中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (12): 1727-1751 DOI: 10.7536/PC230702   Next Articles

• Review •

Polymer Single Crystal: From Crystallization Strategy to Functionalized Application

Tianyu Wu1,*(), Haozhe Huang1, Junhao Wang1, Haoyang Luo1, Jun Xu2, Haimu Ye1   

  1. 1 College of New Energy and Materials, China University of Petroleum (Beijing),Beijing 102249, China
    2 Department of Chemical Engineering, Tsinghua University 100084, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: wutianyu@cup.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52203030); China University of Petroleum(Beijing)Research Fund(2462022BJRC008)
Richhtml ( 56 ) PDF ( 400 ) Cited
Export

EndNote

Ris

BibTeX

In the 100 years since the birth of modern polymer science, polymer chemistry, polymer physics and polymer processing have developed rapidly and formed a more complete body of discipline. As an important part of polymer physics, polymer crystallography focuses on the microscopic crystallization process and reveals the unique behavior of polymer chains. Polymer crystals can be divided into single crystals and polycrystals according to the number of nuclei in an independence structure. Among them, polymer single crystals have closely arranged molecular chains and exhibit perfect geometrical symmetry in macroscopic morphology, with excellent mechanical and optoelectronic properties. However, due to the complexity of molecular chain movement, the formation of polymer single crystals is still very difficult. For decades, a large number of scientists have devoted themselves to the study of polymer single crystals and obtained abundant results. In this paper, we focus on the history and progress of polymer single crystal research, and carefully discuss the crystallization strategies of polymer single crystals and their functionalization applications, hoping to provide effective help to relevant researchers.

Fig. 1 Estimation of the size of critical secandary nucleus of melt-grown poly(L-lactide)lameller crystals[13]. Copyright 2020, American Chemical Society
Fig. 2 (a) Type-Ⅲ single lamella and corresponding electron diffraction pattern of single layer iPB-1[25]. (b) Single crystal of PE grown from 0.5% solution in xylene at 100℃. 15 000 x[26]. Copyright 1970 managed by AIP Publishing, Copyright 1970 John Wiley & Sons, Inc.
Fig. 3 (a) AFM height image and (b) TEM bright field micrograph of P2VP199-b-PCL310 single crystals formed inDMF/water mixture at 20℃. The inset shows the corresponding selected area electron diffraction pattern. TEM images of iPB-1 hexagonal and round single crystals crystallized at (c) Tc = 60℃ and (d)Tc = 0℃, respectively[31,32].Copyright 2013, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; Copyright 2014, American Chemical Society
Fig. 4 (a) BF electron micrograph and of an iPB-1 film that was heat-treated at 160℃ for 15 min and then isothermally crystallized at 95℃ for 30 min. (b) BF electron micrograph of an iPB-1 film that was heat-treated at 160℃ for 15 min and then isothermally crystallized at 110℃ for 5 days[49]. Topographic images of polyethylene single crystals of 32 K fraction grown from the melt.Copyright 2002 Wiley Periodicals, Inc
Fig. 5 (a) Oriented network overgrowth of polyethylene grown on a surface of NaCl. Arrow indicates [110] NaCl direction. Immersion temperature 105℃; C-Pt replica; Shadow angle 45 °; 0.5-μ mark. (b)Incipient polyethylene “rose” structures grown by method B on (001) NaCl surfaces. Arrow indicates [110] direction of NaCl[81].Copyright 1966, John Wiley & Sons, Inc.
Fig. 6 (a) Electron micrograph of a film of polyethylene etched with permanganic reagent, detachment-replicated and shadowed with Pt-C; scale bar 1 μm. (b) Electron micrograph of a similar PE films stained with chlorosulfonic acid. Lamellae are properly oriented for visualization in only part of the field. A small fraction of the lamellae are oriented at right angles to the main orientation; scale bar 0.5 μm[84]. Copyright ? 1983 John Wiley & Sons, Inc.
Fig. 7 (a)Surface morphology of a thin film of polyethylene (Mw ≈ 20 000) crystallized by moderate cooling to room temperature and decorated with PE vapors. (b) Single crystal of polyoxymethylene (chlorobenzene solution, c ≈ 0.1%, Tc = 120℃) decorated with PE vapors. Scale bar: 1 μm[85].Copyright 1985, John Wiley & Sons, Inc.
Fig. 8 (a) A POM micrograph shows a boundary region of PBA crystallized from solution on glass slide, which is partially covered with highly oriented PE substrate. The PE substrate is located in the lower right corner of the picture. The arrow indicates its molecular chain direction. (b) A POM micrograph taken from the same area as in (a) but rotated 45° anticlockwise about the light beam[89].Copyright 2006, American Chemical Society
Fig. 9 AFM height images of (a) an oriented PE film and (b) the morphology of P3HT grown on the PE substrate. The white arrows indicate the drawing directions of PE films during preparation[78].Copyright 2011, American Chemical Society
Fig. 10 (a)Schematic of the experimental setup. The setup is designed to control the evaporation rate. The small orifice on the cover allows for slow evaporation of the solvent from the dilute solution film. Optical micrographs (contrast enhanced) of the iPpMS film obtained by slow evaporation of toluene (1.8 μL/min) at room temperature. The size of the images: (b) 400 μm × 400 μm and (c) 80 μm × 80 μm[96].Copyright 2019, American Chemical Society
Fig. 11 Fabrication of PLLA-b-PEG block copolymer crystalsomes. (a)Dissolution of the BCP in toluene; (b) emulsification at 95℃; (c) quenching to 25℃ for crystallization. The driving force of this assembly process is confined PLLA crystallization at the toluene/water interface, leading to a ninefold PLLA chain conformation as shown in c. This confined crystallization process also leads to a 2.5 nm thick PLLA crystal layer, covered with a precisely controlled, uniform PEG brush layer[99]
Fig. 12 Schematic diagram of protein crystallization applying the static drop vapor diffusion method. The solution to be crystallized is placed on a raised platform set in a vessel, and the undesirable solvent is diffused by vapor, eventually causing the polymer to form crystals[102]. Copyright 2014, John Wiley & Sons, Inc
Fig. 13 TEM micrographs of (a) HS-PEO(2K) single crystals and (b, c) 5 nm AuNP-covered HS-PEO(2K) single crystals. The inset shows the FFT pattern. (d) HO-PEO(2K) single crystals after incubation with 5 nm AuNPs. (e, f) AuNP-covered HS-PEO(48.5K) single crystals[152]. Copyright 2008, American Chemical Society
Fig. 14 (i) A HS-PEO lamellar single crystal, which has already formed prior to the addition of gold colloid. The PEO chains are parallel to the lamellar normal and the thiol groups are on the crystal surface. As gold colloid is added to the HS-PEO solution, AuNP-PEO conjugates are formed via the place exchange reaction. The AuNP-PEO conjugates crystallize around the already formed single crystals, generating AuNP frames (ii). After these conjugates are exhausted, PEO continue to crystallize around the AuNP frames, forming a blank margin (iii). 1, 2, and 3 in part iii denote the three distinct regions of the pattern[153]. Copyright 2009, American Chemical Society
Fig. 15 Terraced gradient PEO polymer brush. (a) Synthesis procedure. (bi~fi) PEO single crystal with 1~5 concentric bands; (bii~fii) PEO brushes with 1~5 concentric bands. (biii~fiii) are enlarged images of (bii~fii). (g,h) 3D images of the terraced gradient PEO brush with five bands. (i) height profile and the corresponding σ, measured from dash line area in fiii[163]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 16 Micrograph of a typical P3BT single crystal from solvent-assist crystallization under scanning electron microscopy. Lamellar thickness varying between 15.6 nm and 104 nm can be identified from enlarged inset picture in up-right corner. Schematic diagrams of molecular packing in the lamellar crystals, molecular chain direction c and growth direction b are also included as the inset[213]. Copyright 2006, Elsevier Ltd.
Fig. 17 Time-dependent morphology of the P3HT crystals with different annealing times of 0 (a), 12 (b), 20 (c), and 42 h (d)[218]. Copyright 2010, American Chemical Society
Fig. 18 Optical micrographs of a P3HT crystal (theating = 10 min, tgrowth = 4 h). Image sizes are 25 μm × 25 μm. (a) Bright field. (b) Under crossed polarizers, the long axis of the crystal is at an angle of 45° to both the polarizer and the analyzer. (c) Under crossed polarizers, the long axis of the crystal is at an angle of 0° to the polarizer. (d) Photoluminescence image showing a red emission color (HBO lamp, excitation at 450~500 nm, emission >500 nm, recorded by a CCD color camera). (e) Intensity profiles of the R and G channels for the cross section indicated by the dashed line in (d). (f) Normalized absorption spectra of P3HT melt at 280℃ (blue), drop-casted thin film at room temperature (green), and a needle-like crystal (red) similar to the one shown in (a~d). (g) Photoluminescence spectrum of a needle-like crystal (excitation at 600~700 nm, marked as the shaded area in (f)) collected after a long pass filter (marked as a dashed line in (g))[55].Copyright 2020, American Chemical Society
[1]
Staudinger H. A Source Book in Chemistry, 1900-1950, Henry M(Ed.). England: Harvard University Press, 1968. 259-264.
[2]
Frey H, Johann T. Polym. Chem., 2020, 11(1): 8.

