中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2561-2572 DOI: 10.7536/PC220512   Next Articles

• CONTENTS •

Explainable Deep Learning in Spectral and Medical Image Analysis

Xuyang Liu1, Chaoshu Duan1, Wensheng Cai1,2, Xueguang Shao1,2()   

  1. 1 Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University,Tianjin 300071, China
    2 Haihe Laboratory of Sustainable Chemical Transformations,Tianjin 300192, China
  • Received: Revised: Online: Published:
  • Contact: Xueguang Shao
  • Supported by:
    National Natural Science Foundation of China(22174075); Natural Science Foundation of Tianjin, China(20JCYBJC01480); Haihe Laboratory of Sustainable Chemical Transformations(ZYTS202105)
Richhtml ( 54 ) PDF ( 465 ) Cited
Export

EndNote

Ris

BibTeX

Deep learning is a modeling method based on neural network, which is constructed of multiple different functional perception layers and optimized by learning the inherent regularity of a large amount of data to achieve end-to-end modeling. The growth of data and the improvement of computing power promoted the applications of deep learning in spectral and medical image analysis. The lack of interpretability of the constructed models, however, constitutes an obstacle to their further development and applications. To overcome this obstacle of deep learning, various interpretability methods are proposed. According to different principles of explanation, interpretability methods are divided into three categories: visualization methods, model distillation, and interpretable models. Visualization methods and model distillation belong to external algorithms, which interpret a model without changing its structure, while interpretable models aim to make the model structure interpretable. In this review, the principles of deep learning and three interpretability methods are introduced from the perspective of algorithms. Moreover, the applications of the interpretability methods in spectral and medical image analysis in the past three years are summarized. In most studies, external algorithms were developed to make the models explainable, and these methods were found to be able to provide reasonable explanation for the abilities of the deep learning models. However, few studies attempt to construct interpretable algorithms within networks. Furthermore, most studies try to train the model through collecting large amounts of labeled data, which leads to huge costs in both labor and expenses. Therefore, training strategies with small data sets, approaches to enhance the interpretability of models, and the construction of interpretable deep learning architectures are still required in future work.

Contents

1 Introduction

2 Principle and algorithm

3 Interpretability method

3.1 Visualization method

3.2 Model distillation

3.3 Interpretable model

4 Spectral analysis

5 Medical image analysis

5.1 Segmentation

5.2 Disease diagnosis

6 Summary and outlook

Fig. 1 Structure and calculation process of CNN
Fig. 2 Structure and calculation process of RNN
Fig. 3 Example of calculation process of grad-CAM algorithm
Fig. 4 Example of calculation process of integrated gradient algorithm
Fig. 5 Visualization of feature importance distribution by occlusion sensitivity algorithm
Fig. 6 Example of calculation process of LIME algorithm
Fig. 7 Model interpretation mechanism of SENNs
Fig. 8 Neural network classification strategy combined with PCA[49]. Reprinted with permission from [49]. Copyright 2022 American Chemical Society
Fig. 9 NIR-IIb image predicted by CycleGAN[55]
[1]
Miotto R, Wang F, Wang S, Jiang X Q, Dudley J T. Brief. Bioinform., 2018, 19(6): 1236.
[2]
Senior A W, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C L, Žídek A, Nelson A W R, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones D T, Silver D, Kavukcuoglu K, Hassabis D. Nature, 2020, 577(7792): 706.
[3]
Jing R Y, Li Y Z, Xue L, Liu F J, Li M L, Luo J S. J. Chem. Inf. Model., 2020, 60(8): 3755.
[4]
Yang X, Wang Y F, Byrne R, Schneider G, Yang S Y. Chem. Rev., 2019, 119(18): 10520.

