English
新闻公告
More

文章编号: 2019020301  

文献标识码: A

基于β-环糊精的有机小分子凝胶

展开
  • 1. 济宁医学院新型抗肿瘤药物分子设计与合成实验室&济宁医学院基础医学院 济宁 272067
  • 2. 胶体与界面化学教育部重点实验室 山东大学化学与化工学院 济南 250100

收稿日期:2018-06-11

  要求修回日期:2018-07-02

  网络出版日期:2018-12-20

基金资助

国家自然科学基金项目(21872087)

济宁医学院博士启动基金项目(2017JYQD03)

济宁医学院大学生创新训练计划项目(cx2018022)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin

Expand
  • 1. Laboratory of New Antitumor Drug Molecular Design and Synthesis of Jining Medical University & College of Basic Medicine, Jining Medical University, Jining 272067, China
  • 2. Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
** E-mail: (Mingfang Ma);
(Aiyou Hao)

Received:11 Jun. 2018

  rev-requestrev-request:2 Jul. 2018

  Online:20 Dec. 2018

Fund

National Natural Science Foundation of China(21872087)

PhD Start-up Scientific Research Foundation of Jining Medical University(2017JYQD03)

Undergraduate Training Programs for Innovation of Jining Medical University(cx2018022)

Copyright

Copyright reserved © 2019.

摘要

β-环糊精是直链淀粉在环糊精葡萄糖基转移酶作用下生成的含有7个D-吡喃葡萄糖单元的环状低聚糖,具有斜截锥形空间立体结构,腔内疏水,腔外亲水。β-环糊精以其低廉的价格、良好的水溶性和生物相容性,在超分子化学领域得到广泛的应用。β-环糊精可用于凝胶的构筑,通常的方法是将β-环糊精接枝到高分子链上,再以得到的高分子链为凝胶因子构筑高分子凝胶。虽然基于β-环糊精的高分子凝胶得到了广泛的关注和研究,但是,直接以β-环糊精为凝胶因子构筑的有机小分子凝胶却鲜有报道。2010年,本课题组首次报道了一种基于β-环糊精和二苯胺的热致有机凝胶。此后,本课题组在β-环糊精有机小分子凝胶领域做了大量的研究工作。本文在实验室研究工作的基础上,首先介绍了β-环糊精有机小分子凝胶的分类和不同因素对凝胶形成的影响,然后深入探讨了β-环糊精有机小分子凝胶的形成机理,系统介绍了β-环糊精有机小分子凝胶的刺激响应性以及在药物载运领域的应用,最后,对β-环糊精有机小分子凝胶的发展前景进行了展望。

关键词: β-环糊精 ; 有机小分子 ; 凝胶 ; 刺激响应 ; 药物载运

中图分类号: O648.17 ()  

本文引用格式

马明放 , 栾天翔 , 邢鹏遥 , 李兆楼 , 初晓晓 , 郝爱友 . 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019 , 31(2/3) : 225 -235 . DOI: 10.7536/PC180611

Mingfang Ma , Tianxiang Luan , Pengyao Xing , Zhaolou Li , Xiaoxiao Chu , Aiyou Hao . Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin[J]. Progress in Chemistry, 2019 , 31(2/3) : 225 -235 . DOI: 10.7536/PC180611

Abstract

β-cyclodextrin is a cyclic oligosaccharide containing seven glucopyranose units, and can be produced by amylose under the action of cyclodextrin glucosyltransferase. β-cyclodextrin has cone shaped three-dimensional structure, with its cavity hydrophobic, while its outside hydrophilic. β-cyclodextrin has already been used widely in supramolecular chemistry due to its low price, good solubility and biocompatibility. β-cyclodextrin can be used to construct gel. But the usual way is grafting β-cyclodextrin onto polymer chain, and the obtained polymer chain containing β-cyclodextrin can act as gelator to construct polymer gel. Although polymer gels based on β-cyclodextrin have been studied extensively, there are few reports about low molecular weight organogel based on β-cyclodextrin. In 2010, our lab reported heat-set low molecular weight organogel based on β-cyclodextrin and diphenylamine for the first time. After that, a lot of research work about low molecular weight β-cyclodextrin organogel has been done in our group. Based on the research foundation of our lab, in this review, classification of different low molecular weight β-cyclodextrin organogel and different factors affecting the formation of low molecular weight β-cyclodextrin organogel are introduced at first. Then, the formation mechanism of low molecular weight β-cyclodextrin organogel is discussed deeply, and stimuli responsiveness of low molecular weight β-cyclodextrin organogel and application of low molecular weight β-cyclodextrin organogel on drug delivery are introduced systematically. Finally, development foreground of low molecular weight β-cyclodextrin organogel is prospected.

Contents

1 Introduction
2 The different low molecular weight β-cyclodextrin organogel
2.1 Heat-set and room temperature gel
2.2 Single gelator and multiple gelators gel
3 Different factors effect on the formation of low molecular weight β-cyclodextrin organogel
3.1 Temperature
3.2 Host molecules
3.3 Guest molecules
3.4 Solvents
3.5 Metal ions
4 Possible formation mechanism of low molecular weight β-cyclodextrin organogel
4.1 Formation mechanism of single gelator low molecular weight β-cyclodextrin organogel
4.2 Formation mechanism of multiple gelators low molecular weight β-cyclodextrin organogel
5 Stimuli responsiveness of low molecular weight β-cyclodextrin organogel
5.1 Temperature responsiveness
5.2 Chemical stimulus responsiveness
5.3 Acid responsiveness
6 Application of low molecular weight β-cyclodextrin organogel on drug delivery
6.1 Low molecular weight β-cyclodextrin organogel loading with one kind of drug
6.2 Low molecular weight β-cyclodextrin organogel loading with two kinds of drugs
7 Conclusion and outlook

1 引言

凝胶具有一定的黏弹性,是一种性能优异的软物质材料[1]。它是由凝胶因子通过氢键、π-π堆积和金属配位键等非共价键[2,3,4,5,6]作用后构筑的一种三维网状结构,网格空隙中充满了大量的溶剂。按照溶液媒介的不同,凝胶可以分为有机凝胶和水凝胶。按照凝胶因子的不同,凝胶可以分成高分子凝胶和有机小分子凝胶。凝胶在重金属离子吸收、污染物吸附、药物载运以及化学催化等方面有着广泛的应用[7,8,9]
有机小分子凝胶是一类重要的凝胶。按照来源不同,有机小分子可以分为天然有机小分子和人工合成的有机小分子。天然有机小分子如乙醇和乙酸等,以其良好的生物相容性而被人类食用了数千年。随着有机合成化学的发展,大量的有机小分子被人工合成,这些人工合成的分子与天然有机小分子有着不同的化学结构。
在诸多的有机小分子中,环糊精是一类非常重要的天然有机小分子。环糊精是一种寡聚糖,是由葡萄糖单元通过α-1,4糖苷键连接而成的环状化合物,根据葡萄糖单元数目的不同(6、7和8个葡萄糖单元),可以分为α-环糊精、β-环糊精和γ-环糊精[10,11,12,13]。β-环糊精(图1)是腔内疏水腔外亲水的具有锥筒状结构的分子,以其低廉的价格、良好的水溶性和生物相容性而被广泛地应用于超分子化学领域[14,15,16]
图1 β-环糊精的分子结构

Fig. 1 Molecular structure of β-cyclodextrin

β-环糊精可以用于凝胶的构筑,但通常的方法是将环糊精接枝到高分子链上,再以得到的高分子链为凝胶因子构筑高分子凝胶。田禾等和Harada等在β-环糊精高分子凝胶领域做了大量的研究工作[17,18,19,20,21,22,23,24,25,26]。Harada等曾报道过一种基于主客体包合物的氧化还原响应型自修复材料[27]。将一定量β-环糊精修饰的高分子pAA-CDs和二茂铁修饰的高分子pAA-Fc溶于pH=9的缓冲溶液中就可以得到高分子水凝胶。β-环糊精和二茂铁之间具有较高的包合常数,但是氧化后的二茂铁却不能被β-环糊精包合,因而得到的β-环糊精高分子水凝胶对氧化剂和还原剂展现出良好的刺激响应性,加入氧化剂次氯酸钠可以实现β-环糊精高分子水凝胶到溶液的转变。向溶液中加入谷胱甘肽,可将氧化二茂铁还原为二茂铁,再次形成β-环糊精高分子水凝胶(图2)。
图2 凝胶到溶液转变机理[27]

Fig. 2 Schematic illustration of sol-gel transition[27]

虽然基于β-环糊精的高分子凝胶得到了广泛的关注和研究。但是,直接以β-环糊精为凝胶因子构筑的有机小分子凝胶却鲜有报道。近期,刘鸣华等[28]报道了一种基于芘衍生物的有机小分子水凝胶。他们首先合成了芘的衍生物PGAc,研究发现,在一定条件下,PGAc自身就可通过π-π堆积效应组装成发光水凝胶。他们继续向体系中加入不同种类的环糊精,发现PGAc/β-环糊精和PGAc/γ-环糊精体系均产生了发光水凝胶,PGAc/β-环糊精水凝胶为二维片层的微观结构,而PGAc/γ-环糊精水凝胶为三维网状的微观结构(图3)。
图3 不同凝胶因子形成的水凝胶[28]