doi: 10.1039/C9PY90161B
[3]
Till P H Jr. J. Polym. Sci., 1957, 24(106): 301.
[4]
Keller A. Philos. Mag., 1957, 2(21): 1171.

doi: 10.1080/14786435708242746
[5]
Fischer E W. Z. Für Naturforschung A, 1957, 12(9): 753.

doi: 10.1515/zna-1957-0912
[6]
Flory P J. Principles of Polymer Chemistry. Ithaca: Cornell University Press, 1953.
[7]
Stack G M, Mandelkern L, Voigt-Martin I G. Polym. Bull., 1982, 8(9-10): 421.

doi: 10.1007/BF00293555
[8]
Tanabe Y, Strobl G R, Fischer E W. Polymer, 1986, 27(8): 1147.

doi: 10.1016/0032-3861(86)90001-7
[9]
Roe R, Gieniewski C, Vadimsky R G. J. Polym. Sci. B, 1973, 11: 1653.
[10]
(a) Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat. Mater., 2009, 8(4): 348;

doi: 10.1038/nmat2405
(b) Ren J, Ma A, Li J, Jiang X, Ma Y, Toda A, Hu W. Eur. Phys. J. E, 2010, 33: 189.

doi: 10.1140/epje/i2010-10661-8
[11]
Flory P J. J. Chem. Phys., 2004, 17 (3):223.

doi: 10.1063/1.1747230
[12]
Zhang S J, Han J R, Gao Y, Guo B H, Reiter G, Xu J. Macromolecules, 2019, 52(19): 7439.

doi: 10.1021/acs.macromol.9b01270
[13]
Zhang S J, Guo B H, Reiter G, Xu J. Macromolecules, 2020, 53(9): 3482.

doi: 10.1021/acs.macromol.0c00113
[14]
Wang Z Q, Duan R L, Pang X A, Wu R L, Guo B H, Xu J. Macromolecules, 2023, 56(3): 999.

doi: 10.1021/acs.macromol.2c02494
[15]
Wunderlich B, Melillo L, Cormier C M, Davidson T, Snyder G. J. Macromol. Sci. B, 1967, 1(3): 485.

