中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (1): 155-167 DOI: 10.7536/PC201210 Previous Articles   Next Articles

• Review •

The Crucial Role of Cation Distribution in Non-Stoichiometric Spinel-Structure Zn-Cr Catalysts for Isobutanol Synthesis from Syngas

Shaopeng Tian1, Huaping Ren1, Mingshu Chen1, Zongcheng Miao1, Yisheng Tan2()   

  1. 1 Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University,Xi'an 710123, China
    2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
  • Received: Revised: Online: Published:
  • Contact: Yisheng Tan
  • Supported by:
    National Natural Science Foundation of China(21706218); National Natural Science Foundation of China(21908182); Natural Science Foundation of Shaanxi Province(2019JQ-920); Youth Innovation Team of Shaanxi Universities
Richhtml ( 20 ) PDF ( 587 ) Cited
Export

EndNote

Ris

BibTeX

Isobutanol is an important compound with widespread applications in chemistry and the energy sector. Isobutanol synthesis from coal or biomass syngas is highly suitable to resource conditions in China, which has plenty of coal but little oil. Zn-Cr based catalysts have been widely used to produce isobutanol because of their long lifetimes and simple product distribution. This mini review highlights recent progress in syngas-based isobutanol synthesis and addresses the crucial role of cation distribution in non-stoichiometric spinel-structure Zn-Cr catalysts for this process. The development of catalysts for isobutanol synthesis is first summarized in terms of catalyst category, preparation methods, and generation mechanism. Some strategies for aggravating cation distribution disorder are then introduced, including adjusting the Zn/Cr ratio and/or annealing temperature, preparation methods, loading with a K promoter, and the use of excess ZnO. Two quantitative methods for obtaining information on cation distribution in Zn-Cr-based catalysts are introduced, i.e., Rietveld analysis for powder X-ray diffraction patterns and multiple-edge refinement for Zn K-edge extended X-ray absorption fine structure spectra. Isobutanol production shows a linear relationship to the degree of cation disorder because cation distribution affects the physicochemical properties of spinel-structure Zn-Cr catalysts, such as particle size, alkalinity, CO adsorption ability, and the state of surface oxygen. Finally, further development and the challenges associated with the synthesis of isobutanol are discussed.

Contents

1 Introduction

2 Isobutanol synthesis from syngas

2.1 Catalyst categories for the synthesis of higher alcohols

2.2 Isobutanol-generation mechanism

2.3 Active sites for isobutanol synthesis on Zn-Cr catalysts

3 Non-stoichiometric spinel-structure Zn-Cr catalysts for isobutanol synthesis

3.1 Microstructure of spinel-structure Zn-Cr

3.2 Influence of cation distribution in spinel-structure Zn-Cr

3.3 Relationship between cation distribution disorder and isobutanol production

3.4 Tailoring physicochemical properties via cation distribution

4 Conclusions and outlook

Scheme 1 Mechanism of isobutanol formation via syngas[64]
Fig. 1 Structural models of (a): normal Zn-Cr structure and (b): non-stoichiometric Zn-Cr spinel structure with one Zn atom exchanged with one Cr atom[59]
Fig. 2 TEM images of (a) ZC300, (b) ZC450, (c) ZC600, and (d) ZC750 samples; and (e) Zn K-edge EXAFS spectra fit for the ZC450 sample compared with the best fit curve (dotted line)[59]
Fig. 3 The qualitative analysis of spinel-structure Zn-Cr catalysts with different annealing temperatures and Zn/Cr ratios. a) Raman spectra; b) normalized XANES spectra for the Zn K-edge; c) normalized XANES spectra for the Cr K-edge; d) Fourier-transform EXAFS signals for the Zn K-edge[62,63]
Fig. 4 Simulated cation distribution results for ZC-0.5-700 using a) Rietveld analysis of XRD patterns, and b) multiple-edge refinement for Zn K-edge EXAFS spectra[63].
Table 1 Lattice parameters and cation distribution of spinel-structure Zn-Cr estimated using the Rietveld method for XRD patterns and multiple-edge refinement for Zn K-edge EXAFS spectr[62-63]
Fig. 5 The crucial role of the K promoter in isobutanol synthesis from syngas.
Fig. 6 LC-XANES fits for catalysts prepared by different methods[65]
Fig. 7 The role of ZnO in different states for isobutanol synthesis from syngas
Fig. 8 a) The relationship between isobutanol production and the level of cation distribution disorder. b) Catalyst performance and stability results for a Zn-Cr catalyst. Reaction conditions: 400 ℃, 10 MPa, 10 000 h-1. c) Product selectivity. d) Fourier-transform Zn K-edge EXAFS signals for fresh and spent catalysts[63,69]
Fig. 9 a) and b) Zn and Cr 2p XPS spectra of catalysts prepared by different methods. c) O 1s XPS spectra of catalysts with different contents of K. d) H2-TPR curves of catalysts with different Zn/Cr ratios and annealing temperatures[63,65,66]
Fig. 10 a) CO-TPD profiles of catalysts prepared by different methods, b) CO2-TPD curves of the catalysts with different Zn/Cr element ratios and, c) and d) in-situ IR spectra of CO adsorbed on catalysts loading different contents of K upon desorption at 400 ℃[64⇓~66]
[14]
Gao Y, Shi L, Li S, Ren Q. PCCP., 2020,22: 5070.

