中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 434-446 DOI: 10.7536/PC210108 Previous Articles   Next Articles

• Review •

Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries

Geng Gao1,2†, Keyu Zhang1,2†, Qianwen Wang1,2, Libo Zhang2, Dingfang Cui2(), Yaochun Yao1,2()   

  1. 1 National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology,Kunming 650093, China
    2 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received: Revised: Online: Published:
  • Contact: Dingfang Cui, Yaochun Yao
  • About author:
    † These authors contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(52064031); National Natural Science Foundation of China(52104302); Natural Science Foundation of Yunnan Province(2018HB012); Natural Science Foundation of Yunnan Province(202101BZ070001-020); Xingdian Talent Support Project(KKS9202052010)
Richhtml ( 47 ) PDF ( 857 ) Cited
Export

EndNote

Ris

BibTeX

Recently, the capacities and energy densities of graphite anode material and lithium transition metal oxide cathode materials for commercial lithium ion batteries are approaching their theoretical values. Exploring the next generation of high-energy density electrode materials is the key factor to solve the capacity limitation of lithium ion batteries at the present stage. New metal oxalate-based anode materials have been considered as a kind of green energy storage material with broad application prospects in metal ion batteries by virtue of the high energy density and excellent cycling stability with the aid of their diversified energy storage mechanism. In this paper, we review the latest research on metal oxalate-based anode materials in lithium, sodium and potassium metal ion batteries, and emphatically introduce their crystal structures, diversified energy storage mechanism and dynamics characteristics in the process of energy storage. The problems existing in electrochemical energy storage of materials are briefly described and their modification strategies based on controlling of crystal structure and morphology, interface carbon composite and metal elements doping are analyzed. Furthermore, the development direction of metal oxalate-base anode materials in alkali metal (Li, Na, K) ion battery system is predicted.