doi: 10.1080/00222346708212853
[16]
Bennett R. In Perrys Chemical Engineers Handbook, 6th ed. New York: McGraw-Hill, 1984. 25-40.
[17]
Myerson A. Handbook of Industrial Crystallization, Butterworth-Heinemann, 2002.
[18]
Rånby B G, Noe R W. J. Polym. Sci., 1961, 51(155): 337.
[19]
Storks K H. J. Am. Chem. Soc., 1938, 60(8): 1753.

doi: 10.1021/ja01275a013
[20]
Jaccodine R. Nature, 1955, 176(4476): 305.
[21]
Lauritzen Jr J I, Hoffman JD. Journal of Research of the National Bureau of Standards: Physics and chemistry. Section A, 1959, 63.
[22]
Hu W B, FrenkelD. Macromolecules, 2004, 37(12): 4336.

doi: 10.1021/ma049581t
[23]
Zhou Y J, Hu W B. J. Phys. Chem. B, 2013, 117(10): 3047.

doi: 10.1021/jp311889n
[24]
Keller A. Rep. Prog. Phys., 1968, 31(2): 623.

doi: 10.1088/0034-4885/31/2/304
[25]
Holland V F, Miller R L. J. Appl. Phys., 1964, 35(11): 3241.

doi: 10.1063/1.1713205
[26]
Patel G N, Patel RD. J. Polym. Sci. A-2 Polym. Phys., 1970, 8(1): 47.
[27]
Buleon A, Duprat F, Booy F, Chanzy H. Carbohydr. Polym., 1984, 4(3): 161.

doi: 10.1016/0144-8617(84)90009-2
[28]
Bu H H, Chen E Q, Xu S Y, Guo K X, Wunderlich B. Journal of Polymer Science Part B: Polymer Physics, 1994, 32 (8):1351.

doi: 10.1002/polb.09.v32:8
[29]
Liu L Z, Su F Y, Zhu H S, Li H, Zhou E L, Yan R F, Qian R Y. J. Macromol. Sci. B, 1997, 36(2): 195.

doi: 10.1080/00222349708220425
[30]
Sun L, Zhu L, Ge Q, Quirk R P, Xue C C, Cheng S ZD, Hsiao B S, Avila-Orta C A, Sics I, Cantino M E. Polymer, 2004, 45(9): 2931.

doi: 10.1016/j.polymer.2004.02.068
[31]
Su M, Huang H Y, Ma X J, Wang Q A, Su Z H. Macromol. Rapid Commun., 2013, 34(13): 1067.

doi: 10.1002/marc.v34.13
[32]
Hong Y L, Miyoshi T. ACS Macro Lett., 2014, 3(6): 556.

doi: 10.1021/mz500196s
[33]
Hong Y L, Yuan S C, Li Z, Ke Y T, Nozaki K, Miyoshi T. Phys. Rev. Lett., 2015, 115(16): 168301.

doi: 10.1103/PhysRevLett.115.168301
[34]
Wang S J, Yuan S C, Chen W, Zhou Y, Hong Y L, Miyoshi T. Macromolecules, 2018, 51(21): 8729.

doi: 10.1021/acs.macromol.8b01950
[35]
Lotz B, Lovinger A J, Cais R E. Macromolecules, 1988, 21(8): 2375.

doi: 10.1021/ma00186a013
[36]
Mehta R, Keawwattana W, Guenthner A L, Kyu T. Phys. Rev. E, 2004, 69(6): 061802.

doi: 10.1103/PhysRevE.69.061802
[37]
Calvert P. J. Macromol. Sci., 1980, 14(2): 201.

doi: 10.1080/00222338008066632
[38]
Bank M I, Krimm S. J. Polym. Sci. A-2 Polym. Phys., 1969, 7(10): 1785.
[39]
Geil P H. Polymer single crystals. Krieger Publishing Company, 1963. 5.
[40]
Hoffman J. Soc. Plastics Engrs. Trans., 1964, 4 (1).
[41]
Wunderlich B. Macromolecular Physics. New York: Academic Press, 1973.
[42]
Wang Z G, Hsiao B S, Sirota E B, Agarwal P, Srinivas S. Macromolecules, 2000, 33(3): 978.

doi: 10.1021/ma991468t
[43]
Manabe N, Yokota Y, Minami H, Uegomori Y, Komoto T. J. Electron Microsc., 2002, 51(1): 11.

pmid: 12003237
[44]
D’Ilario L, Martinelli A, Piozzi A. J. Macromol. Sci. B, 2002, 41(1): 47.

doi: 10.1081/MB-120002345
[45]
Symons N K J. J. Polym. Sci. A Gen. Pap., 1963, 1(9): 2843.

doi: 10.1002/pol.10.v1:9
[46]
Kovacs A J, Gonthier A. Kolloid-Z.u.Z.Polymere, 1972, 250(5): 530.
[47]
Toda A, Keller A. Colloid Polym. Sci., 1993, 271(4): 328.

doi: 10.1007/BF00657415
[48]
Liu J, Geil P H. J. Macromol. Sci. B, 1997, 36(1): 61.

doi: 10.1080/00222349708220415
[49]
Zhang B, YangD C, Yan S K. J. Polym. Sci. B, 2002, 40(23): 2641.

doi: 10.1002/polb.v40:23
[50]
Toda A, Okamura M, Hikosaka M, Nakagawa Y. Polymer, 2005, 46(20): 8708.

doi: 10.1016/j.polymer.2005.05.152
[51]
LippitsD R, Rastogi S, Höhne G W H, Mezari B, Magusin P C M M. Macromolecules, 2007, 40(4): 1004.

doi: 10.1021/ma0622837
[52]
Núñez E, Vancso G J, Gedde U W. J. Macromol. Sci. B, 2008, 47(3): 589.

doi: 10.1080/00222340801955636
[53]
Welch P, Muthukumar M. Phys. Rev. Lett., 2001, 87 (21):218302.

doi: 10.1103/PhysRevLett.87.218302
[54]
Lorenzo A T, Müller A J. J. Polym. Sci. B, 2008, 46(14): 1478.

