中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1550-1559 DOI: 10.7536/PC200827 Previous Articles   Next Articles

• Review •

Enantioselective Release of Chiral Drugs

Lujie Song1,3, Youping Wu1,3(), Jianping Deng2,3()   

  1. 1 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
    2 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,Beijing 100029, China
    3 College of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: Youping Wu, Jianping Deng
  • Supported by:
    National Natural Science Foundation of China(21774009); National Natural Science Foundation of China(51973011); National Natural Science Foundation of China(21474007); Fundamental Research Funds for the Central Universities(XK1802-02)
Richhtml ( 41 ) PDF ( 448 ) Cited
Export

EndNote

Ris

BibTeX

The importance of chirality and chiral compounds has been widely recognized. The proportion of chiral drugs increases continuously and rapidly. However, some chiral drugs are still marketed and used in racemic form. How to appropriately and effectively use racemic drugs accordingly becomes a subject of high importance in both academic research and practical applications. ‘Enantioselective release' strategy combines two separate processes in a single one, that is, ‘chiral separation' and ‘controlled release', providing alternative routes for the use of racemic drugs. Up to date, striking advancements have been made in this research area. The review paper summarizes the representative advancements made in recent years. Herein, according to the major materials constituting the chiral releasing carriers, chiral drug releasing systems are classified into three groups: (1) organic materials (hydrogels, particles, etc.), (2) inorganic materials and (3) molecularly imprinted materials based releasing systems. The investigations dealing with enantioselective release and enantioselectivity effects are anticipated to enhance our understanding about the mysterious chiral world.

Contents

1 Introduction

2 Chiral organic material-based releasing systems

2.1 Hydrogels

2.2 Particles

2.3 Self-assembled carriers

2.4 Other chiral carriers

3 Chiral inorganic material-based releasing systems

3.1 Silica particles

3.2 Polymers/silica hybrid particles

4 Molecularly imprinted material-based releasing systems

5 Conclusion and outlook

Fig.1 Time-release profiles of L- and D-proline: L- and D-proline separately released (A); The difference between L- and D-proline when (B) released separately/(C) released simultaneously; (D) A comparison of the difference between L- and D-proline released in the two modes[24]
Fig.2 Preparation of chiral particles with two helical polymers and the process of enantioselective release[44]
Fig.3 Drug release curves of (+)-cinchonine and (-)-cinchonidine in (a) Spin-MPS and (b) Sphe-MPS[54]
Fig.4 Preparation of chiral particles containing Schiff base and release of citronellal[40]
Fig.5 Peptide molecular structure and reversibly self-assembled vesicles[61]
Fig.6 Preparation of and controlled release from polyHIPEs[65]
Fig.7 Schematic illustration for cooperative self-assembly formation of CMS[80]
Fig.8 Schematic illustration for preparing MIP materials[94]
[1]
Asghar W, Pittman E, Jamali F. DARU J. Pharm. Sci., 2015, 23(1): 1.

doi: 10.1186/s40199-015-0089-6
[2]
Eriksson T, Björkman S, Höglund P. Eur. J. Clin. Pharmacol., 2001, 57(5): 365.

pmid: 11599654
[3]
Agranat I, Wainschtein S R, Zusman E Z. Nat. Rev. Drug Discov., 2012, 11(12): 972.

doi: 10.1038/nrd3657-c1 pmid: 23197042
[4]
Cheng J, Huang Y D, Mi L, Chen W J, Wang D, Wang Q H. J. Ind. Microbiol. Biotechnol., 2018, 45(6): 405.

doi: 10.1007/s10295-018-2044-2
[5]
Pérez-García F, Max Risse J, Friehs K, Wendisch V F. Biotechnol. J., 2017, 12(7): 1600646.

doi: 10.1002/biot.v12.7
[6]
Shaw S, White J D. Chem. Rev., 2019, 119(16): 9381.

doi: 10.1021/acs.chemrev.9b00074
[7]
Chrzanowska M, Grajewska A, Rozwadowska M D. Chem. Rev., 2016, 116(19): 12369.

pmid: 27680197
[8]
Gu Z G, Zhan C H, Zhang J, Bu X H. Chem. Soc. Rev., 2016, 45(11): 3122.

doi: 10.1039/C6CS00051G
[9]
Huang X Y, Pei D, Liu J F, Di D L. J. Chromatogr. A, 2018, 1531: 1.

doi: 10.1016/j.chroma.2017.10.073
[10]
Meyer V R, Rais M. Chirality, 1989, 1(2): 167.

pmid: 2642044
[11]
Sanjoy M, Sujoy D, Arun N K. Soft Matter, 2020, 16(6): 1404.

doi: 10.1039/c9sm02127b pmid: 31984400
[12]
Yazdi M K, Vatanpour V, Taghizadeh A, Taghizadeh M, Ganjali M R, Munir M T, Habibzadeh S, Saeb M R, Ghaedi M. Mater. Sci. Eng.: C, 2020, 114: 111023.

doi: 10.1016/j.msec.2020.111023
[13]
Maiorov V A. Opt. Spectrosc., 2020, 128(3): 367.