doi: 10.1039/C9CP06379J
[15]
Dimitrakopoulou M, Huang X, Kröhnert J, Teschner D, Praetz S, Schlesiger C, Malzer W, Janke C, Schwab E, Rosowski F, Kaiser H, Schunk S, Schlögl R, Trunschke A. Faraday Discuss., 2018,208: 207.

doi: 10.1039/c7fd00215g pmid: 29809207
[16]
Liu Y F, Göeltl F, Ro I, Ball M R, Sener C N, Aragão I B, Zanchet D, Huber G W, Mavrikakis M, Dumesic J A. ACS Catal., 2017,7(7): 4550.

doi: 10.1021/acscatal.7b01381
[17]
Taborga Claure M, Chai S H, Dai S, Unocic K A, Alamgir F M, Agrawal P K, Jones C W. J. Catal., 2015,324: 88.

doi: 10.1016/j.jcat.2015.01.015
[18]
Zhang F F, Li Y Y, Gao S, Fang H H, Liang X L, Yuan Y Z. Catal. Sci. Technol., 2018,8(16): 4219.

doi: 10.1039/C8CY01095A
[19]
Yong J X, Luan X B, Dai X P, Zhang X, Qiao H Y, Yang Y, Huang X L. Catal. Sci. Technol., 2017,7(18): 4206.

doi: 10.1039/C7CY01295K
[20]
Zeng F, Xi X Y, Cao H T, Pei Y T, Heeres H J, Palkovits R. Appl. Catal. B: Environ., 2019,246: 232.

doi: 10.1016/j.apcatb.2019.01.063
[21]
Liu Y J, Deng X, Jia L, Huang W. Phys. Chem. Chem. Phys., 2018,20(27): 18790.

doi: 10.1039/C8CP02296H
[22]
Walter K M, Serrer M A, Kleist W, Grunwaldt J D. Appl. Catal. A: Gen., 2019,585: 117150.

doi: 10.1016/j.apcata.2019.117150
[23]
Shi X P, Yu H B, Gao S, Li X Y, Fang H H, Li R J, Li Y Y, Zhang L J, Liang X L, Yuan Y Z. Fuel, 2017,210: 241.

doi: 10.1016/j.fuel.2017.08.064
[24]
Graves G D. Ind. Eng. Chem., 1931,23(12): 1381.

doi: 10.1021/ie50264a016
[25]
Natta G, Pasquon I.. Advances in Catalysis. Amsterdam: Elsevier, 1959: 1.
[26]
Nunan J G, Bogdan C E, Klier K, Smith K J, Young C W, Herman R G. ChemInform, 1989,20(26): 195.
[27]
John G, Nunan C, Kamil K, Kevin J S, Chyi-Woei Y, Richard G, Herman. J. Catal., 1989,116: 195.

doi: 10.1016/0021-9517(89)90086-9
[28]
Smith K J, Anderson R B. J Catal., 1984,85: 428.

