中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2348-2361 DOI: 10.7536/PC201052 Previous Articles   Next Articles

• Review •

Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing

Shicheng Jin, Shuang Yan()   

  1. College of Textile and Materials Engineering, Dalian Polytechnic University,Dalian 116034, China
  • Received: Revised: Online: Published:
  • Contact: Shuang Yan
  • Supported by:
    the Natural Science Foundation of Liaoning Province(2019-ZD-0129)
Richhtml ( 152 ) Cited

A gas sensor working at room temperature shows great potential in practical applications due to its lower energy consumption, good stability, high security and ease of miniaturization. World-wide efforts have been devoted to explore materials with excellent room-temperature gas sensing performance. Metal oxide semiconductor materials are widely sourced, environmentally friendly and flexible in structure control. Research of metal oxide semiconductor based sensors operated at room temperature has made significant progress recently. In this paper, the development process and working principle of metal oxide gas sensors are introduced, various metal oxide nanostructures in regard to their room-temperature gas sensing properties are comprehensively reviewed. Particular emphasis is given to those effective strategies for constructing room-temperature sensors and their sensing mechanism. Finally, some future research perspectives in the field of room-temperature sensors are discussed as well.

Contents

1 Introduction

2 Development process of MOS gas sensors

3 Working principle of MOS gas sensors

4 Construction of nanostructured MOS gas sensors with room-temperature sensing performance

4.1 Pure metal oxide nanostructures

4.2 Metal oxide hetero- or composite-nanostructures

4.3 UV assisted gas sensing material

5 Conclusion and outlook

Fig.1 Schematic Diagram of Detection Principle of n-type Metal Oxide Gas Sensitive Material
Fig.2 Influence of Crystallite Size on Gas Sensitivity to 800 ppm H2 and 800 ppm CO in Air at 300 ℃.[35] Copyright 1991,Sensors and Actuators B
Fig.3 (a) TEM Image and (b) Dependence of the Sensor Response on the Operating Temperature of ZnO Film Annealed at 300 ℃[38] Copyright 2016,Sensors and Actuators B
Fig.4 Mechanism of Reducing Gas Sensing at n-type Semiconductor Metal Oxide Grain Boundaries
Fig.5 SEM images of (a) α-Fe2O3 Nanostrings and (b) α-Fe2O3 Nanoropes; (c) Response to different concentrations of C2H5OH (100~2000 ppm) and (d) Response to various target gases (100 ppm) of α-Fe2O3 Nanostrings and Nanoropes[47] Copyright 2015, Journal of Materials Chemistry A
Fig.6 (a) TEM Image, (b) Schematic Image, (c) HRTEM Image and (d) Response-Recovery Curve of 9.7 ppm ~9.7 ppb NOx at Room Temperature for SnO2 Nanotubes.[57] Copyright 2012, CrystEngComm
Fig.7 (a) FESEM image and (b) Sensitivity to Ethanol at Room Temperature of Flower-like TiO2 microstructures.[70] Copyright 2020, Materials Letters
Fig.8 Schematic Illustration of (a) Chemical Sensitization and (b) Electron Sensitization Mechanism of Noble Metal Catalysts on the Surface of SnO2 Particles.[79]Copyright 1991,Sensors and Actuators B: Chemical
Fig.9 (a,b) Illustration of the Gas Sensing Mechanism for Au/ZnO Nanowires under Exposure to Ambient Air and H2 Gas (c) SEM Image of a Device based on Au/ZnO Nanowires and (d) Dynamic Response of a Device based on NWs to Di?erent Concentrations of H2 Gas at Room Temperature.[80]Copyright 2019,Sensors and Actuators B: Chemical
Fig.10 Co Doped SnO2 Thin Film (a) SEM image, (b) CO2 Gas Response Curve at Room Temperature and (c) Gas Sensitive Mechanism of SnO2 Multi-layer Thin Film.[84]Copyright 2020, Superlattices and Microstructures
Fig.11 Schematic images of Electrical Structures of SnO2 NW placed in (a) air and (b) Acetone Ambient, respectively, and Schematic images of Electrical Structures of Co3O4 NP/SnO2 NW in (c) air and (d) Acetone Ambient, respectively. (e) SEM image of Co3O4 NP/SnO2 NW (inset is SEM image of SnO2 NW). (f) Acetone Sensing Response of SnO2 NW (sample A) and Co3O4 NP/SnO2 NW (sample B).[92] Copyright 2020, Journal of Materials Research and Technology
Fig.12 (a) TEM images of 5.0 at% In-NiO and (b) Responses of the Sensor based on the 5.0 at% In-NiO towards NO2 at different Concentrations at room Temperature[93]Copyright 2017,Journal of Materials Science: Materials in Electronics
Fig.13 (a) TEM Image of 3D TiO2/G-CNT and (b) The Sensing Selectivity of Various Gases at Room Temperature[97] Copyright 2019,Sensors and Actuators B: Chemical
Fig.14 Schematic Image of Toluene Sensing Mechanism and energy-band diagrams for 3D TiO2/G-CNT Gas Sensitive Materials in air (a) (b) and in toluene gas (c)(d)[97] Copyright 2019,Sensors and Actuators B: Chemical
[80]
Lupan O, Postica V, PauportÉ T, Viana B, Terasa M I, Adelung R. Sens. Actuat. B: Chem., 2019, 299: 126977.