Fig. 3 Illustration of various hydrogels formed by different gelators.[28]

2010年,本课题组[29]首次报道了一种基于β-环糊精和二苯胺的热致有机凝胶,发现β-环糊精和二苯胺在含有氯化锂的N,N-二甲基甲酰胺(DMF)溶液中,加热到一定的温度,可以形成超分子有机凝胶。此后,本课题组在β-环糊精有机小分子凝胶领域做了大量的研究工作[30,31,32,33,34,35,36]。本文在本课题组前期研究工作的基础上,系统地介绍了基于β-环糊精有机小分子凝胶的研究进展。

2 β-环糊精有机小分子凝胶的种类

对于不同的β-环糊精有机小分子凝胶体系,温度对其形成有着不同的影响,按照凝胶形成时温度的不同,可以分为热致凝胶和常温凝胶。按照凝胶因子数目的不同,可以分为单凝胶因子凝胶和多凝胶因子凝胶。下面将依据凝胶形成温度和凝胶因子数目的不同,对不同种类的β-环糊精有机小分子凝胶进行系统的归纳概括。

2.1 热致及常温凝胶

温度对凝胶的形成有着重要的影响,凝胶因子在高温下形成的凝胶称为热致凝胶,在常温下即可形成的凝胶称为常温凝胶。
2.1.1 热致凝胶
2010年,本课题组首次发现了基于β-环糊精的热致凝胶[29]。将一定比例的β-环糊精和二苯胺溶于DMF中,搅拌直至固体完全溶解。在磁子搅拌下,加热β-环糊精和二苯胺的DMF溶液,至凝胶化温度,凝胶即可形成。倒置样品,样品不流动。在扫描电子显微镜下,凝胶的微观形貌呈纤维棒状,宽度约为1~3 μm(图4)。
图4 β-环糊精凝胶在光学显微镜和扫描电子显微镜下的照片:(A)光学显微镜,标尺为1 μm;(B)扫描电子显微镜,标尺为2μm[29]

Fig. 4 Optical microscope images of the organogel(A, scale bar=1 μm); SEM images of xerogel of the organogel(B, scale bar=2 μm)[29]

2.1.2 常温凝胶
2014年,我们首次报道了基于β-环糊精的常温凝胶[37]。将一定比例的β-环糊精、双酚A和氯化锂溶于DMF中,使其完全溶解。然后将一定量的醇,如甲醇或乙醇等,磁子搅拌数分钟,即可得到半透明的凝胶。在光学显微镜和扫描电子显微镜下,可以观察到凝胶的微观结构为微米级的短棒。

2.2 单凝胶因子及多凝胶因子凝胶

在研究β-环糊精有机小分子凝胶的过程中,我们发现在特定的溶剂环境中,β-环糊精自身就可以形成凝胶。但是,在其他的溶剂环境中,β-环糊精需要借助金属离子或者其他客体分子才能形成凝胶。因此,按照凝胶因子种类的不同,β-环糊精有机小分子凝胶可以分为单凝胶因子凝胶和多凝胶因子凝胶,其中,多凝胶因子凝胶又可以分为双凝胶因子凝胶和三凝胶因子凝胶。
2.2.1 单凝胶因子凝胶
研究发现,在一定条件下,本体β-环糊精就可以形成常温凝胶[38]。将一定量的β-环糊精溶于良溶剂DMF中,向其中加入一定量的不良溶剂超纯水,在较短的时间内,就可以得到白色的β-环糊精凝胶(图5)。
图5 室温下β-环糊精凝胶的制备过程[38]

Fig. 5 Images of the gel preparation process at room temperature[38]

2.2.2 双凝胶因子凝胶
经过探索,除了β-环糊精自己可以形成凝胶之外,β-环糊精和氯化锂在DMF溶剂中,于高温的诱导下,也可以实现凝胶化[39]。将一定量的β-环糊精和氯化锂溶于DMF后,加热到凝胶化温度(124 ℃),就可以得到白色的β-环糊精热致凝胶。将该凝胶温度降低至室温,在5 h内凝胶塌陷,重新变成澄清溶液。
2.2.3 三凝胶因子凝胶
对于有客体分子参与的β-环糊精凝胶而言,直接加热不能够使β-环糊精凝胶化,需要加入金属离子的诱导才能得到相应的β-环糊精凝胶。因而,某些β-环糊精凝胶为三凝胶因子凝胶。例如,当将客体分子三苯基膦加入到β-环糊精的DMF溶液中时,在搅拌下可以得到澄清的溶液[40]。加热该澄清溶液至100 ℃,得到了沉淀而非凝胶。继续向该沉淀体系中加入一定量的氯化锂,沉淀马上凝胶化,转变成三凝胶因子β-环糊精凝胶。
通过对比单凝胶因子及多凝胶因子凝胶制备过程,我们可以发现,单凝胶因子β-环糊精凝胶的制备最为简单,在常温下通过调节溶剂环境即可形成超分子凝胶。而对于双凝胶因子β-环糊精凝胶和三凝胶因子β-环糊精凝胶而言,它们在制备过程中需要较高的温度,在较高的能量诱导下才可形成超分子凝胶,相比较而言,不太容易制备。

3 不同因素对β-环糊精有机小分子凝胶形成的影响

β-环糊精有机小分子凝胶是一种超分子凝胶,在形成的过程中容易受到外界因素的影响。外界因素如温度、主体分子、客体分子、溶剂和金属盐对β-环糊精有机小分子凝胶形成均可产生影响。下面将依据外界的影响因素,系统地阐述其对β-环糊精有机小分子凝胶形成的影响。

3.1 温度

超分子凝胶是基于非共价键作用形成的,温度能够影响非共价键作用,因而温度对超分子凝胶有着显著的影响。β-环糊精有机小分子凝胶是典型的超分子凝胶,温度在其形成过程中扮演着重要角色。本课题组曾报道过一种非常有趣的β-环糊精热致凝胶[41],将β-环糊精和碳酸钾按照一定比例溶于1,2-丙二醇中,加热到凝胶溶液转变温度(TGS),该体系变成澄清溶液,当温度降低至25 ℃,不透明的白色凝胶形成。再次加热到TGS,凝胶转变成溶液。不断地改变体系温度,可以实现凝胶和溶液的不断转变。当将该体系的温度直接加热到溶液凝胶转变温度(TSG)),不透明的白色热致凝胶即可形成,但是降低凝胶的温度,并不能得到澄清溶液(图6)。
图6 凝胶溶液之间相互转变的图片:(a)冷却溶液可以得到凝胶A;(b)加热凝胶A得到的澄清溶液;(c)加热澄清溶液得到的凝胶B[41]

Fig. 6 Photographs of the gel-sol-gel transition process:(a) gel A formed after cooling the solution;(b) homogeneous solution obtained after heating gel A;(c) gel B formed after heating the solution[41]

3.2 主体分子

通过实验发现,β-环糊精在DMF和水的混合溶剂中即可形成超分子凝胶[38]。既然β-环糊精可以组装成凝胶,那么随之而来的问题是,其他种类的环糊精以及环糊精的衍生物能否形成超分子凝胶?研究发现(表1),羟丙基取代的β-环糊精、磺丁基取代的β-环糊精、氨基取代的β-环糊精、甲基取代的β-环糊精和二亚乙基三氨基取代的β-环糊精在DMF和水的混合溶剂中形成了溶液。碘代的β-环糊精和碘代的α-环糊精在DMF和水的混合溶剂中形成了沉淀。令人惊奇的是,α-环糊精和γ-环糊精在DMF和水的混合溶剂中均未形成凝胶,而形成了溶液。α-环糊精、β-环糊精和γ-环糊精在100 mL水中的溶解度依次为14.5、1.85和23.2 g。相比于β-环糊精,α-环糊精和γ-环糊精具有更好的水溶性,但是良好的水溶性却限制了α-环糊精和γ-环糊精的组装。所以,α-环糊精和γ-环糊精在DMF和水的混合溶剂中形成了溶液。综上所述,α-环糊精和γ-环糊精之所以不能形成超分子凝胶是它们极好的水溶性导致的。对于其他种类的β-环糊精衍生物,如羟丙基取代的β-环糊精、磺丁基取代的β-环糊精、氨基取代的β-环糊精、甲基取代的β-环糊精和二亚乙基三氨基取代的β-环糊精等,衍生化破坏了β-环糊精的分子对称性,使得β-环糊精分子之间难以形成较为牢固的氢键,导致管状堆积结构难以形成,因而不利于凝胶的形成。因此,除了β-环糊精外,其他环糊精以及β-环糊精衍生物均难以形成有机小分子凝胶。
表1 不同种类的环糊精在DMF和水的混合溶剂中的状态

Table 1 States of different types of β-cyclodextrin in the DMF/water system

Entry CDs State
1 α-CD Sa
2 β-CD Gb
3 γ-CD Sa
4 Heptakis(6-deo-I)-β-CD Pc
5 Heptakis(2-O-hydroxypropyl)-β-CD Sa
6 Heptakis(2-O-sulfobutyl)-β-CD Sa
7 Heptakis(2-deo-amino)-β-CD Sa
8 Heptakis(2,6-di-O-methyl)-β-CD Sa
9 Heptakis(2-O-diethylenetriamino)-β-CD Sa
10 Heptakis(6-deo-I)-α-CD Pc
11 Poly-β-CD Sa

Sa: solution. Gb: gelation. Pc: precipitation.