doi: 10.1016/0021-9517(84)90232-X
[29]
Smith K J, Anderson R B. Can. J. Chem. Eng., 1983,61(1): 40.

doi: 10.1002/cjce.v61:1
[30]
Wu Y Q, Xie H J, Kou Y L, Tsubaki N, Han Y Z, Tan Y S. Korean J. Chem. Eng., 2015,32(3): 406.

doi: 10.1007/s11814-014-0236-7
[1]
Lin T J, Qi X Z, Wang X X, Xia L, Wang C Q, Yu F, Wang H, Li S G, Zhong L S, Sun Y H. Angew. Chem. Int. Ed., 2019,58(14): 4627.

doi: 10.1002/anie.v58.14
[2]
Jiang Y W, Long R, Xiong Y J. Chem. Sci., 2019,10(31): 7310.

doi: 10.1039/C9SC02014D
[3]
Luk H T, Mondelli C, FerrÉ D C, Stewart J A, PÉrez-Ramírez J. Chem. Soc. Rev., 2017,46(5): 1358.

doi: 10.1039/C6CS00324A
[4]
Xiao K, Bao Z H, Qi X Z, Wang X X, Zhong L S, Fang K G, Lin M G, Sun Y H. Chin. J. Catal., 2013,34(1): 116.

doi: 10.1016/S1872-2067(11)60496-8
[5]
Keim W, Falter W. Catal. Lett., 1989,3(1): 59.

doi: 10.1007/BF00765055
[6]
Pei Y P, Liu J X, Zhao Y H, Ding Y J, Liu T, Dong W D, Zhu H J, Su H Y, Yan L, Li J L, Li W X. ACS Catal., 2015,5(6): 3620.

doi: 10.1021/acscatal.5b00791
[7]
Prieto G, Beijer S, Smith M L, He M, Au Y, Wang Z, Bruce D A, De Jong K P, Spivey J J, De Jongh P E. Angew. Chem. Int. Ed., 2014,53(25): 6397.

doi: 10.1002/anie.v53.25
[8]
Sun K, Gao X F, Bai Y X, Tan M H, Yang G H, Tan Y S. Catal. Sci. Technol., 2018,8(15): 3936.

doi: 10.1039/C8CY01074A
[9]
Zhao L, Mu X L, Liu T S, Fang K G. Catal. Sci. Technol., 2018,8(8): 2066.

doi: 10.1039/C7CY02555F
[10]
Luk H T, Forster T, Mondelli C, Siol S, Curulla-FerrÉ D, Stewart J A, PÉrez-Ramírez J. Catal. Sci. Technol., 2018,8(1): 187.

doi: 10.1039/C7CY01908D
[11]
Qian W X, Wang H, Xu Y B, Yang X L, Zhai G W, Zhang H T, Ma H F, Sun Q W, Ying W Y. Ind. Eng. Chem. Res., 2019,58(16): 6288.

doi: 10.1021/acs.iecr.9b00355
[12]
Cao A, Schumann J, Wang T, Zhang L N, Xiao J P, Bothra P, Liu Y, Abild-Pedersen F, Nørskov J K. ACS Catal., 2018,8(11): 10148.

doi: 10.1021/acscatal.8b01596
[13]
Zhong H X, Wang J M, An K, Fang K G, Liu Y. Catal. Sci. Technol., 2019,9(13): 3454.

doi: 10.1039/C9CY00416E
[31]
Wu Y Q, Xie H J, Tian S P, Tsubaki N, Han Y Z, Tan Y S. J. Mol. Catal. A: Chem., 2015,396: 254.

doi: 10.1016/j.molcata.2014.10.003
[32]
Wu Y Q, Gong N N, Zhang M, Zhang W, Zhang T, Zhang J F, Wang L Y, Xie H J, Tan Y S. Catal. Sci. Technol., 2019,9(10): 2592.

doi: 10.1039/C9CY00542K
[33]
Piero G D, Trifiro F, Vaccari A. J. Chem. Soc., Chem. Commun., 1984,(10): 656.
[34]
Waugh K C. Catal. Lett., 2012,142(10): 1153.

doi: 10.1007/s10562-012-0905-2
[35]
Forzatti P, Tronconi E, Pasquon I. Catal. Rev., 1991,33(1/2): 109.