doi: 10.1002/polb.v46:14
[55]
Wu T Y, Pfohl T, Chandran S, Sommer M, Reiter G. Macromolecules, 2020, 53 (19): 8303.

doi: 10.1021/acs.macromol.0c01529
[56]
Rubinstein M, Colby R H. Polymer Physics. New York: Oxford University Press, 2003. Vol. 23.
[57]
Thanh N T K, MacLean N, Mahiddine S. Chem. Rev., 2014, 114 (15):7610.

doi: 10.1021/cr400544s
[58]
Menczel J, Varga J. J. Therm. Anal., 1983, 28(1): 161.

doi: 10.1007/BF02105288
[59]
Xu J, Reiter G, Alamo R. Crystals, 2021, 11(3): 304.

doi: 10.3390/cryst11030304
[60]
Zhang B, Chen J B, Baier M C, Mecking S, Reiter R, Mülhaupt R, Reiter G. Macromol. Rapid Commun., 2015, 36(2): 180.

doi: 10.1002/marc.v36.2
[61]
Agbolaghi S, Abbaspoor S, Abbasi F. Prog. Polym. Sci., 2018, 81: 22.

doi: 10.1016/j.progpolymsci.2017.11.006
[62]
Wang G, Harrison I R. Thermochim. Acta, 1994, 231: 203.

doi: 10.1016/0040-6031(94)80023-5
[63]
Rastogi S, LippitsD R, Peters G W M, Graf R, Yao Y F, Spiess H W. Nat. Mater., 2005, 4(8): 635.

doi: 10.1038/nmat1437 pmid: 16041376
[64]
BlundellD J, Keller A. J. Macromol. Sci. B, 1968, 2(2): 301.

doi: 10.1080/00222346808212454
[65]
Waddon A J, Hill M J, Keller A, BlundellD J. J. Mater. Sci., 1987, 22(5): 1773.

doi: 10.1007/BF01132406
[66]
Chung J S, Cebe P. Polymer, 1992, 33(8): 1594.

doi: 10.1016/0032-3861(92)91055-7
[67]
Ivanov Y M. J. Cryst. Growth, 1998, 194(3-4): 309.

doi: 10.1016/S0022-0248(98)00620-4
[68]
Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat. Mater., 2009, 8(4): 348.

doi: 10.1038/nmat2405
[69]
Reiter G. Chem. Soc. Rev., 2014, 43(7): 2055.

doi: 10.1039/C3CS60306G
[70]
Wang B H, Tang S H, Wang Y, Shen C Y, Reiter R, Reiter G, Chen J B, Zhang B. Macromolecules, 2018, 51(5): 1626.

doi: 10.1021/acs.macromol.7b02445
[71]
Müller A J, Hernández Z H, Arnal M L, Sánchez J J. Polym. Bull., 1997, 39(4): 465.

doi: 10.1007/s002890050174
[72]
Michell R M, Mugica A, Zubitur M, Müller A J. Polymer Crystallization I. Cham: Springer International Publishing, 2015. 215.
[73]
Balzano L, Rastogi S, Peters G. Macromolecules, 2011, 44(8): 2926.

doi: 10.1021/ma102662p
[74]
Alfonso G C, Russell T P. Macromolecules, 1986, 19(4): 1143.

doi: 10.1021/ma00158a036
[75]
Mayes A M. Macromolecules, 1994, 27(11): 3114.

doi: 10.1021/ma00089a033
[76]
Cadek M, Coleman J N, Barron V, Hedicke K, Blau W J. Appl. Phys. Lett., 2002, 81(27): 5123.

doi: 10.1063/1.1533118
[77]
Butté R, Carlin J F, Feltin E, Gonschorek M, Nicolay S, Christmann G, SimeonovD, Castiglia A, Dorsaz J, Buehlmann H J, Christopoulos S, Baldassarri Höger von Hög G, Grundy A JD, Mosca M, Pinquier C, Py M A, Demangeot F, Frandon J, Lagoudakis P G, Baumberg J J, Grandjean N. J. Phys.D: Appl. Phys., 2007, 40(20): 6328.
[78]
Zhou H X, Jiang SD, Yan S K. J. Phys. Chem. B, 2011, 115(46): 13449.

doi: 10.1021/jp205755r
[79]
Li Y P, Guo Z X, Xue M L, Yan S K. Macromolecules, 2019, 52(11): 4232.

doi: 10.1021/acs.macromol.9b00627
[80]
Wang Y, Yan L T, Dastafkan K, Zhao C A, Zhao X B, Xue Y Y, Huo J M, Li S N, Zhai Q G. Adv. Mater., 2022, 34(7): 2006351.
[81]
Koutsky J A, Walton A G, Baer E. J. Polym. Sci. A-2 Polym. Phys., 1966, 4(4): 611.
[82]
Wellinghoff S, Rybnikar F, Baer E. J. Macromol. Sci. B, 2006, 10(1): 1.

doi: 10.1080/00222347408219394
[83]
Wittmann J C, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1981, 19(12): 1837.

doi: 10.1002/pol.18.v19:12
[84]
Wittmann J C, Hodge A M, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1983, 21(12): 2495.

doi: 10.1002/pol.18.v21:12
[85]
Wittmann J C, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1985, 23(1): 205.

doi: 10.1002/pol.18.v23:1
[86]
Wittmann J C, Lotz B. Prog. Polym. Sci., 1990, 15(6): 909.

doi: 10.1016/0079-6700(90)90025-V
[87]
Stocker W, Schumacher M, Graff S, Thierry A, Wittmann J C, Lotz B. Macromolecules, 1998, 31(3): 807.

doi: 10.1021/ma971345d
[88]
Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Polymer, 2000, 41(25): 8909.

doi: 10.1016/S0032-3861(00)00234-2
[89]
Sun Y J, Li H H, Huang Y, Chen E Q, Zhao L F, Gan Z H, Yan S K. Macromolecules, 2005, 38(7): 2739.