3.3 客体分子

β-环糊精是具有空穴结构的主体分子,可以包合很多疏水性分子[42,43,44,45],因而客体分子对β-环糊精有机小分子凝胶有着重要的影响。例如,将β-环糊精和氯化锂按照一定的比例溶于DMAc中,加热至120~130 ℃,可以得到澄清溶液[46]。向澄清溶液中加入一定量特定的客体分子,溶液立即凝胶化。通过实验发现,客体分子如甲酸、乙酸、1-丁醇、1-戊醇、1-辛醇和苯甲醛等,均能使该体系凝胶化。得到的热致凝胶冷却到室温,即转变为溶液,将溶液温度加热至130 ℃,又可以得到β-环糊精热致凝胶(图7)。
图7 β-环糊精/氯化锂/DMF体系的相转变过程:(Ⅰ)120~130 ℃下为澄清溶液;(Ⅱ)加入促凝胶因子后得到凝胶;(Ⅲ)冷却至室温得到的溶液[46]

Fig. 7 The phase transition process of the β-cyclodextrin/LiCl/DMF system: a clear solution at 120~130 ℃(Ⅰ), a white gel(Ⅱ) after injecting cogelator, and a clear solution(Ⅲ) at room temperature[46]

3.4 溶剂

β-环糊精在不同溶剂中的溶解度不同,溶剂对β-环糊精有机小分子凝胶的形成有着重要影响。研究发现,将一定量的β-环糊精、双酚A和氯化锂溶于DMAc中,可以得到澄清溶液,加热溶液至凝胶化温度,可以得到β-环糊精热致凝胶。此外,若向该溶液中加入一定量的乙醇,可以得到β-环糊精常温凝胶[47]。溶剂会影响该凝胶的形成,实验表明,一元醇如甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁醇、正戊醇、正己醇、正庚醇、正辛醇和苯甲醇,均能促进β-环糊精常温凝胶的形成。而多元醇如乙二醇、丙二醇和丙三醇不能促使该体系凝胶化(表2)。
表2 不同种类的醇对β-环糊精常温凝胶形成的影响

Table 2 The effect of alcohols on the formation of the room-temperature organogel

Solution β-CD/DMAc/LiCl
1 2 3 4 5
Methanol G G G G G
Ethanol G G G G G
n-Propylalcohol G G G G G
i-Propanol G G G G G
n-Butyl alcohol G G G G G
i-Butanol G G G G G
t-Butanol G G G G G
n-Amyl alcohol G G G G G
n-Hexyl alcohol G G G G G
n-Heptyl alcohol G G G G G
n-Octanol G G G G G
Phenylcarbinol G G G G G
Ethanediol S S S S S
Propanediol S S S S S
Propanetriol S S S S S

Solution: Cβ-CD 0.167 mol/L, Cguest molecule 0.167 mol/L(guest molecule: 1 BPA, 2 bisphenol F, 3 phenol, 4 p-chlorophenol, 5 p-nitro-phenol), ωLiCl 0.5%, G room-temperature organogel, S a clear solution, DMAc was the solvent, Vsolution:Valcohol 1∶1.

3.5 金属离子

金属离子能够影响分子间非共价键作用,因而金属离子也能影响β-环糊精有机小分子凝胶的形成。本课题组曾探究过不同的金属离子对β-环糊精常温凝胶的影响,研究发现(表3),金属离子的种类以及金属离子的浓度均可以影响β-环糊精常温凝胶的形成[48]。金属盐以及碱,如氯化锂、氯化钠、氢氧化钠、碳酸钠、氯化钾、氯化铯和碳酸铯等均能促进β-环糊精常温凝胶的形成。与此同时,金属离子的浓度对β-环糊精常温凝胶的影响也是显而易见的,低浓度的金属离子一般能够促进凝胶的形成,而高浓度的金属离子一般阻碍凝胶的形成。
表3 加入不同浓度的金属离子后体系的状态

Table 3 States of the gel after adding different salts at different concentrations

Csalt(mM) LiCl LiOH Li2CO3 NaCl NaOH Na2CO3
50 G CP - G G G
100 G CP - G G G
150 G CP - G G G
200 CP CP - G G G
300 CP CP - G CP G
500 CP CP - G CP G

G: gelation; CP: crystallization or precipitation.

4 β-环糊精有机小分子凝胶形成的可能机理

凝胶是由凝胶因子组装而成的软物质材料,不同种类的凝胶因子可以组装成不同的凝胶。β-环糊精属于有机小分子,可以通过非共价键作用组装成β-环糊精有机小分子凝胶。β-环糊精是具有锥筒状结构的分子,上口端和下口端均有羟基存在,β-环糊精之间可以通过氢键作用形成管状堆积结构,管状堆积结构在β-环糊精有机小分子凝胶形成过程中扮演着重要角色。凝胶因子不同,导致β-环糊精凝胶形成机理略有差异。下面将依据凝胶因子数目的不同,系统介绍两类典型的β-环糊精有机小分子凝胶形成机理。

4.1 单凝胶因子β-环糊精凝胶形成机理

通过良/不良溶剂的调节,β-环糊精自身就可以组装成β-环糊精凝胶[38]。在偏光显微镜下,我们发现单凝胶因子β-环糊精凝胶纤维出现彩色纹理并伴有各向异性,这意味着β-环糊精凝胶纤维中存在整齐的分子堆积阵列。我们利用小角以及广角X射线散射来进一步探究凝胶纤维的微观结构(图8)。
图8 (a)小角X射线散射和(b)广角X射线散射谱图[38]

Fig. 8 Small-angle X-ray scattering(SAXS) patterns(a);and wide-angle X-ray scattering(WAXS) patterns(b)[38]

图8a所示,虽然所使用的DMF/水的比例不断变化(4/6;5/5;6/4),在β-环糊精凝胶的小角X射线散射结果中均出现三个非常明显的散射信号。这三个信号的散射矢量比例为21/2:41/2:61/2,这是典型的环糊精四方堆积散射峰。如图8b所示,在广角X射线散射结果中,出现了两个典型的2θ峰(6.8°和19.8°),这是典型的β-环糊精管状堆积散射峰[49]
小角X射线散射结果中的第一个峰的q值为2.79 nm-1,对应的D值为2.25 nm,D值为不同列β-环糊精管状堆积结构之间的距离,由于β-环糊精最大直径为1.53 nm,所以不同列的β-环糊精分子与β-环糊精分子之间距离d为0.72 nm。通过以上分析,我们可以得出单凝胶因子β-环糊精凝胶形成的大致机理。在不良溶剂的诱导下,单分子状态的β-环糊精容易进行分子间的组装以减少体系能量。锥筒状β-环糊精上口端的羟基倾向于和另外一分子β-环糊精上口端的羟基通过氢键结合起来,而β-环糊精下口端的羟基倾向于和另外一分子β-环糊精下口端的羟基通过氢键结合起来,形成头对头、尾对尾的管状四方堆积结构,不同阵列的β-环糊精管状堆积结构可以进一步组装成微米纤维,三维的微米纤维包裹溶液即可形成超分子凝胶(图9)。
图9 β-环糊精的分子尺寸以及β-环糊精分子管状堆积模型图

Fig. 9 Idealized drawings(top image) of the shape of the β-cyclodextrin torus, with cut along the Cn axis, and the cross profile of channel-type packing(bottom image)

4.2 多凝胶因子β-环糊精凝胶形成机理

将一定量的β-环糊精和百里酚酞溶于DMAc中,搅拌至固体完全溶解,向该体系中加入适量的甲酸钠,即可得到多凝胶因子β-环糊精凝胶[50]。如图10a所示,在扫描电子显微镜下,可以观察到该干凝胶的纤维结构,微米级的纤维厚度约为50 nm,长度约为几个微米。同样条件下,如图10b所示,在DMF中形成的多凝胶因子β-环糊精凝胶的形貌也是类似的,干凝胶中存在大量的微米级纤维。微米纤维的存在,意味着纤维中存在整齐的分子堆积形式,我们利用傅里叶变换红外光谱以及X射线衍射研究了凝胶纤维形成的机理。
图10 不同凝胶的扫描电子显微镜图片:(a)DMAc凝胶;(b)DMF凝胶(Cβ-环糊精=0.167 mol/L;C百里酚酞=0.084 mol/L)[50]

Fig. 10 SEM images of xerogels prepared from various organogels:(a) DMAc gel;(b) DMF gel(Cβ-cyclodextrin=0.167 mol/L; CTP=0.084 mol/L)[50]