doi: 10.1016/j.snb.2019.126977
[81]
Barbosa M S, Suman P H, Kim J J, Tuller H L, Varela J A, Orlandi M O. Sens. Actuat. B: Chem., 2017, 239: 253.

doi: 10.1016/j.snb.2016.07.157
[82]
Wang Y R, Liu B, Cai D P, Li H, Liu Y, Wang D D, Wang L L, Li Q H, Wang T H. Sens. Actuat. B: Chem., 2014, 201: 351.

doi: 10.1016/j.snb.2014.05.013
[83]
Liu Y S, Gao X, Li F, Lu G Y, Zhang T, Barsan N. Sens. Actuat. B: Chem., 2018, 260: 927.

doi: 10.1016/j.snb.2018.01.114
[84]
Basyooni M A, Eker Y R, Yilmaz M. Superlattices Microstruct., 2020, 140: 106465.

doi: 10.1016/j.spmi.2020.106465
[85]
Sabhajeet S R, Sonker R K, Yadav B C. Adv. Sci. Eng. Med., 2018, 10(7): 736.

doi: 10.1166/asem.2018.2249
[86]
Sankar Ganesh R, Durgadevi E, Navaneethan M, Patil V L, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil P S, Hayakawa Y. J. Alloys Compd., 2017, 721: 182.

doi: 10.1016/j.jallcom.2017.05.315
[87]
Sudha M, Radha S, Kirubaveni S, Kiruthika R, Govindaraj R, Santhosh N. Solid State Sci., 2018, 78: 30.

doi: 10.1016/j.solidstatesciences.2018.02.004
[88]
Manjula M, Karthikeyan B, Sastikumar D. Appl. Phys. A, 2020, 126(9): 1.

doi: 10.1007/s00339-019-3176-6
[89]
Singh G, Virpal, Singh R C. Sens. Actuat. B: Chem., 2019, 282: 373.

doi: 10.1016/j.snb.2018.11.086
[90]
Yan S, Xue J Z, Wu Q S. Sens. Actuat. B: Chem., 2018, 275: 322.

doi: 10.1016/j.snb.2018.07.079
[91]
Dong S W, Wu D, Gao W Y, Hao H S, Liu G S, Yan S. Dalton Trans., 2020, 49(4): 1300.

doi: 10.1039/C9DT04185K
[92]
Kim H, Cai Z C, Chang S P, Park S. J. Mater. Res. Technol., 2020, 9(1): 1129.

doi: 10.1016/j.jmrt.2019.12.094
[93]
Dong Z B, Liu S T. J. Mater. Sci.: Mater. Electron., 2018, 29(4): 2645.
[94]
Zhou Y L, Wang J, Li X K. Ceram. Int., 2020, 46(9): 13827.

doi: 10.1016/j.ceramint.2020.02.174
[95]
Adamu B I, Falak A, Tian Y, Tan X H, Meng X M, Chen P P, Wang H F, Chu W G. ACS Appl. Mater. Interfaces, 2020, 12(7): 8411.

doi: 10.1021/acsami.9b19971
[96]
Lokesh K, Kavitha G, Manikandan E, Mani G K, Kaviyarasu K, Rayappan J B B, Ladchumananandasivam R, Sundeep Aanand J, Jayachandran M, Maaza M. IEEE Sens. J., 2016, 16(8): 2477.