doi: 10.1021/acs.chemrev.8b00728 pmid: 31294972
[5]
Zhang X L, Lin T, Xu J F, Luo X, Ying Y B. Anal. Chimica Acta, 2019, 1058: 48.
[6]
Li W Z, Miao W, Cui J X, Fang C, Su S T, Li H Z, Hu L H, Lu Y H, Chen G H. J. Chem. Inf. Model., 2019, 59(5): 1849.
[7]
Li W Z, Wang D H, Yang Z R, Zhang H J, Hu L H, Chen G H. J. Chem. Inf. Model., 2021, acs.jcim.1c01305.
[8]
Yang J, Xu J F, Zhang X L, Wu C Y, Lin T, Ying Y B. Anal. Chimica Acta, 2019, 1081: 6.
[9]
Shao X G, Leung A K M, Chau F T. Acc. Chem. Res., 2003, 36(4): 276.
[10]
Cai W S, Li Y K, Shao X G. Chemom. Intell. Lab. Syst., 2008, 90(2): 188.
[11]
Zhang J, Cui X Y, Cai W S, Shao X G. Sci. China Chem., 2019, 62(2): 271.

doi: 10.1007/s11426-018-9368-9
[12]
Kermany D S, Goldbaum M, Cai W J, Valentim C C S, Liang H Y, Baxter S L, McKeown A, Yang G, Wu X K, Yan F B, Dong J, Prasadha M K, Pei J, Ting M Y L, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R Z, Zheng L H, Hou R, Shi W, Fu X, Duan Y O, Huu V A N, Wen C, Zhang E D, Zhang C L, Li O L, Wang X B, Singer M A, Sun X D, Xu J, Tafreshi A, Lewis M A, Xia H M, Zhang K. Cell, 2018, 172(5): 1122.

doi: S0092-8674(18)30154-5 pmid: 29474911
[13]
Wang P, Xiao X, Glissen Brown J R, Berzin T M, Tu M T, Xiong F, Hu X, Liu P X, Song Y, Zhang D, Yang X, Li L P, He J, Yi X, Liu J J, Liu X G. Nat. Biomed. Eng., 2018, 2(10): 741.

doi: 10.1038/s41551-018-0301-3 pmid: 31015647
[14]
Shi Z, Miao C C, Schoepf U J, Savage R H, Dargis D M, Pan C W, Chai X, Li X L, Xia S, Zhang X, Gu Y, Zhang Y G, Hu B, Xu W D, Zhou C S, Luo S, Wang H, Mao L, Liang K M, Wen L L, Zhou L J, Yu Y Z, Lu G M, Zhang L J. Nat. Commun., 2020, 11: 6090.
[15]
He H, Yan S, Lyu D Y, Xu M X, Ye R Q, Zheng P, Lu X Y, Wang L, Ren B. Anal. Chem., 2021, 93(8): 3653.
[16]
Shen D G, Wu G R, Suk H I. Annu. Rev. Biomed. Eng., 2017, 19: 221.
[17]
McCulloch W S, Pitts W. Bull. Math. Biophys., 1943, 5(4): 115.
[18]
Rosenblatt F. Psychol. Rev., 1958, 65(6): 386.
[19]
Rumelhart D E, Hinton G E, Williams R J. California Univ San Diego La Jolla Inst for Cognitive Science, 1985, 1.
[20]
Long J, Shelhamer E, Darrell T. 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. IEEE, 2015, 3431.
[21]
Ronneberger O, Fischer P, Brox T. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, 234.
[22]
Hochreiter S, Schmidhuber J. Neural Comput., 1997, 9(8): 1735.

doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276
[23]
Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. arXiv preprint arXiv:1406.1078, 2014.
[24]
Bahdanau D, Cho K, Bengio Y. arXiv preprint arXiv:1409.0473, 2014.
[25]
Luong M-T, Pham H, Manning C D. arXiv preprint arXiv:1508.04025, 2015.
[26]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I. Advances in neural information processing systems, 2017.
[27]
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Advances in neural information processing systems, 2014.
[28]
Isola P, Zhu J Y, Zhou T H, Efros A A. 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. IEEE, 2017, 5967.
[29]
Zhu J Y, Park T, Isola P, Efros A A. 2017 IEEE International Conference on Computer Vision. Venice, Italy. IEEE, 2017, 2242.
[30]
Zhou B L, Khosla A, Lapedriza A, Oliva A, Torralba A. 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE,2016, 2921.
[31]
Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017, 618.
[32]
Sundararajan M, Taly A, Yan Q Q. International Conference on Machine Learning, 2017, 3319.
[33]
Zeiler M D, Fergus R. European Conference on Computer Vision, 2014, 818.
[34]
Fong R C, Vedaldi A. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2017, 3429.
[35]
Zintgraf L M, Cohen T S, Adel T, Welling M. arXiv preprint arXiv:1702.04595, 2017.
[36]
Ribeiro M T, Singh S, Guestrin C.Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. New York, NY, USA: ACM, 2016, 1135.
[37]
Lundberg S M, Lee S-I.Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, 4768.
[38]
Frosst N, Hinton G. arXiv preprint arXiv:1711.09784, 2017.
[39]
Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y. International Conference on Machine Learning, 2015, 2048.
[40]
Zellers R, Bisk Y, Farhadi A, Choi Y. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019, 6713.
[41]
Alvarez-Melis D, Jaakkola T S. arXiv preprint arXiv:1806.07538, 2018.
[42]
Bian X H, Li S J, Shao X G, Liu P. Chemom. Intell. Lab. Syst., 2016, 158: 174.
[43]
Zhang M, Cai W S, Shao X G. Anal., 2011, 136(20): 4217.
[44]
Ju L, Lyu A H, Hao H X, Shen W, Cui H. Anal. Chem., 2019, 91(15): 9343.
[45]
Ni C, Wang D Y, Tao Y. Spectrochim. Acta, Part A, 2019, 209: 32.
[46]
Zhang C, Wu W Y, Zhou L, Cheng H, Ye X Q, He Y. Food Chem., 2020, 319: 126536.
[47]
Xiong Y R, Yang W Y, Liao H Y, Gong Z L, Xu Z Z, Du Y P, Li W. Chemom. Intell. Lab. Syst., 2022, 223: 104532.
[48]
Huang G Z, Yuan L M, Shi W, Chen X, Chen X J. Food Chem., 2022, 372: 131219.
[49]
Shin H, Oh S, Hong S, Kang M, Kang D, Ji Y G, Choi B H, Kang K W, Jeong H, Park Y, Hong S, Kim H K, Choi Y. ACS Nano, 2020, 14(5): 5435.
[50]
Shu C, Yan H S, Zheng W, Lin K, James A, Selvarajan S, Lim C M, Huang Z W. Anal. Chem., 2021, 93(31): 10898.
[51]
Huang J L, Wen J X, Zhou M J, Ni S, Le W, Chen G, Wei L, Zeng Y, Qi D J, Pan M, Xu J N, Wu Y, Li Z Y, Feng Y L, Zhao Z Q, He Z B, Li B, Zhao S N, Zhang B H, Xue P L, He S S, Fang K, Zhao Y Y, Du K. Anal. Chem., 2021, 93(26): 9174.
[52]
Yu S X, Li X, Lu W L, Li H F, Fu Y V, Liu F H. Anal. Chem., 2021, 93(32): 11089.
[53]
Zhou L, Zhang C, Taha M F, Wei X H, He Y, Qiu Z J, Liu Y F. Front. Plant Sci., 2020, 11: 575810.
[54]
Yang S, Li C X, Mei Y, Liu W, Liu R, Chen W L, Han D H, Xu K X. Front. Nutr., 2021, 8: 680627.
[55]
Ma Z R, Wang F F, Wang W Z, Zhong Y T, Dai H J. Deep learning for in vivo near-infrared imaging. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(1): e2021446118.
[56]
Guo S X, Mayerhöfer T, Pahlow S, Hübner U, Popp J, Bocklitz T. Anal., 2020, 145(15): 5213.
[57]
Badrinarayanan V, Handa A, Cipolla R. arXiv preprint arXiv:1505.07293, 2015.
[58]
Fu J, Liu J, Tian H J, Li Y, Bao Y J, Fang Z W, Lu H Q. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019, 3141.
[59]
Bouteldja N, Klinkhammer B M, Bülow R D, Droste P, Otten S W, von Stillfried S F, Moellmann J, Sheehan S M, Korstanje R, Menzel S, Bankhead P, Mietsch M, Drummer C, Lehrke M, Kramann R, Floege J, Boor P, Merhof D. J. Am. Soc. Nephrol., 2021, 32(1): 52.