傅里叶变换红外光谱可以提供氢键信息以判断主客体包合物的形成[51]。通过分析傅里叶变换红外光谱可以发现,DMAc干凝胶的红外谱图与DMF干凝胶的红外谱图是一样的。与β-环糊精、百里酚酞和甲酸钠的机械混合物的红外谱图中苯环的C—C伸缩振动吸收峰(1600 cm-1)相比,干凝胶红外谱图中的苯环的C—C伸缩振动吸收峰变成了1630 cm-1。此外,在机械混合物中百里酚酞内酯上羰基的伸缩振动吸收峰为1730 cm-1,而在干凝胶中,该羰基的伸缩振动吸收峰强度明显减弱。以上信息均表明,β-环糊精和百里酚酞之间形成了主客体包合物。
β-环糊精上的羟基与羟基之间可以形成氢键,羟基的特征吸收峰会出现在β-环糊精的红外光谱图中3100~3400 cm-1处。研究发现,机械混合物中β-环糊精羟基的伸缩振动吸收峰为3400 cm-1,而在干凝胶中羟基的伸缩振动吸收峰蓝移至3420 cm-1处,表明在干凝胶中β-环糊精羟基与羟基之间的氢键减弱,这应该是由于甲酸钠中的钠离子与β-环糊精中的羟基络合导致的。
通过分析X射线衍射谱图,我们发现β-环糊精、百里酚酞和甲酸钠的机械混合物与DMAc干凝胶的衍射结果差异是非常明显的。在机械混合物中,出现了9.5°、12.9°、13.4°和18.2°四个衍射峰,表明在机械混合物中β-环糊精分子是以笼状堆积形式存在的[52]。而在干凝胶中,出现了11.6°和17.6°两个衍射峰,这两个峰为典型的管状堆积衍射峰,表明在干凝胶中,β-环糊精分子是以管状堆积形式存在的。
根据傅里叶变换红外光谱以及X射线衍射结果,我们提出了多凝胶因子β-环糊精凝胶形成的可能机理。百里酚酞的体积过大,一个β-环糊精分子很难将一个百里酚酞分子完全包裹,因而一个百里酚酞分子应该是被两个β-环糊精分子包裹起来,百里酚酞分子位于两个β-环糊精分子中间,两个β-环糊精分子形成尾对尾的堆积模式。得到的主客体化合物可以通过β-环糊精分子之间头对头的堆积模式组装成超分子聚合物,不同阵列的超分子聚合物可以通过钠离子的络合作用进一步组装成微米级的凝胶纤维(图11)。
图11 凝胶纤维形成的可能机理(红球代表甲酸钠;黑球代表百里酚酞;等腰梯形代表β-环糊精)

Fig. 11 Schematic illustration of the formation of 3D networks of nanofibers(red balls: HCOONa; dark cylinders: thymolphthalein)

5 β-环糊精有机小分子凝胶的刺激响应性

β-环糊精有机小分子凝胶是凝胶因子通过非共价键组装而成的,是典型的超分子凝胶。非共价键具有一定的不稳定性,容易受到外界因素影响而断开。因此,β-环糊精有机小分子凝胶容易受到外界因素的影响而塌陷,从而表现出对外界刺激的敏感响应性。

5.1 温度响应

将一定量的β-环糊精和氯化锂固体溶于MDF溶剂中,室温下,磁力搅拌8 h,可以得到澄清透明的溶液,加热该溶液至凝胶化温度,就可以得到白色不透明的β-环糊精热致凝胶[53]。β-环糊精浓度的改变会导致凝胶化温度的改变,当β-环糊精浓度低于0.13 mol/L时,即便将体系温度升高至DMF的沸点,也不能够使该体系凝胶化。得到的β-环糊精热致凝胶表现出良好的温度刺激响应性,将该体系的温度降低至室温,β-环糊精热致凝胶转变成澄清透明的溶液,对澄清溶液进行加热,又可以得到β-环糊精热致凝胶(图12)。
图12 β-环糊精热致凝胶的温度响应性[53]

Fig. 12 Temperature responsiveness images of the system of β-cyclodextrin/DMF/LiCl[53]

5.2 化学刺激响应

将 0.5 mmol β-环糊精和一定量的氯化锂溶于3 mL DMF溶剂中,室温下,搅拌至固体完全溶解转变成澄清溶液,快速向该体系中加入3 mmol乙二胺,在100 s内,即可得到白色不透明的β-环糊精常温凝胶[54]。乙二胺在该凝胶形成过程中扮演着重要角色,乙二胺分子中包含两个氨基,氨基可以有效地络合某些金属离子,因而该凝胶有可能对金属离子有着良好的刺激响应性。如图13所示,该凝胶对铜离子具有敏感的响应性,铜离子加入5 h后,凝胶转变成沉淀。凝胶塌陷有可能是铜离子与乙二胺络合导致的,铜离子/乙二胺络合物的形成,使得β-环糊精之间氢键减弱,进而引起凝胶纤维的崩解。
图13 外界化学刺激对β-环糊精凝胶的影响:(Ⅰ)OH-;(Ⅱ)HCl;(Ⅲ)CH3COOH;(Ⅳ)Cu2+[54]

Fig. 13 Photographs of external chemical stimuli influence on the gel for 5 h, OH-(Ⅰ), HCl(Ⅱ), CH3COOH(Ⅲ), Cu2+(Ⅳ)[54]

5.3 酸响应

酸能够破坏非共价键作用,因而β-环糊精有机小分子凝胶对酸也有着非常好刺激响应性。如图13所示[54],图中的凝胶体系不仅能够响应金属离子刺激,而且对酸比较敏感,甲酸的加入能引起凝胶到沉淀的转变。

6 β-环糊精有机小分子凝胶在药物载运领域的应用

凝胶是由三维网状结构包裹溶剂形成的软物质材料,在药物载运领域有着广泛的应用。β-环糊精有着疏水的空腔结构,可以通过范德华力包裹疏水性的客体分子,因而β-环糊精凝胶在药物载运方面有着自己独特的优势,能够同时实现对亲水性药物分子和疏水性药物分子的运载。

6.1 β-环糊精有机小分子凝胶单重载药

β-环糊精凝胶三维网络结构中包裹着溶剂,溶剂可以溶解药物分子,从而实现对药物分子的运载。将1.0 g的β-环糊精溶于5 mL甘油中,超声溶解20 min,得到胶体溶液。磁子搅拌胶体溶液即可得到β-环糊精凝胶。由于甘油对药物分子具有良好的溶解性,得到的β-环糊精凝胶既可以用来运载抗肿瘤药物甲氨蝶呤,也可以运载抗癌药物5-氟尿嘧啶[55]。如图14所示,β-环糊精凝胶为白色凝胶,载有甲氨蝶呤的β-环糊精凝胶转变为黄色,而载运5-氟尿嘧啶的β-环糊精凝胶仍为白色。
图14 凝胶转变图片:(a)β-环糊精/甘油胶体溶液;(b)β-环糊精/甘油凝胶;(c)载有甲氨蝶呤的β-环糊精/甘油凝胶;(d)载有5-氟尿嘧啶的β-环糊精/甘油凝胶[55]

Fig. 14 Photographs of phase transition from(a) the colloidal solution of β-cyclodextrin/glycerol to(b) β-cyclodextrin/glycerol gel, to(c) β-cyclodextrin/glycerol gel loaded with methotrexate, and to(d) β-cyclodextrin/glycerol gel loaded with 5-fluorouracil[55]

为了研究载药β-环糊精凝胶是否能够增强药物的抗癌活性,我们做了体外抗肝癌HepG2细胞增殖能力实验,MTT结果显示,相比于5-氟尿嘧啶原药而言,不同浓度的负载有5-氟尿嘧啶的β-环糊精/甘油凝胶均对肝癌细胞表现出更强的抑制能力。对于不同浓度的负载甲氨蝶呤的凝胶,相比于相同浓度的甲氨蝶呤原药,均对肝癌细胞表现出更强的抑制能力(图15)。
图15 不同浓度的5-氟尿嘧啶和负载5-氟尿嘧啶的β-环糊精/甘油凝胶(25 nM、50 nM和100 nM)对HepG2细胞的抑制能力比较

Fig. 15 Comparison of the inhibition rate of HepG2 cells induced by 5-Fu and 5-Fu-Gel. HepG2 cells were treated with increased concentrations of 5-Fu-Gel or 5-Fu(25 nM, 50 nM, and 100 nM) for 24 h

6.2 β-环糊精有机小分子凝胶双重载药

β-环糊精为筒状的斜截锥式结构,腔外亲水,腔内疏水,可以包合某些疏水性客体分子,从而实现对疏水性药物分子的载运。β-环糊精有机小分子凝胶的溶剂还可以运载亲水性药物分子,因而β-环糊精有机小分子凝胶可以实现对疏水性药物分子和亲水性药物分子的双重载运(图16)。
图16 双重载药β-环糊精有机小分子凝胶载药机理图

Fig. 16 Illustration of formation of low molecular weight β-cyclodextrin organogel loading with two kinds of drugs