doi: 10.1109/JSEN.2016.2517085
[1]
Zhang S D, Yang M J, Liang K Y, Turak A, Zhang B X, Meng D, Wang C X, Qu F D, Cheng W L, Yang M H. Sens. Actuat. B: Chem., 2019, 290: 59.

doi: 10.1016/j.snb.2019.03.082
[2]
Busacca C, Donato A, Lo Faro M, Malara A, Neri G, Trocino S. Sens. Actuat. B: Chem., 2020, 303: 127193.

doi: 10.1016/j.snb.2019.127193
[3]
Sun H Y, Lv H. J. Alloys Compd., 2020, 823: 153742.

doi: 10.1016/j.jallcom.2020.153742
[4]
Kulkarni S B, Navale Y H, Navale S T, Stadler F J, Ramgir N S, Patil V B. Sens. Actuat. B: Chem., 2019, 288: 279.

doi: 10.1016/j.snb.2019.02.094
[5]
Joshi N, Hayasaka T, Liu Y M, Liu H L, Oliveira O N, Lin L W. Microchimica Acta, 2018, 185(4): 1.

doi: 10.1007/s00604-017-2562-z
[6]
Wu Z L, Li Z J, Li H, Sun M X, Han S B, Cai C, Shen W Z, Fu Y Q. ACS Appl. Mater. Interfaces, 2019, 11(13): 12761.

doi: 10.1021/acsami.8b22517
[7]
Salimi kuchi P, Roshan H, Sheikhi M H. J. Alloys Compd., 2020, 816: 152666.

doi: 10.1016/j.jallcom.2019.152666
[8]
Chuang M Y, Lin Y T, Tung T W, Chang L Y, Zan H W, Meng H F, Lu C J, Tao Y T. Sens. Actuat. B: Chem., 2018, 260: 593.

doi: 10.1016/j.snb.2017.12.168
[9]
Brattain W H, Bardeen J. Bell Syst. Tech. J., 1953, 32(1): 1.

doi: 10.1002/bltj.1953.32.issue-1
[10]
Seiyama T, Kato A, Fujiishi K, Nagatani M. Anal. Chem., 1962, 34(11): 1502.

doi: 10.1021/ac60191a001
[11]
Yamazoe N, Sakai G, Shimanoe K. Catalysis Surveys from Asia, 2003, 7:63.

doi: 10.1023/A:1023436725457
[12]
Yamauchi S. Chemical Sensor Technology. Amsterdam: Elsevier, 1992.
[13]
Ihokura K, Watson J. The Stannic Oxide Gas Sensor Principles and Applications, CRC Press, 2017.
[14]
Yun J M, Kim H I, Lee Y S. J. Mater. Sci., 2013, 48(23): 8320.

doi: 10.1007/s10853-013-7645-6
[15]
Wang F P, Hu K L, Liu H C, Zhao Q, Wang K Z, Zhang Y X. Int. J. Hydrog. Energy, 2020, 45(11): 7234.

doi: 10.1016/j.ijhydene.2019.12.152
[16]
Zhang J N, Lu H B, Liu C, Chen C J, Xin X. RSC Adv., 2017, 7(64): 40499.

doi: 10.1039/C7RA07663K
[17]
Zappa D, Galstyan V, Kaur N, Munasinghe Arachchige H M M, Sisman O, Comini E. Anal. Chimica Acta, 2018, 1039: 1.

doi: 10.1016/j.aca.2018.09.020
[97]
Seekaew Y, Wisitsoraat A, Phokharatkul D, Wongchoosuk C. Sens. Actuat. B: Chem., 2019, 279: 69.

doi: 10.1016/j.snb.2018.09.095
[98]
Wang T T, Hao J Y, Zheng S L, Sun Q, Zhang D, Wang Y. Nano Res., 2018, 11(2): 791.

doi: 10.1007/s12274-017-1688-y
[99]
Dwivedi P, Dhanekar S, Das S. Nanotechnology, 2018, 29(27): 275503.

doi: 10.1088/1361-6528/aabcef
[100]
Cui J B, Jiang J J, Shi L Q, Zhao F, Wang D J, Lin Y H, Xie T F. RSC Adv., 2016, 6(82): 78257.

doi: 10.1039/C6RA11887A
[101]
da Silva L F, M’Peko J C, Catto A C, Bernardini S, Mastelaro V R, Aguir K, Ribeiro C, Longo E. Sens. Actuat. B: Chem., 2017, 240: 573.