Contents

1 Introduction

2 Structural characterization of metal oxalate

3 Application in lithium ion batteries

3.1 Traditional lithium storage mechanism

3.2 Novel lithium storage mechanism

3.3 Lithium storage kinetics of metal oxalate based materials

3.4 Modification strategy of electrochemistry property

4 Application in other metal ion batteries

4.1 Sodium-ion batteries

4.2 Potassium ion batteries

5 Conclusion and outlook

Fig. 1 Lithiation potential (cathodic peak) vs. specific capacity for various transition metal-based electrode materials (transition metal oxalates[26⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~39], transition metal oxysalt[22⇓⇓~25,40⇓⇓⇓⇓~45], oxides[11⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~22],other types of negative electrodes[7,8,10])
Fig. 2 Diagram of crystal structure of different metal oxalates: a) CoC2 O4[53].Copyright 2018, American Chemical Society; b) FeC2O4·2H2O[37].Copyright 2020, Elsevier; c) FeC2O4·2H2O crystal evolution mechanism diagram[57].Copyright 2020, Elsevier; d) α-MnC2O4·2H2O, e) γ-MnC2O4·2H2O, f) MnC2O4·3H2O[54]. Copyright 2020, American Chemical Society.
Fig. 3 Schematic of the evolution in layered structure sintered at different temperatures: a) The stress distribution vs. Crystal water content; b) Diagram of lithium ion diffusion channel and stress distribution[37]. Copyright 2020, Elsevier
Fig. 4 Ex situ FT-IR spectrum of FeC2O4·2H2O electrode during first discharge/charge cycle at different voltages[37]. Copyright 2020, Elsevier
Fig. 5 a) TEM image of α@β-FeC2O4 electrode material after 100 cycles at 0.5 C rate; b) Galvanostatic discharge/charge curves of the different cycles for α@β-FeC2O4 electrodes at 0.1 C (0.1 A/g); c) XPS spectra of Fe 2p for α@β-FeC2O4 electrodes upon lithiation and delithiation during the first cycle[37]. Copyright 2020, Elsevier; d) TEM image of SnC2O4 /rGO electrode during discharge, charge and after extensive cycles[26].Copyright 2017,American Chemical Society
Fig. 6 a) Cycle performance curve of multilayer iron oxalate with mesoporous nanostructure,b) Schematic illustration for synthesis of multilayer iron oxalate with mesoporous nanostructure[38].Copyright 2018, Elsevier; c) Diagram for active site of cocoon iron oxalate[35]. Copyright 2012, American Chemical Society
Fig. 7 a) Mobility mechanism for Li+ ions in different polymorphs; b) Linear relation of the anodic peak current (Ip) and the square root of the scan rate (γ1/2) for intercalation and deintercalation process; c) Long-term cycling performance and coulombic efficiency at constant of 0.5 A/g[36]. Copyright 2019, Elsevier.
Table 1 Electrochemistry property of various metal oxalates with different morphologies (1 C = 1 Li h-1·mol-1)
Metal oxalates Theoretical capacity (mAh /g) Coulombic efficiency (1st) Long-term cycle behavior
(capacity, cycle, current (A/g))
Capacity retention ref
MnC2O4 nanoribbon 374.95 47.62% 250 (100th, 1 C) 23.81% 28
MnC2O4 microtubes 374.95 48.10% 990 (100th, 0.375) 76.94% 39
FeC2O4 multilayer and mesoporous 372.58 63.29% 993.3 (200th, 1 C) 65.30% 38
FeC2O4·2H2O(A-FCO-55) 297.95 47.92% 550 (300th, 0.5) 36.26% 37
FeC2O4(A-FCO-300) 372.58 72.22% 1040 (300th, 0.5) 72.22% 37
α@β-FeC2O4 372.58 79.86% 1156.27 (500th, 0.5) 72.69% 36
FeC2O4 concoons 372.58 - 825 (100th, 1 C) 63.95% 35
FeC2O4 rods 372.58 - 906 (100th, 1 C) 69.16% 35
FeC2O4·2H2O microrods 372.58 - 346 (100th, 0.5 C) 25.82% 70
FeC2O4 array 372.58 - 1267 (200th, 0.756) 34
CoC2O4 nanorods 364.77 61.96% 924 (100th, 0.05) 57.43% 33
CoC2O4 nanorods 364.77 62.16% 959 (100th, 1 C) 59.97% 32
CoC2O4 nanosheets 364.77 64.89% 741 (100th, 1 C) 48.81% 32
Porous CoC2O4 nanorods 364.77 - 1230 (100th, 0.5) 80.60% 31
NiC2O4·2H2O nanorods 293.32 67.70% 578.9 (100th, 0.5) 54% 59
NiC2O4 nanorods 365.36 59.20% 300 (100th, 0.5) 42.86% 59
NiC2O4 nanoribbon 365.36 67.00% 250 (60th, 2 C) 22.73% 28
CuC2O4·0.14H2O cylinder 43.10% 970 (100th, 0.2) 105.40% 30
CuC2O4·0.53H2O rod 42.00% 849.3 (100th, 0.2) 70.11% 30
CuC2O4·0.14H2O spherical 57% 1260.4 (100th, 0.2) 87.77% 29
CuC2O4·0.49H2O cotton 37.60% 1181.1 (100th, 0.2) 69.93% 29
CuC2O4·xH2O caky 51.20% 873 (100th, 0.1) 106.59% 71
ZnC2O4 nanoribbon - 200 (75th, 2 C) 18.52% 28
SnC2O4 46.00% 170 (200th, 0.1) 12.20% 26
Fig. 8 a) Schematic illustration of the C-NaCrO2//C-CoC2O4 full cell; b) Discharge profile vs cycle number at different current rates (0.1~5 C) of the C-NaCrO2//C-CoC2O4 full cell (inset: discharge curves vs cycle number); c) C-CoC2O4 electrode cyclability (blue line: Coulombic efficiency of C-CoC2O4)[53]. Copyright 2018, American Chemical Society.
Fig. 9 a) CoC2O4 structural model; b) SEM image of CoC2O4/CNTs composite; c) SEM image of CoC2O4/CNTs composite electrode after 200 cycle; d) Schematic illustration for the degradation of CoC2O4/CNTs composite[86]. Copyright 2020, American Chemical Society.
[1]
Xu C F, Fang X, Zhan J, Chen J X, Liang F. Prog. Chem., 2020, 32(6): 836.
( 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 化学进展, 2020, 32(6): 836.)

doi: 10.7536/PC190924
[2]
Li H, Wu C, Wu F, Bai Y, Acta Chimica Sinica, 2014, 72(01):21.

doi: 10.6023/A13080830
( 李慧, 吴川, 吴锋, 白莹. 化学学报, 2014, 72(01):21.)
[3]
Liang S Z, Cheng Y J, Zhu J, Xia Y G, Müller-Buschbaum P. Small Methods, 2020, 4(8): 2000218.