将一定比例的β-环糊精、阿霉素和5-氟尿嘧啶加入到一定量的水/二甲亚砜混合溶剂中,缓慢加热到100 ℃,直至固体完全溶解,然后降温冷却至室温,即可得到双重载药β-环糊精有机小分子凝胶,疏水性药物5-氟尿嘧啶被包裹到β-环糊精空腔,而亲水性药物阿霉素被载运到凝胶溶剂中[56]
通过荧光显微镜,我们探究了被HeLa细胞吞噬的阿霉素在细胞中的分布情况。荧光染料DAPI可以对细胞核进行染色,我们利用DAPI来对比研究阿霉素在细胞中的分布。研究发现,被β-环糊精凝胶释放出来的阿霉素可以通过被动扩散透过细胞膜而被HeLa细胞吞噬,在荧光显微镜下,可以观察到阿霉素像DAPI一样主要集中在HeLa细胞的细胞核中,表明β-环糊精凝胶可以作为载运阿霉素的优良载体(图17)。
图17 浸泡半小时后,吞噬凝胶释放出来的阿霉素的HeLa细胞的荧光显微镜照片:(A)吞噬阿霉素后HeLa细胞的荧光照片;(B)吞噬荧光染料DAPI后HeLa细胞的荧光照片;(C)图A和图B的重合图片[56]

Fig. 17 Fluorescence microscopy of cellular uptake of DOX released from gel observed after incubation for 0.5 h(A) DOX channel,(B) DAPI channel and(C) overlays of two images[56]

我们利用HeLa细胞来探究载药β-环糊精凝胶体外细胞增殖抑制能力,将一定量的载药β-环糊精分别处理HeLa细胞0.5和5 h,然后进行WST实验。结果发现,由于阿霉素具有更高的包封率,载运亲水性药物阿霉素的β-环糊精凝胶相比于载运疏水性药物5-氟尿嘧啶的β-环糊精凝胶具有更高的癌细胞抑制率。由于同时载有阿霉素和5-氟尿嘧啶,双重载药的β-环糊精凝胶显示出了极强的癌细胞抑制能力,展示出双重载药β-环糊精有机小分子凝胶在药物载运领域巨大的潜在应用价值(图18)。
图18 载运阿霉素的β-环糊精凝胶、载运5-氟尿嘧啶的β-环糊精凝胶以及同时载运阿霉素和5-氟尿嘧啶的β-环糊精凝胶在不同的浸泡时间下对HeLa细胞的抑制率[56]

Fig. 18 The cytotoxicities of gel containing DOX, 5-FU or DOX and 5-FU against HeLa cells with different incubation time[56]

7 总结与展望

综上所述,β-环糊精在特定的溶剂环境中,即可实现凝胶化,形成单凝胶因子β-环糊精凝胶和多凝胶因子β-环糊精凝胶。外界因素对β-环糊精有机小分子凝胶的形成有着显著影响,温度、主体分子、客体分子、溶剂和金属离子均能影响β-环糊精凝胶的形成。机理研究结果表明,β-环糊精头对头、尾对尾的管状四方堆积结构在β-环糊精有机小分子凝胶的形成过程中起着主导作用。β-环糊精有机小分子凝胶是典型的超分子凝胶,因而对外界刺激展现出良好的刺激响应性,温度的改变、金属离子和酸液均可导致β-环糊精凝胶的解离。我们还对β-环糊精有机小分子凝胶的载药性能进行了初步探究,研究发现β-环糊精凝胶不仅可以通过溶剂实现单重载药,还可以通过β-环糊精空腔以及溶剂实现双重载药。相比于单纯的药物分子而言,载药β-环糊精凝胶具有更强的抑制癌细胞增殖能力,展示出载药β-环糊精有机小分子凝胶在药物载运领域巨大的潜在应用价值。当然,β-环糊精有机小分子凝胶在发展的过程中也出现了一些亟待解决的问题:1)虽然我们已经制备出了以甘油为溶剂的β-环糊精凝胶,但是至今尚未制备出β-环糊精水凝胶,限制了其在生物医药领域的应用。因而,如何实现β-环糊精在水中凝胶化,将成为以后研究的重点;2)迄今为止,我们已经制备出了大量的不同种类的β-环糊精有机小分子凝胶,但只是探究了其在药物领域中的应用,以后需要进一步加强β-环糊精有机小分子凝胶在污染物吸附和化学催化等领域的研究。总之,作为一类性能独特的凝胶体系,β-环糊精有机小分子凝胶有着巨大的应用潜力,需要深入研究,促进其进一步发展。
[1]
Shen Z C, Wang T Y, Liu M H . Angew. Chem. Int. Ed., 2014,53:1.
[2]
Hisamatsu Y, Banerjee S, Avinash M B, Govindaraju T, Schmuck T . Angew. Chem. Int. Ed., 2013,52:12550. https://www.ncbi.nlm.nih.gov/pubmed/24123861

DOI: 10.1002/anie.201306986   PMID: 24123861

[3]
Tam A Y, Wong K M, Yam V W . Chem. Eur. J., 2009,15:4775. https://www.ncbi.nlm.nih.gov/pubmed/19322773

DOI: 10.1002/chem.200900046   PMID: 19322773

Helical superstructures: A series of luminescent chiral alkynylplatinum(II)-terpyridyl complexes has been successfully synthesised and shown to be capable of forming metallogels that show helical fibrous nanostructures. The chiral supramolecular structure and the spectroscopic properties are found to depend on the extent of aggregation through Pt...Pt and pi-pi interactions in various counteranions, as revealed by UV/Vis, circular dichroism (CD), and luminescence studies (see picture).

[4]
Ma M F, Gu J G, Yang M M, Li Z L, Lu Z Q, Zhang Y M, Xing P Y, Li S Y, Chu X X, Wang Y J, Li Q, Lin M Y, Hao A Y . RSC Adv., 2015,5:70178.
[5]
Xing P Y, Chu X X, Li S Y, Ma M F, Hao A Y . ChemPhysChem, 2014,15:2377. https://www.ncbi.nlm.nih.gov/pubmed/24789749

DOI: 10.1002/cphc.201402018   PMID: 24789749

A supramolecular gel is obtained from the self-assembly of an ultralow-molecular-weight gelator (N-fluorenyl-9-methoxycarbonyl glutamic acid) in good and poor solvents. The gelators can self-assemble into a lamellar structure, which can further form twisted fibers and nanotubes in the gel phase. Rheological studies show that the gels are robust and rigid, and are able to rapidly self-recover to a gel after being destroyed by shear force. Fluorescence experiments reveal the aggregation-induced emission effects of the gel system; the fluorescence intensity is significantly enhanced by gel formation. Graphene oxide (GO) is introduced into the system efficiently to give a hybrid material, and the interaction between gelators-GO sheets is studied. Rheological and fluorescent studies imply that the mechanical properties and the fluorescent emission of the hybrid materials can be fine-tuned by controlling the addition of GO.

[6]
Xing P Y, Chu X X, Ma M F, Li S Y, Hao A Y . Chem. Asian J., 2014,9:3440. https://www.ncbi.nlm.nih.gov/pubmed/25224776

DOI: 10.1002/asia.201402645   PMID: 25224776

Self-assembly of N-fluorenyl-9-methoxycarbonyl glutamic acid (Fmoc-Glu) in water generates metastable single-wall nanotubes. These nanotubes entangle and bundle together to form unstable gels that shrink with time and finally result in lamellar crystalline precipitates. Melamine (Mm) was employed as a supramolecular modifier and stabilizer to improve the stability of the nanotubes. Mm interacts with the carboxyl-rich surfaces of the nanotubes via H-bonds and static electronic forces to diminish the high affinity of individual nanotubes and facilitate Fmoc-Glu supergelation (critical gelation concentration <0.1 wt %). Although the basic process of nanotube formation is not disturbed, Mm inverts the supramolecular helicity of nanotubes from P to M.

[7]
Sui J F, Wang L H, Zhao W R, Hao J C . Chem. Commun., 2016,52:6993. https://www.ncbi.nlm.nih.gov/pubmed/27156999

DOI: 10.1039/c6cc01621a   PMID: 27156999

Metal-organic gels (MOGs) of three-dimensional (3D) networks comprising nanosheets of ∼30 nm thickness and square-micrometer in size were easily produced via coordination interactions of iron (Fe(3+)) and 1,4-naphthalenedicarboxylic acid (NDC). Such MOGs exhibit ultrahigh removal of arsenic(v) in water, with the adsorption capacity of 144 mg g(-1), dramatically superior to those of the recently reported Fe-based inorganic and organic adsorbents.