doi: 10.1021/ma0474269
[90]
Liu J, Wang J J, Li H H, ShenD Y, Zhang J M, Ozaki Y, Yan S K. J. Phys. Chem. B, 2006, 110(2): 738.

doi: 10.1021/jp053369p
[91]
BowerD I, Solis F J. Am. J. Phys., 2003, 71(3): 285.

doi: 10.1119/1.1533063
[92]
Stamm M. Macromol. Chem. Phys., 2006, 207(8): 787.

doi: 10.1002/macp.v207:8
[93]
Mandelkern L. Crystallization of Polymers. 2nd ed. Cambridge, UK: Cambridge University Press, 2004.
[94]
Tadokoro H. Structure of Crystalline Polymers. Krieger Publishing Company, 1990..
[95]
Fried J. Polymer Science & Technology. Pearson Education, 2014.
[96]
Wu T Y, Valencia L, Pfohl T, Heck B, Reiter G, Lutz P J, Mülhaupt R. Macromolecules, 2019, 52(13): 4839.

doi: 10.1021/acs.macromol.9b00640
[97]
Somorjai G A, JepsenD W. J. Chem. Phys., 1964, 41(5): 1394.

doi: 10.1063/1.1726079
[98]
Byun M, Laskowski R L, He M, Qiu F, Jeffries-EL M, Lin Z Q. Soft Matter, 2009, 5(8): 1583.

doi: 10.1039/b822998h
[99]
Qi H, Zhou H, Tang Q Y, Lee J Y, Fan Z Y, Kim S, Staub M C, Zhou T A, Mei S, Han L, PochanD J, Cheng H, Hu W B, Li C Y. Nat. Commun., 2018, 9: 3005.

doi: 10.1038/s41467-018-05396-x
[100]
Chen J T, Lee C W, Chi M H, Yao I C. Macromol. Rapid Commun., 2013, 34(4): 285.

doi: 10.1002/marc.v34.4
[101]
Sinturel C, Vayer M, Morris M, Hillmyer M A. Macromolecules, 2013, 46(14): 5399.

doi: 10.1021/ma400735a
[102]
McPherson A, Gavira J A. Acta Crystallogr. Sect. F Struct. Biol. Commun., 2014, 70(1): 2.

doi: 10.1107/S2053230X13033141
[103]
Mansky P, Haikin P, Thomas E L. J. Mater. Sci., 1995, 30(8): 1987.

doi: 10.1007/BF00353023
[104]
Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17(10): 1636.

doi: 10.1002/adfm.v17:10
[105]
McAfee S M, Payne A J, Hendsbee AD, Xu S T, Zou Y P, Welch G C. Sol. RRL, 2018, 2(9): 1800143.

doi: 10.1002/solr.v2.9
[106]
Wu T Y, Chandran S, Zhang Y, Zheng T Z, Pfohl T, Xu J, Reiter G. Macromolecules, 2022, 55(8): 3325.

doi: 10.1021/acs.macromol.1c02193
[107]
Diao Y, Shaw L, Bao Z N, Mannsfeld S C B. Energy Environ. Sci., 2014, 7(7): 2145.

doi: 10.1039/C4EE00688G
[108]
Gu XD, Shaw L, Gu K, Toney M F, Bao Z N. Nat. Commun., 2018, 9: 534.

doi: 10.1038/s41467-018-02833-9
[109]
Patel B B, Diao Y. Nanotechnology, 2018, 29(4): 044004.

doi: 10.1088/1361-6528/aa9d7c
[110]
Sele C W, Charlotte Kjellander B K, Niesen B, Thornton M J, van der Putten J B P H, Myny K, Wondergem H J, Moser A, Resel R, van Breemen A J J M, van Aerle N, Heremans P, Anthony J E, Gelinck G H. Adv. Mater., 2009, 21(48): 4926.

doi: 10.1002/adma.v21:48
[111]
Rogowski R Z, Darhuber A A. Langmuir, 2010, 26(13): 11485.

doi: 10.1021/la101002x pmid: 20486716
[112]
Zhang K, Marszalek T, Wucher P, Wang Z Y, Veith L, Lu H, Räder H J, Beaujuge P M, Blom P W M, Pisula W. Adv. Funct. Mater., 2018, 28(50): 1805594.

doi: 10.1002/adfm.v28.50
[113]
Gans A, Dressaire E, Colnet B, Saingier G, Bazant M Z, Sauret A. Soft Matter, 2019, 15(2): 252.

doi: 10.1039/C8SM01785A
[114]
GrossoD. J. Mater. Chem., 2011, 21(43): 17033.

doi: 10.1039/c1jm12837j
[115]
Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, KimD H, Lee S Y, Becerril H A, Aspuru-Guzik A, Toney M F, Bao Z N. Nature, 2011, 480(7378): 504.

doi: 10.1038/nature10683
[116]
Haase K, Zessin J, Zoumboulis K, Müller M, Hambsch M, Mannsfeld S C B. Adv. Electron. Mater., 2019, 5(6):1900067.

doi: 10.1002/aelm.v5.6
[117]
Lu Z J, Wang C Q, Deng W, Achille M T, Jie J S, Zhang X J. J. Mater. Chem. C, 2020, 8(27): 9133.

doi: 10.1039/D0TC01887B
[118]
Galindo S, Tamayo A, Leonardi F, Mas-Torrent M. Adv. Funct. Mater., 2017, 27(25): 1700526.

doi: 10.1002/adfm.v27.25
[119]
Tamayo A, Riera-Galindo S, Jones A O F, Resel R, Mas-Torrent M. Adv. Mater. Interfaces, 2019, 6(22): 1900950.

doi: 10.1002/admi.v6.22
[120]
Gao X A, Han Y C. Chin. J. Polym. Sci., 2013, 31(4): 610.