doi: 10.1016/j.snb.2016.08.158
[18]
Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G. Prog. Mater. Sci., 2009, 54(1): 1.

doi: 10.1016/j.pmatsci.2008.06.003
[19]
Zhang J, Liu X H, Neri G, Pinna N. Adv. Mater., 2016, 28(5): 795.

doi: 10.1002/adma.v28.5
[20]
Rasch F, Postica V, Schütt F, Mishra Y K, Nia A S, Lohe M R, Feng X L, Adelung R, Lupan O. Sens. Actuat. B: Chem., 2020, 320: 128363.

doi: 10.1016/j.snb.2020.128363
[21]
Kim S G, Jun J, Lee J S, Jang J. J. Mater. Chem. A, 2019, 7(14): 8451.

doi: 10.1039/C9TA00198K
[22]
Xu K, Liao N B, Xue W, Zhou H M. Int. J. Hydrog. Energy, 2020, 45(15): 9252.

doi: 10.1016/j.ijhydene.2020.01.065
[23]
Li S H, Xie L L, He M, Hu X B, Luo G F, Chen C, Zhu Z G. Sens. Actuat. B: Chem., 2020, 310: 127828.

doi: 10.1016/j.snb.2020.127828
[24]
Wisitsoraat A, Tuantranont A, Comini E, Sberveglieri G, Wlodarski W. Thin Solid Films, 2009, 517(8): 2775.

doi: 10.1016/j.tsf.2008.10.090
[25]
Kim H J, Lee J H. Sens. Actuat. B: Chem., 2014, 192: 607.

doi: 10.1016/j.snb.2013.11.005
[26]
Yoon J W, Kim H J, Kim I D, Lee J H. Nanotechnology, 2013, 24(44): 444005.

doi: 10.1088/0957-4484/24/44/444005
[27]
Peng F, Sun Y, Lu Y, Yu W W, Ge M Y, Shi J C, Cong R, Hao J M, Dai N. Nanomaterials, 2020, 10(4): 774.

doi: 10.3390/nano10040774
[28]
Guo J, Zhang J, Zhu M, Ju D X, Xu H Y, Cao B Q. Sens. Actuat. B: Chem., 2014, 199: 339.

doi: 10.1016/j.snb.2014.04.010
[29]
Cai Y, Fan H Q. CrystEngComm, 2013, 15(44): 9148.

doi: 10.1039/c3ce41374h
[30]
Patil P, Gaikwad G, Patil D R, Naik J. Bull. Mater. Sci., 2016, 39(3): 655.

doi: 10.1007/s12034-016-1208-9
[31]
Mishra S, Ghanshyam C, Ram N, Bajpai R P, Bedi R K. Sens. Actuat. B: Chem., 2004, 972-3: 387.
[32]
Wongrat E, Chanlek N, Chueaiarrom C, Samransuksamer B, Hongsith N, Choopun S. Sens. Actuat. A: Phys., 2016, 251: 188.

doi: 10.1016/j.sna.2016.10.022
[33]
Sundara Venkatesh P, Dharmaraj P, Purushothaman V, Ramakrishnan V, Jeganathan K. Sens. Actuat. B: Chem., 2015, 212: 10.

doi: 10.1016/j.snb.2015.01.070
[34]
Fan S W, Srivastava A K, Dravid V P. Appl. Phys. Lett., 2009, 95(14): 142106.

doi: 10.1063/1.3243458
[35]
Xu C N, Tamaki J, Miura N, Yamazoe N. Sens. Actuat. B: Chem., 1991, 3(2): 147.

doi: 10.1016/0925-4005(91)80207-Z
[36]
Bai J L, Zhao C H, Gong H M, Wang Q, Huang B Y, Sun G Z, Wang Y R, Zhou J Y, Xie E Q, Wang F. J. Phys. D: Appl. Phys., 2019, 52(28): 285103.

doi: 10.1088/1361-6463/ab182f
[37]
Xu Q, Zhang Z C, Song X P, Yuan S, Qiu Z W, Xu H Y, Cao B Q. Sens. Actuat. B: Chem., 2017, 245: 375.

doi: 10.1016/j.snb.2017.01.136
[38]
Deng J F, Fu Q Y, Luo W, Tong X H, Xiong J H, Hu Y X, Zheng Z P. Sens. Actuat. B: Chem., 2016, 224: 153.

doi: 10.1016/j.snb.2015.10.022
[39]
Rothschild A, Komem Y. J. Appl. Phys., 2004, 95(11): 6374.