doi: 10.1002/smtd.v4.8
[4]
Liang Y R, Zhao C Z, Yuan H, Chen Y, Zhang W C, Huang J Q, Yu D S, Liu Y L, Titirici M M, Chueh Y L, Yu H J, Zhang Q. InfoMat, 2019, 1(1): 6.

doi: 10.1002/inf2.v1.1
[5]
Fan E S, Li L, Wang Z P, Lin J, Huang Y X, Yao Y, Chen R J, Wu F. Chem. Rev., 2020, 120(14): 7020.

doi: 10.1021/acs.chemrev.9b00535
[6]
Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S, Ikuhara Y, Wan L J. J. Am. Chem. Soc., 2012, 134(18): 7874.

doi: 10.1021/ja301266w
[7]
Ren H, Yu R B, Wang J Y, Jin Q, Yang M, Mao D, Kisailus D, Zhao H J, Wang D. Nano Lett., 2014, 14(11): 6679.

doi: 10.1021/nl503378a
[8]
Wang J, Zhou Y K, Hu Y Y, O’Hayre R, Shao Z P. J. Phys. Chem. C, 2011, 115(5): 2529.

doi: 10.1021/jp1087509
[9]
Jin H C, Xin S, Chuang C H, Li W D, Wang H Y, Zhu J, Xie H Y, Zhang T M, Wan Y Y, Qi Z K, Yan W S, Lu Y R, Chan T S, Wu X J, Goodenough J B, Ji H X, Duan X F. Science, 2020, 370(6513): 192.

doi: 10.1126/science.aav5842
[10]
Li C L, Liu C, Wang W, Mutlu Z, Bell J, Ahmed K, Ye R, Ozkan M, Ozkan C S. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x
[11]
Zuo X X, Zhu J, Müller-Buschbaum P, Cheng Y J. Nano Energy, 2017, 31: 113.

doi: 10.1016/j.nanoen.2016.11.013
[12]
Yin X M, Li C C, Zhang M, Hao Q Y, Liu S, Chen L B, Wang T H. J. Phys. Chem. C, 2010, 114(17): 8084.

doi: 10.1021/jp100224x
[13]
Usui H, Kono T, Sakaguchi H. International Journal of Electrochemical ence, 2012, 7(5):4322.
[14]
Bresser D, Mueller F, Fiedler M, Krueger S, Kloepsch R, Baither D, Winter M, Paillard E, Passerini S. Chem. Mater., 2013, 25(24): 4977.

doi: 10.1021/cm403443t
[15]
Kim M C, Kim S J, Han S B, Kwak D H, Hwang E T, Kim D M, Lee G H, Choe H S, Park K W. J. Mater. Chem. A, 2015, 3(45): 23003.

doi: 10.1039/C5TA05455A
[16]
Bell J, Ye R, Ahmed K, Liu C, Ozkan M, Ozkan C S. Nano Energy, 2015, 18: 47.

doi: 10.1016/j.nanoen.2015.09.013
[17]
Liu H, Wang G X, Liu J, Qiao S Z, Ahn H. J. Mater. Chem., 2011, 21(9): 3046.

doi: 10.1039/c0jm03132a
[18]
Cao K Z, Jiao L F, Liu Y C, Liu H Q, Wang Y J, Yuan H T. Adv. Funct. Mater., 2015, 25(7): 1082.

doi: 10.1002/adfm.v25.7
[19]
Ma Y, Liu P, Xie Q, Zhang C, Wang L, Peng D. Materials today energy (Materials Today Energy), 2020, 16:100383.

doi: 10.1016/j.mtener.2020.100383
[20]
Fu C P, Mahadevegowda A, Grant P S. J. Mater. Chem. A, 2016, 4(7): 2597.

doi: 10.1039/C5TA09141A
[21]
Gao J, Lowe M A, Abruña H D. Chem. Mater., 2011, 23(13): 3223.

doi: 10.1021/cm201039w
[22]
Wang L B, Tang W J, Jing Y, Su L W, Zhou Z. ACS Appl. Mater. Interfaces, 2014, 6(15): 12346.

doi: 10.1021/am5021233
[23]
Zhong Y R, Su L W, Yang M, Wei J P, Zhou Z. ACS Appl. Mater. Interfaces, 2013, 5(21): 11212.