doi: 10.1007/s10118-013-1259-y
[121]
Zhang K, Wang Z Y, Marszalek T, Borkowski M, Fytas G, Blom P W M, Pisula W. Mater. Horiz., 2020, 7(6): 1631.

doi: 10.1039/D0MH00141D
[122]
Michels J J, Zhang K, Wucher P, Beaujuge P M, Pisula W, Marszalek T. Nat. Mater., 2021, 20(1): 68.

doi: 10.1038/s41563-020-0760-2
[123]
Gu XD, Shaw L, Gu K, Toney M F, Bao Z N. Nat. Commun., 2018, 9: 534.

doi: 10.1038/s41467-018-02833-9
[124]
BurkittD, Greenwood P, Hooper K, RichardsD, Stoichkov V, BeynonD, Jewell E, Watson T. MRS Adv., 2019, 4(24): 1399.

doi: 10.1557/adv.2019.79
[125]
Hema K, Ravi A, Raju C, Pathan J R, Rai R, Sureshan K M. Chem. Soc. Rev., 2021, 50(6): 4062.

doi: 10.1039/D0CS00840K
[126]
Hu F, Hao W B, MückeD, Pan Q Y, Li Z B, Qi H Y, Zhao Y J. J. Am. Chem. Soc., 2021, 143(15): 5636.

doi: 10.1021/jacs.1c00907
[127]
Sun C Y, Oppenheim J J, Skorupskii G, Yang L M, Dincă M. Chem, 2022, 8(12): 3215.

doi: 10.1016/j.chempr.2022.07.028
[128]
Hema K, Raju C, Bhandary S, Sureshan K M. Angew. Chem. Int. Ed., 2022, 61(40): e202210733.
[129]
Liu Y, Guan X R, WangD C, Stoddart J F, Guo Q H. J. Am. Chem. Soc., 2023, 145(24): 13223.

doi: 10.1021/jacs.3c02266
[130]
Price F P. J. Polym. Sci., 1959, 37(131): 71.
[131]
Olley R H, BassettD C. Polymer, 1989, 30(3): 399.

doi: 10.1016/0032-3861(89)90004-9
[132]
Li L, Chan C M, Yeung K L, Li J X, Ng K M, Lei Y G. Macromolecules, 2001, 34(2): 316.

doi: 10.1021/ma000273e
[133]
Tanaka H, Nishi T. Phys. Rev. A, 1989, 39(2): 783.

doi: 10.1103/PhysRevA.39.783
[134]
Kurz W, FisherD J. Acta Metall., 1981, 29(1): 11.

doi: 10.1016/0001-6160(81)90082-1
[135]
Seiler M. Chem. Eng. Technol., 2002, 25(3): 237.

doi: 10.1002/(ISSN)1521-4125
[136]
Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon J M, Bouchet R, Lascaud S. Electrochim. Acta, 2006, 51(25): 5334.

doi: 10.1016/j.electacta.2006.02.004
[137]
Wunderlich B, Mielillo L. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1968, 118 (1): 250.

doi: 10.1002/macp.02.v118:1
[138]
Hikosaka M. Polymer, 1987, 28(8): 1257.

doi: 10.1016/0032-3861(87)90434-4
[139]
Hikosaka M. Polymer, 1990, 31(3): 458.

doi: 10.1016/0032-3861(90)90385-C
[140]
Yan L, Häußler M, Bauer J, Mecking S, Winey K I. Macromolecules, 2019, 52(13): 4949.

doi: 10.1021/acs.macromol.9b00962
[141]
Hill M J, Keller A. J. Macromol. Sci. B, 1969, 3(1): 153.

doi: 10.1080/00222346908217096
[142]
Peterlin A. Int. J. Fract., 1975, 11(5): 761.

doi: 10.1007/BF00012895
[143]
Zhang J, Li J, Han Y. Macromol. Rapid Commun., 2004, 25 (11): 1105.

doi: 10.1002/marc.v25:11
[144]
Hobbs J K, Miles M J. Macromolecules, 2001, 34(3): 353.

doi: 10.1021/ma001697b
[145]
Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield J A. Science, 2007, 316(5827): 1014.

doi: 10.1126/science.1140132
[146]
Somani R H, Yang L, Zhu L, Hsiao B S. Polymer, 2005, 46(20): 8587.

doi: 10.1016/j.polymer.2005.06.034
[147]
Hsiao B S, Yang L, Somani R H, Avila-Orta C A, Zhu L. Phys. Rev. Lett., 2005, 94(11): 117802.

doi: 10.1103/PhysRevLett.94.117802
[148]
Goodwyn M. Ghost Worlds: A Guide to Poltergeists, Portals, Ecto-Mist, & Spirit Behavior. Llewellyn Worldwide, 2011.
[149]
Deng J A, Xu Y X, Liu L Q, Feng C F, Tang J A, Gao Y, Wang Y, Yang B, Lu P, Yang W S, Ma Y G. Chem. Commun., 2016, 52(11): 2370.

doi: 10.1039/C5CC09702A
[150]
Wang B B, Li B, Zhao B, Li C Y. J. Am. Chem. Soc., 2008, 130(35): 11594.

doi: 10.1021/ja804192e
[151]
Li B, Li C Y. Journal of the ACS, 2006, 129 (1):12.
[152]
Li B, Ni C Y, Li C Y. Macromolecules, 2008, 41(1): 149.

doi: 10.1021/ma702047k
[153]
Li B, Wang B B, Ferrier R C M Jr, Li C Y. Macromolecules, 2009, 42(24): 9394.

doi: 10.1021/ma902294k
[154]
Wang B B, Dong B, Li B, Zhao B, Li C Y. Polymer, 2010, 51(21): 4814.

doi: 10.1016/j.polymer.2010.08.016
[155]
Xu L A, Li H, Jiang X, Wang J X, Li L, Song Y L, Jiang L. Macromol. Rapid Commun., 2010, 31(16): 169.