doi: 10.1063/1.1728314
[40]
Wang X, Hu P, Yuan F L, Yu L J. J. Phys. Chem. C, 2007, 111(18): 6706.

doi: 10.1021/jp070382w
[41]
Madou M J, Morrison S R. Chemical Sensing with Solid State Devices. Amsterdam: Elsevier, 1989: 437-477.
[42]
Shao B Y, Liu Y M, Zhuang X M, Hou S H, Han S J, Yu X G, Yu J S. J. Mater. Chem. C, 2019, 7(33): 10196.

doi: 10.1039/C9TC01219B
[43]
Wang L L, Chen S, Li W, Wang K, Lou Z, Shen G Z. Adv. Mater., 2019, 31(4): 1970028.

doi: 10.1002/adma.v31.4
[44]
Elzwawi S, Kim H S, Lynam M, Mayes E L H, McCulloch D G, Allen M W, Partridge J G. Applied Physics Letters. 2012, 101(24): 243508.

doi: 10.1063/1.4769899
[45]
Zhao G, Xuan J, Liu X, Jia F, Sun Y, Sun M, Yin G, Liu B. Nanomaterials, 2019, 9(4):508.

doi: 10.3390/nano9040508
[46]
Masoumi S, Shokrani M, Aghili S, Hossein-Babaei F. Sens. Actuat. B: Chem., 2019, 294: 245.

doi: 10.1016/j.snb.2019.05.063
[47]
Yan S, Wu Q S. J. Mater. Chem. A, 2015, 3(11): 5982.

doi: 10.1039/C4TA06861K
[48]
Al-Hashem M, Akbar S, Morris P. Sens. Actuat. B: Chem., 2019, 301: 126845.

doi: 10.1016/j.snb.2019.126845
[49]
Yan S, Zan G T, Wu Q S. Nano Res., 2015, 8(11): 3673.

doi: 10.1007/s12274-015-0867-y
[50]
Zhong Y J, Li W W, Zhao X L, Jiang X, Lin S Y, Zhen Z, Chen W D, Xie D, Zhu H W. ACS Appl. Mater. Interfaces, 2019, 11(14): 13441.

doi: 10.1021/acsami.9b01737
[51]
Choi P G, Izu N, Shirahata N, Masuda Y. Sens. Actuat. B: Chem., 2019, 296: 126655.

doi: 10.1016/j.snb.2019.126655
[52]
Gui Y H, Tian K, Liu J X, Yang L L, Zhang H Z, Wang Y. J. Hazard. Mater., 2019, 380: 120876.

doi: 10.1016/j.jhazmat.2019.120876
[53]
Zhao S K, Shen Y B, Yan X X, Zhou P F, Yin Y Y, Lu R, Han C, Cui B Y, Wei D Z. Sens. Actuat. B: Chem., 2019, 286: 501.

doi: 10.1016/j.snb.2019.01.127
[54]
Li Z Q, Song P, Yang Z X, Wang Q. Ceram. Int., 2018, 44(3): 3364.

doi: 10.1016/j.ceramint.2017.11.126
[55]
Feng C H, Kou X Y, Liao X F, Sun Y F, Lu G Y. RSC Adv., 2017, 7(65): 41105.

doi: 10.1039/C7RA06517E
[56]
Wang Y L, Jiang X C, Xia Y N. J. Am. Chem. Soc., 2003, 125(52): 16176.

doi: 10.1021/ja037743f
[57]
Jiang C, Zhang G, Wu Y, Li L, Shi K Y. CrystEngComm, 2012, 14(8): 2739.

doi: 10.1039/c2ce06405g
[58]
Cui J B, Shi L Q, Xie T F, Wang D J, Lin Y H. Sens. Actuat. B: Chem., 2016, 227: 220.

doi: 10.1016/j.snb.2015.12.010
[59]
Xu L, Dong B, Wang Y, Bai X, Liu Q, Song H W. Sens. Actuat. B: Chem., 2010, 147(2): 531.

doi: 10.1016/j.snb.2010.04.003
[60]
Zhao Y M, Zhu Y Q. Sens. Actuat. B: Chem., 2009, 137(1): 27.

doi: 10.1016/j.snb.2009.01.004
[61]
Kortidis I, Swart H C, Ray S S, Motaung D E. Sens. Actuat. B: Chem., 2019, 285: 92.