doi: 10.1080/01614949108020298
[36]
Wu Y Q, Wang S C, Xie H J, Gao J W, Tian S P, Han Y Z, Tan Y S. Acta Phys-Chim Sin., 2015,31: 166.

doi: 10.3866/PKU.WHXB201411241
( 武应全, 王思晨, 解红娟, 高俊文, 田少鹏, 韩怡卓, 谭猗生. 物理化学学报, 2015,31: 166.)
[37]
William S E, Gar B H, Walter M H, David M M. J. Catal., 1997,172: 13.

doi: 10.1006/jcat.1997.1857
[38]
William S E, Gar B H, Walter M H, David M M. J. Catal., 1997,169: 446.
[39]
Bertoldi M, Fubini B, Giamello E, Busca G, Trifirò F, Vaccari A. J. Chem. Soc., Faraday Trans. 1, 1988,84(5): 1405.
[40]
Gastone D P, Ferruccio T, Angelo V. JCS, Chem Commoun., 1984, 656.
[41]
Giamello E, Fubini B, Bertoldi M, Busca G, Vaccari A. J. Chem. Soc., Faraday Trans. 1, 1989,85(2): 237.
[42]
Tan L, Yang G H, Yoneyama Y, Kou Y L, Tan Y S, Vitidsant T, Tsubaki N. Appl. Catal. A: Gen., 2015,505: 141.

doi: 10.1016/j.apcata.2015.08.002
[43]
Deshpande P A, Aruna S T, Madras G. Catal. Sci. Technol., 2011,1(9): 1683.

doi: 10.1039/c1cy00265a
[44]
Roca R A, Sczancoski J C, Nogueira I C, Fabbro M T, Alves H C, Gracia L, Santos L P S, de Sousa C P, AndrÉs J, Luz G E, Longo E, Cavalcante L S. Catal. Sci. Technol., 2015,5(8): 4091.

doi: 10.1039/C5CY00331H
[45]
Hu C C, Yeh T F, Teng H. Catal. Sci. Technol., 2013,3(7): 1798.

doi: 10.1039/c3cy00008g
[46]
Pantelis N T, Thomas V B, Aliki C M, Antonios T S, Thomas A, Philip J P. Appl Catal A-Genel., 1998,167: 295.
[47]
Brazdil J F. Catal. Sci. Technol., 2015,5(7): 3452.

doi: 10.1039/C5CY00387C
[48]
Poreddy R, Engelbrekt C, Riisager A. Catal. Sci. Technol., 2015,5(4): 2467.

doi: 10.1039/C4CY01622J
[49]
Kan W H, Huq A, Manthiram A. Chem. Commun., 2015,51(52): 10447.

doi: 10.1039/C5CC03070F
[50]
Basavaraju N, Priolkar K R, Gourier D, Bessière A, Viana B. Phys. Chem. Chem. Phys., 2015,17(16): 10993.

doi: 10.1039/c5cp01097g pmid: 25825209
[51]
Kitada A, Arevalo-Lopez A M, Attfield J P. Chem. Commun., 2015,51(57): 11359.

doi: 10.1039/C5CC02800K
[52]
Mancic L, Marinkovic Z, Vulic P, Moral C, Milosevic O. Sensors, 2003,3(10): 415.

doi: 10.3390/s31000415
[53]
Newton M A, van Beek W. Chem. Soc. Rev., 2010,39(12): 4845.

doi: 10.1039/b919689g pmid: 20967341
[54]
Wang W W, Du P P, Zou S H, He H Y, Wang R X, Jin Z, Shi S, Huang Y Y, Si R, Song Q S, Jia C J, Yan C H. ACS Catal., 2015,5(4): 2088.

doi: 10.1021/cs5014909
[55]
Krishnan V, Selvan R K, Augustin C O, Gedanken A, Bertagnolli H. J. Phys. Chem. C, 2007,111(45): 16724.

doi: 10.1021/jp073746t
[56]
Makovec D, Kodre A, Arčon I, Drofenik M. J. Nanoparticle Res., 2011,13(4): 1781.