doi: 10.1021/am403453r
[24]
Zhao S Q, Yu Y, Wei S S, Wang Y X, Zhao C H, Liu R, Shen Q. J. Power Sources, 2014, 253: 251.

doi: 10.1016/j.jpowsour.2013.12.055
[25]
Zhou L K, Kong X H, Gao M, Lian F, Li B J, Zhou Z F, Cao H Q. Inorg. Chem., 2014, 53(17): 9228.

doi: 10.1021/ic501321z
[26]
Park J S, Jo J H, Yashiro H, Kim S S, Kim S J, Sun Y K, Myung S T. ACS Appl. Mater. Interfaces, 2017, 9(31): 25941.

doi: 10.1021/acsami.7b03325
[27]
Shi S, Hua X, Guo H. Ceramics International (Ceramics International), 2018, 44(12):13495.

doi: 10.1016/j.ceramint.2018.04.179
[28]
LÓpez M C, Tirado J L, PÉrez Vicente C. J. Power Sources, 2013, 227: 65.

doi: 10.1016/j.jpowsour.2012.08.100
[29]
Qi Z Q, Wu Y D, Li X F, Qu Y, Yang Y Y, Mei D J. Ionics, 2020, 26(1): 33.

doi: 10.1007/s11581-019-03181-4
[30]
Kang W P, Shen Q. J. Power Sources, 2013, 238: 203.

doi: 10.1016/j.jpowsour.2013.03.087
[31]
Zhang Y H, Lu Z X, Guo M Q, Bai Z C, Tang B. JOM, 2016, 68(11): 2952.

doi: 10.1007/s11837-016-2126-4
[32]
Ang W A, Cheah Y L, Wong C L, Prasanth R, Hng H H, Madhavi S. J. Phys. Chem. C, 2013, 117(32): 16316.

doi: 10.1021/jp404049f
[33]
Xu J M, He L, Liu H, Han T, Wang Y J, Zhang C J, Zhang Y H. Electrochimica Acta, 2015, 170: 85.

doi: 10.1016/j.electacta.2015.04.114
[34]
Zhong Y. Doctoral Dissertation of Zhejiang University, 2016.
( 钟媛. 浙江大学博士论文, 2016.).
[35]
Ang W A, Gupta N, Prasanth R, Madhavi S. ACS Appl. Mater. Interfaces, 2012, 4(12): 7011.

doi: 10.1021/am3022653
[36]
Zhang K Y, Li Y, Wang Y K, Zhao J Y, Chen X M, Dai Y N, Yao Y C. Chem. Eng. J., 2020, 384: 123281.

doi: 10.1016/j.cej.2019.123281
[37]
Zhang K Y, Li Y, Hu X J, Liang F, Wang L, Xu R H, Dai Y N, Yao Y C. Chem. Eng. J., 2021, 404: 126464.

doi: 10.1016/j.cej.2020.126464
[38]
Zhang K Y, Liang F, Wang Y K, Dai Y N, Yao Y C. J. Alloys Compd., 2019, 779: 91.

doi: 10.1016/j.jallcom.2018.11.011
[39]
Yang Y, He L, Lu J F, Liu Z Y, Wang N Y, Su J, Long Y F, Lv X, Wen Y X. Electrochimica Acta, 2019, 321: 134673.

doi: 10.1016/j.electacta.2019.134673
[40]
Kim H, Choi W I, Jang Y, Balasubramanian M, Lee W, Park G O, Park S B, Yoo J, Hong J S, Choi Y S, Lee H S, Bae I T, Kim J M, Yoon W S. ACS Nano, 2018, 12(3): 2909.

doi: 10.1021/acsnano.8b00435
[41]
Huang X L, Chai J, Jiang T, Wei Y J, Chen G, Liu W Q, Han D X, Niu L, Wang L M, Zhang X B. J. Mater. Chem., 2012, 22(8): 3404.

doi: 10.1039/c2jm15377g
[42]
Pramanik A, Maiti S P, Mahanty S. Sciense Letters, 2015, 4:104.
[43]
Li B J, Cao H Q, Shao J, Zheng H, Lu Y X, Yin J F, Qu M Z. Chem. Commun., 2011, 47(11): 3159.

doi: 10.1039/c0cc04507a
[44]
Inamdar A I, Chavan H S, Aqueel Ahmed A T, Jo Y, Cho S, Kim J, Pawar S M, Kim H, Im H. J. Alloys Compd., 2020, 829: 154593.

