical calculations reveal that hydroxamate would be better for photoabsorption. A quantum dynamics description of the interfacial electron transfer (IET), including the underlying nuclear motion effect, is presented. We find that both hydroxamate and carboxylate would have efficient IET character; for phosphate the injection time is significantly longer (several hundred femtoseconds). We also verified that the symmetry of the geometry of the anchoring group plays important roles in the electronic charge delocalization. We conclude that hydroxamate can be a promising anchoring group, as compared to carboxylate and phosphate, due to its better photoabsorption and comparable IET time scale as well as the experimental advantage of water stability. We expect the implications of these findings to be relevant for the design of more efficient anchoring groups for dye-sensitized solar cell (DSSC) application.

[106]
Wang K, Xing L D, Zhu Y M, Zheng X W, Cai D D, Li W S . Journal of Power Sources, 2017,342:677.
[107]
Jian X, Sinha N N, Chen L P, Dahn J R . Journal of the Electrochemical Society, 2013,161(3):A264.
[108]
Xia J, Dahn J R . Journal of Power Sources, 2016,324:704.
[109]
Sinha N N, Burns J C, Dahn J R . Journal of the Electrochemical Society, 2014,161(6):A1084.
[110]
Han Y K, Yoo J, Yim T . Journal of Materials Chemistry A, 2015,3(20):10900.
[111]
王超(Wang C), 胡立新(Hu L X) . 湖北工业大学学报 (Journal of Hubei University of Technology), 2011,26(2):80.
[112]
范伟贞(Fan W Z), 左晓希(Zuo X X), 刘建生(Liu J J), 李钊(Li Z) . 电池 (Battery Bimonthly), 2015,45(4):21.
[113]
Ma L, Wang D Y, Downie L E, Xia J, Nelson K J, Sinha N N, Dahn J R . Journal of the Electrochemical Society, 2014,161(9):A1261.
[114]
Xia J, Ma L, Dahn J R . Journal of Power Sources, 2015,287:377.
[115]
Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2015,162(7):A1170. https://iopscience.iop.org/article/10.1149/2.0181507jes

DOI: 10.1149/2.0181507jes

[116]
Nelson K J, D'Eon G L, Wright A T B, Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2015,162(6):A1046. https://iopscience.iop.org/article/10.1149/2.0831506jes

DOI: 10.1149/2.0831506jes

[117]
Yang J P, Zhao P, Shang Y M, Wang L, He X M, Fang M, Wang J L . Electrochimica Acta, 2014,121:264. 5f24f079-78d1-4130-8721-55ab971f43e4http://dx.doi.org/10.1016/j.electacta.2013.12.170

DOI: 10.1016/j.electacta.2013.12.170

N,N'-4,4'-diphenylmethane-bismaleimide (BMI) is attempted to enhance the high-voltage performance for lithium-ion batteries. When 0.1% (m/v) BMI is added into the control electrolyte, the high-voltage cycling performance of LiCoO2/Li cells is improved evidently while charging the cell up to 4.5V rather than the conventional 4.2V. Analysis of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) demonstrate that an interface film forms on the cathode surface from BMI in electrolyte. AC impedance spectra and charge/discharge test were tested after incubation of the charged cell at 60 degrees C. Linear sweep voltammetry (LSV) is used to test the electrochemical stability window of the electrolyte with BMI addition. The results demonstrate that the improvement of high-voltage performance is attributed to the surface film on cathode. In addition, the BMI addition does not cause damage in conventional performance with 4.2 V electrochemical window. The BMI-containing electrolyte provides high-voltage cycling performance with 4.5V electrochemical window, making LiCoO2 battery a simple and promising system for applications with high energy density. (C) 2014 Elsevier Ltd.

[118]
Yang J P, Zhang Y F, Zhao P, Shang Y M, Wang L, He X M, Wang J L . Electrochimica Acta, 2015,158:202. https://linkinghub.elsevier.com/retrieve/pii/S0013468614026024

DOI: 10.1016/j.electacta.2014.12.143

/