doi: 10.1007/s11051-010-9929-y
[57]
Jeyadevan B, Tohji K, Nakatsuka K. J. Appl. Phys., 1994,76(10): 6325.

doi: 10.1063/1.358255
[58]
Akhtar M J, Nadeem M, Javaid S, Atif M. J. Phys.: Condens. Matter, 2009,21(40): 405303.
[59]
Chen S M, Wu Y F, Cui P X, Chu W S, Chen X, Wu Z Y. J. Phys. Chem. C, 2013,117(47): 25019.

doi: 10.1021/jp404984y
[60]
Kongmark C, Martis V, Rubbens A, Pirovano C, Löfberg A, Sankar G, Bordes-Richard E, Vannier R N, van Beek W. Chem. Commun., 2009(32): 4850.
[61]
Marinković Z V, Mančić L, Vulić P, Milošević O. J. Eur Ceram Soc., 2005,25: 2081.

doi: 10.1016/j.jeurceramsoc.2005.03.085
[62]
Tian S P, Wang S C, Wu Y Q, Gao J W, Bai Y X, Wang P, Xie H J, Han Y Z, Tan Y S. J. Mol. Catal. A: Chem., 2015,404/405: 139.

doi: 10.1016/j.molcata.2015.04.019
[63]
Tian S P, Wang S C, Wu Y Q, Gao J W, Xie H J, Li X L, Yang G H, Han Y Z, Tan Y S. RSC Adv., 2015,5(108): 89273.

doi: 10.1039/C5RA17289F
[64]
Tian S P, Wu Y Q, Li K X, Xie H J, Ren H P, Zhao Y Z, Miao Z C, Tan Y S. Energy Technol., 2018,6(9): 1805.

doi: 10.1002/ente.v6.9
[65]
Tian S P, Tan L, Wu Y Q, Kou Y L, Xie H J, Tsubaki N, Tan Y S. Appl. Catal. A: Gen., 2017,536: 57.

doi: 10.1016/j.apcata.2017.02.016
[66]
Tian S P, Wang S C, Wu Y Q, Gao J W, Wang P, Xie H J, Yang G H, Han Y Z, Tan Y S. Catal. Sci. Technol., 2016,6(12): 4105.

doi: 10.1039/C5CY02030A
[67]
Errani E, Trifiro F, Vaccari A, Richter M, Del Piero G. Catal. Lett., 1989,3(1): 65.

doi: 10.1007/BF00765056
[68]
Calvin S, Carpenter E E, Harris V G, Morrison S A. Appl. Phys. Lett., 2002,81(20): 3828.

doi: 10.1063/1.1520700
[69]
Tian S P, Wu Y Q, Ren H P, Xie H J, Zhao Y Z, Ma Q, Miao Z C, Tan Y S. Fuel Process. Technol., 2019,193: 53.

doi: 10.1016/j.fuproc.2019.04.018
[70]
Pokrovski K, Jung K T, Bell A T. Langmuir, 2001,17(14): 4297.

doi: 10.1021/la001723z
[71]
Riva A, Trifirò F, Vaccari A, Mintchev L, Busca G. J. Chem. Soc., Faraday Trans. 1, 1988,84(5): 1423.
[72]
Sun K, Tan M H, Bai Y X, Gao X F, Wang P, Gong N N, Zhang T, Yang G H, Tan Y S. J. Catal., 2019,378: 1.

doi: 10.1016/j.jcat.2019.08.013
[73]
Wang L Y, Gao X F, Bai Y X, Tan M H, Sun K, Zhang T, Wu Y Q, Pan J X, Xie H J, Tan Y S. Fuel, 2019,253: 1570.

doi: 10.1016/j.fuel.2019.05.139
[74]
Wu Y Q, Zhang J F, Zhang T, Sun K, Wang L Y, Xie H J, Tan Y S. Ind. Eng. Chem. Res., 2019,58(22): 9343.

doi: 10.1021/acs.iecr.9b01436
[75]
Zhang T, Wu Y Q, Gao X F, Xie H J, Yang G H, Tsubaki N, Tan Y S. Fuel, 2019,237: 1021.

doi: 10.1016/j.fuel.2018.09.143
No related articles found!