[8]
Song S S, Feng L, Song A X, Hao J C . J. Phys. Chem. B, 2012,116:12850. https://www.ncbi.nlm.nih.gov/pubmed/23025583

DOI: 10.1021/jp3066025   PMID: 23025583

Supramolecular hydrogels were prepared in the mixtures of a chiral amphiphilic lithocholic acid (LCA) and a nonionic surfactant, dodecyldimethylamine oxide (C(12)DMAO), in water. With the addition of LCA to C(12)DMAO micellar solutions, a transition from micelles to gels occurs at room temperature. Hydrogels can form at very low concentrations (below 0.1 wt %), exhibiting a super gelation capability. The rheological measurements show a strong mechanical strength with an elastic modulus exceeding 5000 Pa and a yield stress exceeding 100 Pa. Microstructures determined by TEM, SEM, and AFM observations demonstrate that the gels are formed by intertwined helical fibrils. The formation of fibrils is induced by enormous cycles of units composed of two LCA molecules and four C(12)DMAO molecules driven by comprehensive noncovalent interaction, especially the hydrogen bonds produced in two reversed LCA molecules and the C(12)DMAOH(+)-C(12)DMAO pairs. The xerogels show excellent adsorption capability of the toxic dye with a maximum adsorption value of 202 mg·g(-1).

[9]
Nanda J, Biswas A, Adhikari B, Banerjee A . Angew. Chem. Int. Ed., 2013,52:5041. https://www.ncbi.nlm.nih.gov/pubmed/23568284

DOI: 10.1002/anie.201301128   PMID: 23568284

[10]
童林荟(Tong L H) . 环糊精化学——基础与应用 (Cyclodextrin Chemistry——Foundation and Application). 北京: 科学出版社 (Beijing: Science Press), 2001. 10.
[11]
Sun T, Li Y M, Zhang H C, Li J Y, Xin F F, Kong L, Hao A Y . Colloids Surf. A, 2011,375:87.
[12]
Sun T, Guo Q, Zhang C, Hao J C, Xing P Y, Li S Y, Hao A Y, Liu G C . Langmuir, 2012,28:8625. https://www.ncbi.nlm.nih.gov/pubmed/22607559

DOI: 10.1021/la301497t   PMID: 22607559

Controlled self-assembly of amphiphilic cyclodextrin is always a challenging topic in the field of supramolecular chemistry, since it provides the spontaneous generation of well-defined aggregation with functional host sites with great potential applications in drug-carrier systems. β-Cyclodextrin modified with an anthraquinone moiety (1) was successfully synthesized. In the aqueous solution, 1 was found able to self-assemble into vesicles, which was characterized in detail by TEM, SEM, EFM, and DLS. The formation mechanism of the vesicles was suggested based on the 2D ROESY and UV-vis results, and further verified by the MD simulation. Subsequently, the stimuli response property of the vesicles, including to Cu(2+) and H(+), was also studied. The vesicles can efficiently load Paclitaxel inside the membrane with functional macrocyclic cavities available, which can further carry small molecules, such as ferrocene. The vesicles loading with Paclitaxel have remarkable anticancer effects. This work will provide new strategy in drug-carrier systems and tumor treatment methods.

[13]
Sun T, Zhang H C, Kong L, Qiao H W, Li Y M, Xin F F, Hao A Y . Carbohydra. Res., 2011,346:285. https://www.ncbi.nlm.nih.gov/pubmed/21146158

DOI: 10.1016/j.carres.2010.11.003   PMID: 21146158

A modified cyclomaltoheptaose (β-cyclodextrin) containing an anthraquinone moiety, mono[6-deoxy-N-n-hexylamino-(N'-1-anthraquinone)]-β-cyclodextrin (1), which can self-assemble into nanorods in aqueous solution, was synthesized. Interestingly, upon the addition of natural cyclodextrin, the nanorods could transform into bilayer vesicles, which were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), and epi-fluorescence microscopy (EFM). A transformation mechanism is suggested based on the results of (1)H NMR, 2D NMR ROESY, FTIR, and UV-vis spectra. The response of the vesicles to changing pH and adding Cu(2+) was also tested. Our research may pave the way to the development of new intelligent materials and biomaterials.

[14]
Ma M F, Su J, Sheng X, Su F, Li S Y, Xing P Y, Hao A Y . J. Mol. Liq., 2014,198:1.
[15]
Zhou C C, Cheng X H, Zhao Q, Yan Y, Wang J D, Huang J B . Scientific Reports, 2014,4:7355. https://www.ncbi.nlm.nih.gov/pubmed/25483453

DOI: 10.1038/srep07355   PMID: 25483453

Xanthohumol (XN) is a natural anticancer compound that inhibits the proliferation of oestrogen receptor-α (ERα)-positive breast cancer cells. However, the precise mechanism of the antitumour effects of XN on oestrogen (E2)-dependent cell growth, and especially its direct target molecule(s), remain(s) largely unknown. Here, we focus on whether XN directly binds to the tumour suppressor protein prohibitin 2 (PHB2), forming a novel natural antitumour compound targeting the BIG3-PHB2 complex and acting as a pivotal modulator of E2/ERα signalling in breast cancer cells. XN treatment effectively prevented the BIG3-PHB2 interaction, thereby releasing PHB2 to directly bind to both nuclear- and cytoplasmic ERα. This event led to the complete suppression of the E2-signalling pathways and ERα-positive breast cancer cell growth both in vitro and in vivo, but did not suppress the growth of normal mammary epithelial cells. Our findings suggest that XN may be a promising natural compound to suppress the growth of luminal-type breast cancer.

[16]
Zhou C C, Huang J B, Yan Y . Soft Matter, 2016,12:1579. https://www.ncbi.nlm.nih.gov/pubmed/26660592

DOI: 10.1039/c5sm02698a   PMID: 26660592

In this work we report the chain length dependent behavior of the nonamphiphilic supramolecular building blocks based on the host-guest inclusion complexes of alkanes and β-cyclodextrins (β-CD). (1)H NMR, ESI-MS, and SAXS measurements verified that upon increasing the chain length of alkanes, the building blocks for vesicle formation changed from channel type 2alkane@2β-CD via channel type alkane@2β-CD to non-channel type 2alkane@2β-CD. FT-IR and TGA experiments indicated that hydrogen bonding is the extensive driving force for vesicle formation. It revealed that water molecules are involved in vesicle formation in the form of structural water. Upon changing the chain length, the average number of water molecules associated with per building block is about 16-21, depending on the chain length.

[17]
Chen L, Chen H, Yao X Y, Ma X, Tian H . Chem-Asian J., 2015,10:2352. https://www.ncbi.nlm.nih.gov/pubmed/26211904

DOI: 10.1002/asia.201500704   PMID: 26211904

A hybrid supramolecular polymeric hydrogel is conveniently constructed via host-guest interaction of a host cyclodextrin polymer (poly-CD) with a guest α-bromonaphthalene polymer (poly-BrNp) and mixing with 6-thio-β-cyclodextrin (β-SH-CD) modified gold nanoparticles (GPCDs) in aqueous solution. According to the dynamic oscillatory data, the hydrogel exhibits markedly enhanced stiffness compared with the GPCD-free one (both G' and G" values are almost twice as high as those of the original GPCD-free hydrogel) due to the introduction of the inorganic gold nanoparticles. This hybrid supramolecular polymeric hydrogel has a rapid and excellent self-healing property (only about 1 min, and the G' and G" of the self-healed hydrogel almost turned back to their original levels after 1 hour) in air (without adding any solvent or additive).

[18]
Chen H, Ma X, Wu S F, Tian H . Angew. Chem., 2014,126:14373.
[19]
Zhang Q W, Qu D H, Wu J C, Ma X, Wang Q C, Tian H . Langmuir, 2013,29:5345. https://www.ncbi.nlm.nih.gov/pubmed/23560858

DOI: 10.1021/la4012444   PMID: 23560858

Covalent or noncovalent linked polymers with stimuli-responsive properties have been well researched as a kind of advanced functional materials. However, little effort has been devoted to establishing a bridge for switching between covalent polymers and noncovalent polymers. Actually, such unitive system is promising because it can combine their chemical advantages of two types of polymers in a single and tunable platform. Herein, by taking advantage of reversible photodimerization of coumarins and host-guest assemblies with γ-cyclodextrin (γ-CD), we demonstrate a simple and effective way to construct a dual-modality supramolecular polymer, which can be switched between a noncovalent polymer and its corresponding covalent polymer in response to light stimuli. Moreover, this unique switchable polymer can also be employed to construct a dual-stimuli responsive supramolecular hydrogel with the surfactant cetyl trimethylammonium bromide (CTAB). This methodology establishes a bridge between the two "polymer mansions" and is promising to open a new class of photoswitchable materials.

[20]
Nakahata M, Takashima Y, Harada A . Angew. Chem. Int. Ed., 2014,53:3617. https://www.ncbi.nlm.nih.gov/pubmed/24596338

DOI: 10.1002/anie.201310295   PMID: 24596338

The macroscopic self-assembly of polymeric hydrogels modified with β-cyclodextrin (βCD gel), ferrocene (Fc gel), and styrenesulfonic acid sodium salt (SSNa gel) was investigated. Under reductive conditions, the Fc gel selectively adhered to the βCD gel through a host-guest interaction. On the other hand, the oxidized ferrocenium (Fc(+)) gel selectively adhered to the SSNa gel through an ionic interaction under oxidative conditions. The adhesion strength was estimated by a tensile test. We finally succeeded in forming an ABC-type macroscopic assembly of all three gels through two discrete noncovalent interactions.