doi: 10.1002/marc.v31:2
[156]
Zhang H, Dong B, Zhou T A, Li C Y. Nanoscale, 2012, 4(24): 7641.

doi: 10.1039/c2nr32866f pmid: 23128900
[157]
Zhou T A, Wang B B, Dong B, Li C Y. Macromolecules, 2012, 45(21): 8780.

doi: 10.1021/ma3019987
[158]
Dong B, Zhou T A, Zhang H, Li C Y. ACS Nano, 2013, 7(6): 5192.

doi: 10.1021/nn400925q pmid: 23647410
[159]
Liu M, Liu L M, Gao W L, Su MD, Ge Y, Shi L L, Zhang H, Dong B, Li C Y. Nanoscale, 2014, 6(15): 8601.

doi: 10.1039/C4NR02593H
[160]
Zhou T A, Dong B, Qi H, Lau H K, Li C Y. Nanoscale, 2014, 6(9): 4551.

doi: 10.1039/C4NR00501E
[161]
Zhang H, Liu M, Zhou T A, Dong B, Li C Y. Nanoscale, 2015, 7(25): 11033.

doi: 10.1039/c5nr01890k pmid: 26053969
[162]
Mei S, Qi H, Zhou T A, Li C Y. Angew. Chem. Int. Ed., 2017, 56(44): 13645.

doi: 10.1002/anie.v56.44
[163]
Mei S, Li C Y. Angew. Chem. Int. Ed., 2018, 57(48): 15758.

doi: 10.1002/anie.v57.48
[164]
Dong B, Li B, Li C Y. J. Mater. Chem., 2011, 21(35): 13155.

doi: 10.1039/c1jm12866c
[165]
Zhou T A, Qi H, Han L, BarbashD, Li C Y. Nat. Commun., 2016, 7: 11119.

doi: 10.1038/ncomms11119
[166]
Mei S, Wilk J T, Chancellor A J, Zhao B, Li C Y. Macromol. Rapid Commun., 2020, 41(15): 2000228.

doi: 10.1002/marc.v41.15
[167]
AllaraD L. Biosens. Bioelectron., 1995, 10(9-10): 771.

doi: 10.1016/0956-5663(95)99215-7
[168]
Ji H F, Dabestani R, Brown G M, Britt P F. Chem. Commun., 2000,(6): 457.
[169]
Schreiber F. Prog. Surf. Sci., 2000, 65(5-8): 151.

doi: 10.1016/S0079-6816(00)00024-1
[170]
Schoenbaum C A, SchwartzD K, Medlin J W. Acc. Chem. Res., 2014, 47(4): 1438.

doi: 10.1021/ar500029y
[171]
Zhou T A, Qi H, Han L, BarbashD, Li C Y. Nat. Commun., 2016, 7: 11119.

doi: 10.1038/ncomms11119
[172]
Mei S, Wilk J T, Chancellor A J, Zhao B, Li C Y. Macromol. Rapid Commun., 2020, 41(15): e2000228.
[173]
McGehee M D, Heeger A J. Adv.Mater., 2000, 12 (22): 1655.
[174]
Heeger A. Chem.Soc.Rev., 2010, 39 (7):2354.
[175]
Heeger A J, Kivelson S, Schrieffer J R, Su W P. Rev. Mod. Phys., 1988, 60(3): 781.

doi: 10.1103/RevModPhys.60.781
[176]
MacDiarmid A G, Chiang J C, Richter A F, Epstein A J. Synth. Met., 1987, 18(1-3): 285.

doi: 10.1016/0379-6779(87)90893-9
[177]
MacDiarmid A G, Chiang J C, Halpern M, Huang W S, Mu S L, Nanaxakkara LD, Wu S W, Yaniger S I. Mol. Cryst. Liq. Cryst., 1985, 121(1/4): 173.

doi: 10.1080/00268948508074857
[178]
MacDiarmid A G. Rev.Mod.Phys. 2001, 40 (14): 2581.
[179]
Shirakawa H, Louis E, MacDiarmid A, Chiang C K, Heeger A J. Chem.Commun., 1977, (16): 578.
[180]
Shirakawa H, McDiarmid A, Heeger A. Chem.Commun., 2003, 2003 (1): 1.
[181]
Shirakawa H, Ito T, Ikeda S. Makromol. Chem., 1978, 179 (6):1565.

doi: 10.1002/macp.02.v179:6
[182]
Dai C H, Liu B. Energy Environ. Sci., 2020, 13(1): 24.

doi: 10.1039/C9EE01935A
[183]
Feng L H, Zhu C L, Yuan H X, Liu L B, Lv F T, Wang S. Chem. Soc. Rev., 2013, 42(16): 6620.

doi: 10.1039/c3cs60036j
[184]
Guo X, Baumgarten M, Müllen K. Prog. Polym. Sci., 2013, 38(12): 1832.

doi: 10.1016/j.progpolymsci.2013.09.005
[185]
Inal S, Rivnay J, Suiu A O, Malliaras G G, McCulloch I. Acc. Chem. Res., 2018, 51(6): 1368.

doi: 10.1021/acs.accounts.7b00624
[186]
Melling D, Martinez J G, Jager E W H. Adv. Mater., 2019, 31(22): 1808210.

doi: 10.1002/adma.v31.22
[187]
Qiu Z J, Hammer B A G, Müllen K. Prog. Polym. Sci., 2020, 100: 101179.

doi: 10.1016/j.progpolymsci.2019.101179
[188]
Tuncel D, Demir H V. Nanoscale, 2010, 2(4): 484.

doi: 10.1039/b9nr00374f pmid: 20644748
[189]
Vahdatiyekta P, Zniber M, Bobacka J, Huynh T P. Anal. Chim. Acta, 2022, 1221: 340114.