doi: 10.1016/j.jallcom.2020.154593
[45]
Pramanik A, Maiti S, Mahanty S. J. Mater. Chem. A, 2014, 2(43): 18515.

doi: 10.1039/C4TA03379E
[46]
AragÓn M J, LeÓn B, PÉrez Vicente C, Tirado J L. Inorg. Chem., 2008, 47(22): 10366.

doi: 10.1021/ic8008927
[47]
Ang W A E, Cheah Y L, Wong C L, Hng H H, Madhavi S. J. Alloys Compd., 2015, 638: 324.

doi: 10.1016/j.jallcom.2015.02.203
[48]
Baran E J, Monje P V. Met. Ions Life Sci. 2008, 8: 219.
[49]
Baran E J. J. Coord. Chem., 2014, 67(23/24): 3734.

doi: 10.1080/00958972.2014.937340
[50]
Krishnamurty K V, Harris G M. Chem. Rev., 1961, 61(3): 213.

doi: 10.1021/cr60211a001
[51]
Lenchev A, Trifonova E P. Cryst. Res. Technol., 1990, 25(9): 1017.

doi: 10.1002/(ISSN)1521-4079
[52]
Molinier M, Price D J, Wood P T, Powell A K. J. Chem. Soc., Dalton Trans., 1997(21): 4061.
[53]
Jo C H, Yashiro H, Yuan S, Shi L Y, Myung S T. ACS Appl. Mater. Interfaces, 2018, 10(47): 40523.

doi: 10.1021/acsami.8b13641
[54]
Barazorda-Ccahuana H L, Nedyalkova M, Kichev I, Madurga S, Donkova B, Simeonov V. ACS Omega, 2020, 5(16): 9071.

doi: 10.1021/acsomega.9b03434 pmid: 32363259
[55]
Su Y Z, Chen H Y, Hu Z X, Liu S N, Xiao L H, Jiang M. Journal of Central South University(Science and Technology), 2013, 44(06):2237.
( 苏玉长, 陈宏艳, 胡泽星, 刘赛男, 肖立华, 江敏. 中南大学学报(自然科学版), 2013, 44(06):2237.)
[56]
Nie L C. Master's Dissertation of Zhejiang University, 2014.
( 聂林才. 上海大学硕士论文, 2014.).
[57]
Zhang K Y, Xu R H, Wei R H, Li Y, Wang Y K, Zhang Y N, Dai Y N, Yao Y C. Mater. Chem. Phys., 2020, 243: 122676.

doi: 10.1016/j.matchemphys.2020.122676
[58]
Yeoh J S, Armer C F, Lowe A. Mater. Today Energy, 2018, 9: 198.
[59]
Oh H J, Jo C H, Yoon C S, Yashiro H, Sun J K, Passerini S, Sun YK, Myung S T. NPG Asia materials. 2016, 8(5):270.
[60]
Zhang Y, Wang C, Dong Y, Wei R, Zhang J. Chem.-A Eur. J., 2021, 27(3):993.

doi: 10.1002/chem.v27.3
[61]
Zhang K Y, Gao G, Li Y, Wang Y K, Xu R H, Dai Y N, Yao Y C. Mater. Lett., 2020, 266: 127476.

doi: 10.1016/j.matlet.2020.127476
[62]
AragÓn M J, LeÓn B, PÉrez Vicente C, Tirado J L, Chadwick A V, Berko A, Beh S Y. Chem. Mater., 2009, 21(9): 1834.

doi: 10.1021/cm803435p
[63]
LeÓn B, Vicente C P, Tirado J L. Solid State Ion., 2012, 225: 518.

doi: 10.1016/j.ssi.2011.12.012
[64]
AragÓn M J, LeÓn B, Serrano T, PÉrez Vicente C, Tirado J L. J. Mater. Chem., 2011, 21(27): 10102.

doi: 10.1039/c0jm03880f
[65]
Wu X H, Guo J H, McDonald M J, Li S G, Xu B B, Yang Y. Electrochimica Acta, 2015, 163: 93.

doi: 10.1016/j.electacta.2015.02.134
[66]
Li Q, Li H S, Xia Q T, Hu Z Q, Zhu Y, Yan S S, Ge C, Zhang Q H, Wang X X, Shang X T, Fan S T, Long Y Z, Gu L, Miao G X, Yu G H, Moodera J S. Nat. Mater., 2021, 20(1): 76.