[21]
Miyamae K, Nakahata M, Takashima Y, Harada A . Angew. Chem. Int. Ed., 2015,54:8984.
[22]
Kakuta T, Takashima Y, Sano T, Nakamura T, Kobayashi Y, Yamaguchi H, Harada A . Macromolecules, 2015,48:732.
[23]
Nakahata M, Takashima Y, Harada A . Macromol. Rapid Comm., 2015,37:86.
[24]
Zheng Y T, Kobayashi Y, Sekine T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A . Nat. Commun., 2018, DOI: 10.1038/s42004-017-0003-x.
[25]
Takashima Y, Sawa Y, Iwaso K, Nakahata M, Yamaguchi H, Harada A . Macromolecules, 2017,50:3254.
[26]
Koyanagi K, Takashima Y, Yamaguchi H, Harada A . Macromolecules, 2017,50:5695.
[27]
Nakahata M, Takashima Y, Yamaguchi H, Harada A . Nat. Commun., 2011,2:511. https://www.ncbi.nlm.nih.gov/pubmed/22027591

DOI: 10.1038/ncomms1521   PMID: 22027591

Expanding the useful lifespan of materials is becoming highly desirable, and self-healing and self-repairing materials may become valuable commodities. The formation of supramolecular materials through host-guest interactions is a powerful method to create non-conventional materials. Here we report the formation of supramolecular hydrogels and their redox-responsive and self-healing properties due to host-guest interactions. We employ cyclodextrin (CD) as a host molecule because it is environmentally benign and has diverse applications. A transparent supramolecular hydrogel quickly forms upon mixing poly(acrylic acid) (pAA) possessing β-CD as a host polymer with pAA possessing ferrocene as a guest polymer. Redox stimuli induce a sol-gel phase transition in the supramolecular hydrogel and can control self-healing properties such as re-adhesion between cut surfaces.

[28]
Zhang Y N, Yang D, Han J L, Zhou J, Jin Q X, Liu M H, Duan P F . Langmuir, 2018,34:5821. https://www.ncbi.nlm.nih.gov/pubmed/29672070

DOI: 10.1021/acs.langmuir.8b01035   PMID: 29672070

Soft nanomaterials with circularly polarized luminescence (CPL) have been currently attracting great interest. Here, we report a pyrene-containing π-peptide dendron hydrogel, which shows 1D and 2D nanostructures with varied CPL activities. It was found that the individual dendrons formed hydrogels in a wide pH range (3-12) and self-assembled into helices with pH-tuned pitches. Through chirality transfer, the pyrene unit could show CPL originated from both the monomer and excimer bands. When cyclodextrin was introduced, different supra-dendrons were obtained with β-cyclodextrin (PGAc@β-CD) and γ-cyclodextrin (PGAc@γ-CD) through host-guest interactions, respectively. Interestingly, the PGAc@β-CD and PGAc@γ-CD supra-dendrons self-assembled into 2D nanosheet and entangled nanofibers, respectively, showing cyclodextrin induced circularly polarized emission from both the monomer and excimer bands of the pyrene moiety. Thus, through a simple host-guest interaction, both the nanostructures and the chiroptical activities could be modulated.

[29]
Li Y Y, Liu J, Du G Y, Yan H, Wang H Y, Zhang H C, An W, Zhao W J, Sun T, Xin F F, Kong L, Li Y M, Hao A Y, Hao J C . J. Phys. Chem. B, 2010,114:10321. https://www.ncbi.nlm.nih.gov/pubmed/20701367

DOI: 10.1021/jp1017373   PMID: 20701367

This paper describes the first reversible, heat-set organogel based on the supramolecular interactions of beta-cyclodextrin (beta-CD). The gel was prepared by interaction of diphenylamine (DPA) with beta-CD and lithium chloride in N,N-dimethylformamide (DMF). In this gel system, DPA could be gelated in DMF as the temperature increased and then dissolved again as the temperature decreased. In the microscopic structure of gel, beta-CDs play a key role in the formation of nanorods and microfibers. Some important features of the gel were observed. (1) The system is a multicomponent solution, in which each of the four components is required for the organogelation property. (2) The system is a reversible, thermo-responsive organogel composed of small organic molecules. When the temperature is lower than T(gel), the gel transforms back into a solution. The reversible thermo-transition was confirmed by differential scanning calorimetry (DSC). The gel system is responsive to the concentration of LiCl. No gel was formed without LiCl. The stimuli responses of the system with other salts such as KCl and NaCl were weaker than with LiCl. (4) The system is responsive to the addition of guest molecules. The structures and sizes of the guest molecules could influence the gel formation. Generally, T(gel) decreased by adding guest molecules in the gel system, but some guest molecules, whose structures are exactly fitted to the cavity of CDs, could prevent gel formation. This work may provide new avenues in delivery of functional molecules as well as design of intelligent materials and biomaterials.

[30]
Li Y Y, Zhao W J, Zhang H C, Sun T, An W, Xin F F, Hao A Y . Chinese Chem. Lett., 2010,21:1251.
[31]
Zhao W J, Li Y Y, Sun T, Yan H, Hao A Y, Xin F F, Zhang H C, An W, Kong L, Li Y M . Colloids Surf. A, 2011,374:115.
[32]
Xin F F, Zhang H C, Hao B X, Sun T, Kong L, Li Y M, Hou Y H, Li S Y, Zhang Y, Hao A Y . Colloids Surf. A, 2012,410:18. https://linkinghub.elsevier.com/retrieve/pii/S0927775712003974

DOI: 10.1016/j.colsurfa.2012.06.008

[33]
Xing P Y, Chu X X, Li S Y, Xin F F, Ma M F, Hao A Y . New J. Chem., 2013,37:3949. http://xlink.rsc.org/?DOI=c3nj00984j

DOI: 10.1039/c3nj00984j

[34]
Li Z L, Liu W Q, Hao A Y . Colloids Surf. A, 2014,451:25. https://linkinghub.elsevier.com/retrieve/pii/S0927775714002829

DOI: 10.1016/j.colsurfa.2014.03.044

[35]
Li Z L, Hao A Y, Li X . J. Mol. Liq., 2014,196:52. https://linkinghub.elsevier.com/retrieve/pii/S0167732214001263

DOI: 10.1016/j.molliq.2014.03.025

[36]
Kong L, Xing P Y, Chu X X, Hao A Y . J. Control. Release 2017,259:e77.
[37]
Hou Y H, Xin F F, Yin M J, Kong L, Zhang H C, Sun T, Xing P Y, Hao A Y . Colloids Surf. A, 2012,414:160. https://linkinghub.elsevier.com/retrieve/pii/S0927775712005420

DOI: 10.1016/j.colsurfa.2012.08.011

[38]
Xing P Y, Chu X X, Li S Y, Hou Y H, Ma M F, Yang J S, Hao A Y . RSC Adv., 2013,3:22087. http://xlink.rsc.org/?DOI=c3ra42587h

DOI: 10.1039/c3ra42587h

[39]
Hou Y H, Li S Y, Sun T, Yang J S, Xing P Y, Liu W Q, Hao A Y . J. Incl. Phenom. Macrocycl. Chem. 2014,80:217. http://link.springer.com/10.1007/s10847-013-0379-x

DOI: 10.1007/s10847-013-0379-x

[40]
Kong L, Sun T, Xin F F, Zhao W J, Zhang H C, Li Z L, Li Y M, Hou Y H, Li S Y, Hao A Y . Colloids Surf. A, 2011,392:156. https://linkinghub.elsevier.com/retrieve/pii/S0927775711006212

DOI: 10.1016/j.colsurfa.2011.09.049

[41]
Liu W Q, Xing P Y, Xin F F, Hou Y H, Sun T, Hao J C, Hao A Y . J. Phys. Chem. B, 2012,116:13106. https://www.ncbi.nlm.nih.gov/pubmed/23051026

DOI: 10.1021/jp306462z   PMID: 23051026

This paper describes a novel double phase transforming organogel (gel-sol-gel') composed of nontoxic β-cyclodextrin, potassium carbonate, and 1,2-propylene glycol. The gel-sol-gel' transforming processes are followed by a reversible gel-sol transforming process and an irreversible sol-gel' transforming process based on heating. The gel-sol-gel' transformation is accompanied by microstructure changes from nanospheres to nanorods. K(2)CO(3) plays a key role in associating supramolecular architectures of β-cyclodextrin into a three-dimensional network. This work may bring further applications in the areas of smart materials, drug delivery systems, and biomaterials.