doi: 10.1016/j.aca.2022.340114
[190]
Wang S H, Zuo G Z, Kim J, Sirringhaus H. Prog. Polym. Sci., 2022, 129: 101548.

doi: 10.1016/j.progpolymsci.2022.101548
[191]
Xu Y, Cui Y, Yao H F, Zhang T, Zhang J Q, Ma L J, Wang J W, Wei Z X, Hou J H. Adv. Mater., 2021, 33(22): e2101090.
[192]
Bruner C, Novoa F, Dupont S, Dauskardt R. ACS Appl. Mater. Interfaces, 2014, 6(23): 21474.

doi: 10.1021/am506482q
[193]
Kim J S, Lee J H, Park J H, Shim C, Sim M, Cho K. Adv. Funct. Mater., 2011, 21(3): 480.

doi: 10.1002/adfm.v21.3
[194]
Kim M, Jo S B, Park J H, Cho K. Nano Energy, 2015, 18: 97.

doi: 10.1016/j.nanoen.2015.10.007
[195]
Liu F, ChenD A, Wang C, Luo K Y, Gu W Y, Briseno A L, Hsu J W P, Russell T P. ACS Appl. Mater. Interfaces, 2014, 6(22): 19876.

doi: 10.1021/am505283k
[196]
Lu L Y, Zheng T Y, Wu Q H, Schneider A M, ZhaoD L, Yu L P. Chem. Rev., 2015, 115(23): 12666.

doi: 10.1021/acs.chemrev.5b00098
[197]
Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L. Thin Solid Films, 2004, 451-452: 22.
[198]
Kim J H, Park J H, Lee J H, Kim J S, Sim M, Shim C, Cho K. J. Mater. Chem., 2010, 20(35): 7398.

doi: 10.1039/c0jm00666a
[199]
Han T H, Lee Y, Choi M R, Woo S H, Bae S H, Hong B H, Ahn J H, Lee T W. Nat. Photonics, 2012, 6(2): 105.

doi: 10.1038/nphoton.2011.318
[200]
Admassie S, Zhang F L, Manoj A G, Svensson M, Andersson M R, Inganäs O. Sol. Energy Mater. Sol. Cells, 2006, 90(2): 133.

doi: 10.1016/j.solmat.2005.02.005
[201]
Yoon H, Chang M, Jang J. Adv. Funct. Mater., 2007, 17(3): 431.

doi: 10.1002/adfm.v17:3
[202]
Park YD, Lee H S, Choi Y J, KwakD, Cho J H, Lee S, Cho K. Adv. Funct. Mater., 2009, 19(8): 1200.

doi: 10.1002/adfm.v19:8
[203]
Qiu L Z, Lee W H, Wang X H, Kim J S, Lim J A, KwakD, Lee S, Cho K. Adv. Mater., 2009, 21(13): 1349.

doi: 10.1002/adma.v21:13
[204]
Wang C C, Rivnay J, Himmelberger S, Vakhshouri K, Toney M F, Gomez ED, Salleo A. ACS Appl. Mater. Interfaces, 2013, 5(7): 2342.

doi: 10.1021/am3027103
[205]
Yang H, Shin T J, Yang L, Cho K, Ryu C Y, Bao Z. Adv. Funct. Mater., 2005, 15(4): 671.

doi: 10.1002/(ISSN)1616-3028
[206]
Lee J Y, Lin C J, Lo C T, Tsai J C, Chen W C. Macromolecules, 2013, 46(8): 3005.

doi: 10.1021/ma400384a
[207]
Lim J A, Kim J H, Qiu L Z, Lee W H, Lee H S, KwakD, Cho K. Adv. Funct. Mater., 2010, 20(19): 3292.

doi: 10.1002/adfm.v20:19
[208]
Liu H Q, Reccius C H, Craighead H G. Appl. Phys. Lett., 2005, 87(25): 253106.

doi: 10.1063/1.2149980
[209]
Zenoozi S, Agbolaghi S, Poormahdi E, Hashemzadeh-Gargari M, Mahmoudi M. Macromol. Res., 2017, 25(8): 826.

doi: 10.1007/s13233-017-5082-0
[210]
Cho B, Park K S, Baek J, Oh H S, Koo Lee Y E, Sung M M. Nano Lett., 2014, 14(6): 3321.

doi: 10.1021/nl500748y
[211]
Jeon S S, Park J K, Yoon C S, Im S S. Langmuir, 2009, 25(19): 11420.

doi: 10.1021/la901563n
[212]
Kim D, Han J, Park Y, Jang Y, Cho J, Hwang M, Cho K. Adv. Mater., 2006, 18(6): 719.

doi: 10.1002/adma.v18:6
[213]
Ma Z Y, Geng Y H, YanD H. Polymer, 2007, 48(1): 31.

doi: 10.1016/j.polymer.2006.10.034
[214]
Nuraje N, Su K, Yang N, Matsui H. ACS Nano, 2008, 2 (3):502.

doi: 10.1021/nn7001536
[215]
Schoonveld W A, Vrijmoeth J, Klapwijk T M. Appl. Phys. Lett., 1998, 73(26): 3884.

doi: 10.1063/1.122924
[216]
Su K, Nuraje N, Zhang L, Chu I W, Peetz R, Matsui H, Yang N L. Adv. Mater., 2007, 19(5): 669.

doi: 10.1002/adma.v19:5
[217]
Xiao X L, Hu Z J, Wang Z B, He T. J. Phys. Chem. B, 2009, 113 (44):14604.

doi: 10.1021/jp9064505
[218]
Xiao X L, Wang Z B, Hu Z J, He T. J. Phys. Chem. B, 2010, 114 (22): 7452.

doi: 10.1021/jp911525d
[219]
Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch F P V, Nguyen H, Coulembier O, Dubois P, Brinkmann M, Reiter G. Angew. Chem., 2012, 124(44): 11293.

doi: 10.1002/ange.v124.44
No related articles found!