doi: 10.1681/ASN.2020050597 pmid: 33154175
[60]
Wang X D, Chen Y, Gao Y S, Zhang H Q, Guan Z H, Dong Z, Zheng Y X, Jiang J R, Yang H Q, Wang L M, Huang X M, Ai L R, Yu W L, Li H W, Dong C S, Zhou Z, Liu X Y, Yu G Z. Nat. Commun., 2021, 12: 1637.
[61]
Zhang K, Liu X H, Shen J, Li Z H, Sang Y, Wu X W, Zha Y F, Liang W H, Wang C D, Wang K, Ye L S, Gao M, Zhou Z G, Li L, Wang J, Yang Z H, Cai H M, Xu J, Yang L, Cai W J, Xu W Q, Wu S X, Zhang W, Jiang S P, Zheng L H, Zhang X, Wang L, Lu L, Li J M, Yin H P, Wang W, Li O L, Zhang C, Liang L, Wu T, Deng R Y, Wei K, Zhou Y, Chen T, Lau J Y N, Fok M, He J X, Lin T X, Li W M, Wang G Y. Cell, 2020, 181(6): 1423.

doi: S0092-8674(20)30551-1 pmid: 32416069
[62]
Wang G Y, Liu X H, Shen J, Wang C D, Li Z H, Ye L S, Wu X W, Chen T, Wang K, Zhang X, Zhou Z G, Yang J, Sang Y, Deng R Y, Liang W H, Yu T, Gao M, Wang J, Yang Z H, Cai H M, Lu G M, Zhang L Y, Yang L, Xu W Q, Wang W, Olvera A, Ziyar I, Zhang C, Li O L, Liao W H, Liu J, Chen W, Chen W, Shi J C, Zheng L H, Zhang L J, Yan Z H, Zou X G, Lin G P, Cao G Q, Lau L L, Mo L, Liang Y, Roberts M, Sala E, Schönlieb C B, Fok M, Lau J Y N, Xu T, He J X, Zhang K, Li W M, Lin T X. Nat. Biomed. Eng., 2021, 5(8): 509.
[63]
Lee H, Yune S, Mansouri M, Kim M, Tajmir S H, Guerrier C E, Ebert S A, Pomerantz S R, Romero J M, Kamalian S, Gonzalez R G, Lev M H, Do S. Nat. Biomed. Eng., 2019, 3(3): 173.
[64]
Zhou D J, Tian F, Tian X D, Sun L, Huang X H, Zhao F, Zhou N, Chen Z Y, Zhang Q, Yang M, Yang Y C, Guo X X, Li Z B, Liu J, Wang J F, Wang J F, Wang B M, Zhang G L, Sun B C, Zhang W, Kong D L, Chen K X, Li X C. Nat. Commun., 2020, 11: 2961.
[65]
Gehrung M, Crispin-Ortuzar M, Berman A G, O’Donovan M, Fitzgerald R C, Markowetz F. Nat. Med., 2021, 27(5): 833.

doi: 10.1038/s41591-021-01287-9 pmid: 33859411
[66]
Qian X J, Pei J, Zheng H, Xie X X, Yan L, Zhang H, Han C G, Gao X, Zhang H Q, Zheng W W, Sun Q, Lu L, Shung K K. Nat. Biomed. Eng., 2021, 5(6): 522.
[67]
Liu Y, Jain A, Eng C, Way D H, Lee K, Bui P, Kanada K, de Oliveira Marinho G, Gallegos J, Gabriele S, Gupta V, Singh N, Natarajan V, Hofmann-Wellenhof R, Corrado G S, Peng L H, Webster D R, Ai D, Huang S J, Liu Y, Dunn R C, Coz D. Nat. Med., 2020, 26(6): 900.
[68]
Yu G, Sun K, Xu C, Shi X H, Wu C, Xie T, Meng R Q, Meng X H, Wang K S, Xiao H M, Deng H W. Nat. Commun., 2021, 12: 6311.
[1] Shen Yi,Peng Yun,Wu Peiyi**,Yang Yuliang. Two-Dimensional(2D) Correlation Spectroscopy [J]. Progress in Chemistry, 2005, 17(03): 499-513.
[2] Xu Lu,Hu Changyu. Artificial Neural Networks in Chemistry [J]. Progress in Chemistry, 2000, 12(01): 18-.