[42]
Ma X, Tian H . Acc. Chem. Res., 2014,47:1971. https://www.ncbi.nlm.nih.gov/pubmed/24669851

DOI: 10.1021/ar500033n   PMID: 24669851

CONSPECTUS: Aiming to construct various novel supramolecular polymeric structures in aqueous solution beyond small supramolecular self-assembly molecules and develop functional supramolecular polymeric materials, research interest on functional supramolecular polymers has been prevailing in recent years. Supramolecular polymers are formed by bridging monomers or components together via highly directional noncovalent interactions such as hydrogen bonding, hydrophobic interaction, π-π interaction, metal-ligand coordination, electrostatic interaction, and so forth. They can be easily functionalized by employing diverse building components with specific functions besides the traditional polymeric properties, a number of which are responsive to such external stimuli as pH variance, photoirradiation, chemically or electrochemically redox with the controllable conformation or construction switching, polymerization building and rebuilding, and function adjustment reversibly owing to the reversibility of noncovalent interactions. Supramolecular polymers are "soft matters" and can be functionalized with specific properties such as morphology adjustment, controllable luminescence, shape memory, self-healing, and so forth. Supramolecular polymers constructed based on macrocycle recognition and interlocked structures represent one typical branch of the supramolecular polymer family. Cyclodextrin (CD), cucurbituril (CB), and hydrophilic calixarene derivatives are usually employed to construct hydrophilic supramolecular polymers in aqueous solution. Stimuli-responsive hydrophilic supramolecular polymers, constructed in aqueous solution particularly, can be promising candidates for mimicking biocompatible or vital functional materials. This Account mainly focuses on the recent stimuli-responsive supramolecular polymers based on the host-guest interaction in aqueous solution. We describe the hydrophilic supramolecular polymers constructed via hydrophobic effects, electrostatic interaction, metal-ligand coordination, and multiple combinations of the above noncovalent interactions. The disparate ways to engender stimuli-responsive supramolecular polymers via the hydrophobic effects of α-CD, β-CD, and γ-CD macrocycles are illustrated and discussed. Some recent works on CD-based photoresponsive functional supramolecular polymers are summarized. CB (especially CB[8]) based supramolecular polymers and their pH-responsive and photoresponsive properties are introduced. Hydrophilic calixarene derivative (bis(p-sulfonatocalix[4]arene) typically) based supramolecular polymers via electrostatic interactions are reviewed, and their redox-responsive association/disassociation elaborated in detail. More complicate supramolecular polymers based on multiple noncovalent interactions are illustrated including hydrophobic effect, metal-ligand coordination, and electrostatic interactions and their functional stimuli-responsiveness elaborated as well. Finally, we give perspectives on the strength of these diverse noncovalent interactions to form supramolecular polymers in aqueous solution, on the advantage, disadvantage, efficiency, and reversibility of using certain stimuli in constructing supramolecular polymers and prospect the future function improvement of these polymers as functional materials.

[43]
Qu D H, Wang Q C, Ren J, Tian H . Org. Lett., 2004,6:2085. https://www.ncbi.nlm.nih.gov/pubmed/15200291

DOI: 10.1021/ol049605g   PMID: 15200291

[reaction: see text] A molecular shuttle containing an alpha-CD macrocycle, an azobenzene unit, and two different fluorescent naphthalimide units was synthesized. The cis-trans photoisomerization of the azobenzene unit resulted in the motion of the CD macrocycle on the track. Because of the easy regulation and full reversibility of the fluorescence change of the two stopper units, the molecular shuttle could be used as a molecular storage medium or switch with all-optical inputs and outputs.

[44]
Li Y G, Liu M . H. J. Colloid Interf. Sci., 2007,306:386. https://www.ncbi.nlm.nih.gov/pubmed/17140595

DOI: 10.1016/j.jcis.2006.10.055   PMID: 17140595

4-(N-Stearoylamino)-2-amino-azobenzene (AzoNH2C18) and 4-(N-stearoylamino)-azobenzene (AzoC18) have been synthesized. The inclusion complex formation of AzoNH2C18 and beta-cyclodextrin (beta-CyD) at the air/water interface was investigated and compared to that of AzoC18. It has been found that both the amphiphiles can form stable monolayer films on water surface. When the amphiphiles were spread on the aqueous solution of beta-CyD, AzoNH2C18 can form inclusion complexes with the beta-CyD molecules at the interface while AzoC18 cannot. The inclusion complex formation was confirmed by the changes in the isotherms and the circular dichroism (CD) and Fourier transform infrared (FT-IR) spectra of the transferred LS films. Atomic force microscopy (AFM) observation found morphological changes in the course of complex formation. It was suggested that the additional amino group in the azobenzene ring plays an important role in forming the inclusion complex in situ at the air/water interface.

[45]
Ma X, Cao J J, Wang Q C, Tian H . Chem. Commun., 2011,47:3559. https://www.ncbi.nlm.nih.gov/pubmed/21321705

DOI: 10.1039/c0cc05488g   PMID: 21321705

Photocontrolled reversible room temperature phosphorescence (RTP) emission engendered by the complexation of β-cyclodextrin (β-CD) and α-bromonaphthalene (α-BrNp) can be employed to address the threading and dethreading of the pseudorotaxane formed between β-CD and sodium 2-hydroxy-5-((4-nitrophenyl)diazenyl)benzoate (DAYR) in the ternary system in aqueous solution.

[46]
Xing P Y, Sun T, Li S Y, Hao A Y, Su J, Hou Y H . Colloids Surf. A, 2013,421:44.
[47]
Hou Y H, Sun T, Xin F F, Xing P Y, Li S Y, Hao A Y . J. Incl. Phenom. Macrocycl. Chem., 2014,79:133.
[48]
Chu X X, Xing P Y, Li S Y, Ma M F, Hao A Y . Colloids Surf. A, 2014,461:11. https://linkinghub.elsevier.com/retrieve/pii/S0927775714006347

DOI: 10.1016/j.colsurfa.2014.07.028

[49]
Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith S M, Takaha T . Chem. Rev., 1998,5:1787.
[50]
Xin F F, Xing P Y, Li S Y, Hou Y H, Hao A Y . RSC Adv., 2013,3:21959. http://xlink.rsc.org/?DOI=c3ra43242d

DOI: 10.1039/c3ra43242d

[51]
Chen Y, Zhang Y M, Liu Y . Chem. Commun., 2010,46:5622. https://www.ncbi.nlm.nih.gov/pubmed/20585706

DOI: 10.1039/c0cc00690d   PMID: 20585706

Possessing a hydrophobic cavity that can bind various organic, inorganic or biological molecules, cyclodextrins (CDs), a class of cyclic oligosaccharides with six to eight D-glucose units, are widely used as convenient and versatile building blocks in the construction of multidimensional nanoarchitectures. Through the self-assembly of CDs or their derivatives with or without templates, several kinds of CD-based one-dimensional or multidimensional nanoarchitectures, such as helix, pseudopolyrataxane, polyrotaxane, nanotube, nanowire, dendrimer, network, vesicle, nanoparticle, CD-coated carbon nanotube, and so on, can be successfully constructed via the cooperative binding of CD cavities, substituent groups, and/or template molecules. This article describes some strategies normally used to construct and characterize one-dimensional or multidimensional nanoarchitectures in solution and the solid state from various CDs and templates as building blocks. It also gives a description of the unique material and biological properties and wide applications of multidimensional CD-based nanoarchitectures.

[52]
Gao Y A, Zhao X Y, Dong B, Zheng L Q, Li N, Zhang S H . J. Phys. Chem. B, 2006,110:8576. https://pubs.acs.org/doi/10.1021/jp057478f

DOI: 10.1021/jp057478f

[53]
Li Z L, Hao A Y, Hao J C . Colloids Surf. A, 2014,441:8. https://linkinghub.elsevier.com/retrieve/pii/S0927775713006894

DOI: 10.1016/j.colsurfa.2013.08.078

[54]
Xing P Y, Li S Y, Xin F F, Hou Y H, Hao A Y, Sun T, Su J . Carbohydra. Res., 2016,367:18. https://www.ncbi.nlm.nih.gov/pubmed/23291275

DOI: 10.1016/j.carres.2012.11.023   PMID: 23291275

A multi-responsive cyclodextrin-based organogel with a crystalline-like structure is first reported. An amount of β-cyclodextrin (β-CD) and lithium chloride (LiCl) was added into N,N-dimethylformamide (DMF), and the system obtained could transform instantly from a transparent solution into a gel state by introducing ethylene diamine (EDA), and then the gel could turn into another precipitate-like gel by undergoing a heating-cooling process. Among a series of aliphatic amines, only EDA was found to be able to induce the gel formation. Both the gels possess crystalline-like structures in their morphology with sheet-like layers, in a highly-ordered channel-type packing mode, which were proved by OM, SEM, XRD, and FT-IR measurements. Furthermore, the gel could respond to H(+) and Cu(2+) by transforming into an amorphous precipitate. This research may pave the way for the design of novel smart materials.

[55]
Li Z L, Zhang B, Jia S H, Ma M F, Hao J C . J. Mol. Liq., 2018,250:19. https://linkinghub.elsevier.com/retrieve/pii/S0167732217353813

DOI: 10.1016/j.molliq.2017.11.154

[56]
Kong L, Zhang F, Xing P Y, Chu X X, Hao A Y . Colloids Surf. A, 2017,522:577. https://linkinghub.elsevier.com/retrieve/pii/S0927775717302510

DOI: 10.1016/j.colsurfa.2017.03.016

/


AI


AI小编
你好!我是《化学进展》AI小编,有什么可以帮您的吗?