doi: 10.1038/s41563-020-0756-y
[67]
Yu L P, Zhou X H, Lu L, Wu X L, Wang F J. ChemSusChem, 2020, 13(20): 5361.

doi: 10.1002/cssc.v13.20
[68]
Lu X X, Mao Q N, Chen Y F, Bao L, Tong L C, Xiong Q Q, Qin H Y, Pan H G, Ji Z G. Electrochimica Acta, 2018, 282: 351.

doi: 10.1016/j.electacta.2018.06.069
[69]
Taberna P L, Mitra S, Poizot P, Simon P, Tarascon J M. Nat. Mater., 2006, 5(7): 567.

pmid: 16783360
[70]
Pang H, Wang S, Li X, Zhao S, Li S. International Journal of Electrochemical Science, 2013, 8(3):4174.
[71]
Hu Y N, Lin Z H, Min F X, Teng F, Wu H M, Wang S Q, Liu J W, Feng C Q. J. Nanosci. Nanotechnol., 2020, 20(3): 1740.

doi: 10.1166/jnn.2020.17139
[72]
Feng F, Kang W P, Yu F Q, Zhang H, Shen Q. J. Power Sources, 2015, 282: 109.

doi: 10.1016/j.jpowsour.2015.02.043
[73]
Deng J T, Wang L, Deng J, Fang Y, Lin Y, Hu Y H. J. Mater. Chem. A, 2020, 8(6): 3397.

doi: 10.1039/C9TA10982J
[74]
Zhang K Y, Zhang D, Li Y, Wang L, Liang F, Dai Y N, Yao Y C. Appl. Surf. Sci., 2020, 507: 145051.

doi: 10.1016/j.apsusc.2019.145051
[75]
Li L, Zheng Y, Zhang S L, Yang J P, Shao Z P, Guo Z P. Energy Environ. Sci., 2018, 11(9): 2310.

doi: 10.1039/C8EE01023D
[76]
Wu X Y, Leonard D P, Ji X L. Chem. Mater., 2017, 29(12): 5031.

doi: 10.1021/acs.chemmater.7b01764
[77]
Irisarri E, Ponrouch A, Palacin M R. J. Electrochem. Soc., 2015, 162(14): A2476.

doi: 10.1149/2.0091514jes
[78]
Ramireddy T, Sharma N, Xing T, Chen Y, Leforestier J, Glushenkov A M. ACS Appl. Mater. Interfaces, 2016, 8(44): 30152.

doi: 10.1021/acsami.6b09619
[79]
Li C L, Chen K Y, Zhou X J, Maier J. Npj Comput. Mater., 2018, 4(1): 1.

doi: 10.1038/s41524-017-0060-9
[80]
Lu Y C, Ma C Z, Alvarado J, Kidera T, Dimov N, Meng Y S, Okada S. J. Power Sources, 2015, 284: 287.

doi: 10.1016/j.jpowsour.2015.03.042
[81]
Vaalma C, Buchholz D, Passerini S. Curr. Opin. Electrochem., 2018, 9: 41.
[82]
Hosaka T, Kubota K, Hameed A S, Komaba S. Chem. Rev., 2020, 120(14): 6358.

doi: 10.1021/acs.chemrev.9b00463
[83]
Ju Z C, Li P Z, Ma G Y, Xing Z, Zhuang Q C, Qian Y T. Energy Storage Mater., 2018, 11: 38.
[84]
Chen Z, Yin D G, Zhang M. Small, 2018, 14(17): 1703818.

doi: 10.1002/smll.v14.17
[85]
Li D P, Zhu M, Chen L N, Chen L, Zhai W, Ai Q, Hou G M, Sun Q, Liu Y, Liang Z, Guo S R, Lou J, Si P C, Feng J K, Zhang L, Ci L J. Adv. Mater. Interfaces, 2018, 5(15): 1800606.

doi: 10.1002/admi.v5.15
[86]
Wang L F, Wei K Y, Zhang P J, Wang H, Qi X J, Wu X, Zhao W, Ju Z C. J. Nanosci. Nanotechnol., 2019, 19(6): 3610.

doi: 10.1166/jnn.2019.16106
[87]
Jo C H, Jo J H, Choi J U, Yashiro H, Kim H, Myung S T. ACS Sustainable Chem. Eng., 2020, 8(9): 3743.

doi: 10.1021/acssuschemeng.9b06951
No related articles found!