doi: 10.1016/j.snb.2019.01.007
[62]
Sun G. Preparation and Properties of Oxide Semiconductor Gas Sensing Materials. Beijing:Chemical Industry Press, 2018.(孙广. 氧化物半导体气敏材料制备与性能. 北京: 化学工业出版社, 2018.).
[63]
Xu R, Zhang L X, Li M W, Yin Y Y, Yin J, Zhu M Y, Chen J J, Wang Y, Bie L J. Sens. Actuat. B: Chem., 2019, 289: 186.

doi: 10.1016/j.snb.2019.03.012
[64]
Sun L, Fang W C, Yang Y, Yu H, Wang T T, Dong X T, Liu G X, Wang J X, Yu W S, Shi K Y. RSC Adv., 2017, 7(53): 33419.

doi: 10.1039/C7RA05446G
[65]
Oosthuizen D N, Motaung D E, Swart H C. Sens. Actuat. B: Chem., 2018, 266: 761.

doi: 10.1016/j.snb.2018.03.106
[66]
Minh Triet N, Thai Duy L, Hwang B U, Hanif A, Siddiqui S, Park K H, Cho C Y, Lee N E. ACS Appl. Mater. Interfaces, 2017, 9(36): 30722.

doi: 10.1021/acsami.7b06461
[67]
Govindhan M, Sidhureddy B, Chen A C. ACS Appl. Nano Mater., 2018, 1(11): 6005.

doi: 10.1021/acsanm.8b00835
[68]
Zhang L H, Dong B, Xu L, Zhang X R, Chen J J, Sun X K, Xu H W, Zhang T X, Bai X, Zhang S, Song H W. Sens. Actuat. B: Chem., 2017, 252: 367.

doi: 10.1016/j.snb.2017.05.167
[69]
Liu W Y, Wu J, Yang Y, Yu H, Dong X T, Wang X L, Liu Z L, Wang T T, Zhao B. J. Mater. Sci.: Mater. Electron., 2018, 29(6): 4624.
[70]
Wang M Y, Zhu Y Y, Meng D, Wang K K, Wang C Y. Mater. Lett., 2020, 277: 128372.

doi: 10.1016/j.matlet.2020.128372
[71]
Li S Y, Wang M T, Li C Z, Liu J J, Xu M, Liu J, Zhang J T. Sci. China Mater., 2018, 61(8): 1085.

doi: 10.1007/s40843-017-9224-x
[72]
Nakate U T, Ahmad R, Patil P, Wang Y S, Bhat K S, Mahmoudi T, Yu Y T, Suh E K, Hahn Y B. J. Alloys Compd., 2019, 797: 456.

doi: 10.1016/j.jallcom.2019.05.111
[73]
Zhu P H, Wang Y C, Ma P, Li S S, Fan F Q, Cui K, Ge S G, Zhang Y, Yu J H. Anal. Chem., 2019, 91(9): 5591.

doi: 10.1021/acs.analchem.8b04497
[74]
Yi S Y, Song Y G, Park J Y, Suh J M, Kim G S, Shim Y S, Yuk J M, Kim S, Jang H W, Ju B K, Kang C Y. ACS Appl. Mater. Interfaces, 2019, 11(7): 7529.

doi: 10.1021/acsami.8b18678
[75]
Zhang H, Li H R, Cai L N, Lei Q, Wang J N, Fan W H, Shi K, Han G L. J. Mater. Sci.: Mater. Electron., 2020, 31(2): 910.
[76]
Ramakrishnan V, Nair K G, Dhakshinamoorthy J, Ravi K R, Pullithadathil B. Phys. Chem. Chem. Phys., 2020, 22(14): 7524.

doi: 10.1039/d0cp00567c pmid: 32219238
[77]
Tang H Y, Li Y T, Sokolovskij R, Sacco L, Zheng H Z, Ye H Y, Yu H Y, Fan X J, Tian H, Ren T L, Zhang G Q. ACS Appl. Mater. Interfaces, 2019, 11(43): 40850.

doi: 10.1021/acsami.9b13773
[78]
Barbosa M S, Suman P H, Kim J J, Tuller H L, Orlandi M O. Sens. Actuat. B: Chem., 2019, 301: 127055.

doi: 10.1016/j.snb.2019.127055
[79]
Yamazoe N. Sens. Actuat. B: Chem., 1991, 51-4: 7.
[1] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.
Viewed
Full text


Abstract