doi: 10.1134/S0030400X20030133
[14]
Motealleh A, Seda Kehr N. ACS Appl. Mater. Interfaces, 2017, 9(39): 33674.

doi: 10.1021/acsami.7b10871
[15]
Dou X Q, Mehwish N, Zhao C L, Liu J Y, Xing C, Feng C L. Acc. Chem. Res., 2020, 53(4): 852.

doi: 10.1021/acs.accounts.0c00012
[16]
Zhou Q, Dong C Y, Fan W F, Jiang H P, Xiang J J, Qiu N S, Piao Y, Xie T, Luo Y W, Li Z C, Liu F S, Shen Y Q. Biomaterials, 2020, 240: 119902.

doi: 10.1016/j.biomaterials.2020.119902
[17]
Song W Q, Qian L W. Sep. Purif. Technol., 2017, 182: 247.

doi: 10.1016/j.seppur.2017.03.055
[18]
McNeel K E, Siraj N, Negulescu I, Warner I M. Talanta, 2018, 177: 66.

doi: 10.1016/j.talanta.2017.09.025
[19]
Sacchetti A, Rossi F, Rossetti A, Pesa R, Mauri E. Chem. Pap., 2016, 70(4): 436.
[20]
Zhang Y N, Yang D, Han J L, Zhou J, Jin Q X, Liu M H, Duan P F. Langmuir, 2018, 34(20): 5821.

doi: 10.1021/acs.langmuir.8b01035
[21]
Motealleh A, Hermes H, Jose J, Kehr N S. Nanomed.: Nanotechnol. Biol. Med., 2018, 14(2): 247.

doi: 10.1016/j.nano.2017.10.014
[22]
Tobis J, Thomann Y, Tiller J C. Polymer, 2010, 51(1): 35.

doi: 10.1016/j.polymer.2009.10.055
[23]
Shi L, Xie P, Li Z M, Wu Y P, Deng J P. Macromol. Chem. Phys., 2013, 214(12): 1375.

doi: 10.1002/macp.201200729
[24]
Xie P, Liu X, Cheng R, Wu Y P, Deng J P. Ind. Eng. Chem. Res., 2014, 53(19): 8069.

doi: 10.1021/ie500538x
[25]
Cheng R, Liu J, Xie P, Wu Y P, Deng J P. Polymer, 2015, 68: 246.

doi: 10.1016/j.polymer.2015.05.034
[26]
Candau F, Selb J. Adv. Colloid Interface Sci., 1999, 79(2/3): 149.

doi: 10.1016/S0001-8686(98)00077-3
[27]
Zheng X D, Tong Y P, Xie F Y. Guangdong Trace Elem. Sci., 2016, 23(12): 59.
(郑晓丹, 童义平, 谢飞燕. 广东微量元素科学, 2016, 23(12): 59.)
[28]
Schuur B, Verkuijl B J V, Minnaard A J, de Vries J G, Heeres H J,, Feringa B L. Org. Biomol. Chem., 2011, 9(1): 36.

doi: 10.1039/c0ob00610f pmid: 21107491
[29]
Wang R, Wan X H, Zhang J. Chem. Commun., 2019, 55(32): 4711.

doi: 10.1039/C9CC01981B
[30]
Wang H L, Yong X Y, Huang H J, Yu H L, Wu Y P, Deng J P. Polym. Chem., 2019, 10(14): 1780.

doi: 10.1039/C8PY01759J
[31]
Medina D D, Mastai Y. Isr. J. Chem., 2018, 58(12): 1330.

doi: 10.1002/ijch.v58.12
[32]
Zhao Y B, Zhang X C, Li W, Zhang A. Eur. Polym. J., 2019, 118: 275.

doi: 10.1016/j.eurpolymj.2019.05.054
[33]
Siriwardane D A, Kulikov O, Reuther J F, Novak B M. Macromolecules, 2017, 50(3): 832.

doi: 10.1021/acs.macromol.6b02456
[34]
Wang Q, Huang J, Jiang Z Q, Zhou L, Liu N, Wu Z Q. Polymer, 2018, 136: 92.

doi: 10.1016/j.polymer.2017.12.057
[35]
Wang Q, Chu B F, Chu J H, Liu N, Wu Z Q. ACS Macro Lett., 2018, 7(2): 127.

doi: 10.1021/acsmacrolett.7b00875
[36]
Chen B, Song C, Luo X F, Deng J P, Yang W T. Macromol. Rapid Commun., 2011, 32(24): 1986.

doi: 10.1002/marc.201100557
[37]
Song C, Zhang C H, Wang F J, Yang W T, Deng J P. Polym. Chem., 2013, 4(3): 645.

doi: 10.1039/C2PY20546G
[38]
Liang J Y, Deng J P. J. Mater. Chem. B, 2016, 4(39): 6437.

doi: 10.1039/C6TB01757F
[39]
Deng X S, Liang J Y, Deng J P. Chem. Eng. J., 2016, 306: 1162.

doi: 10.1016/j.cej.2016.08.061
[40]
Zhao D Y, Yu H L, Mei S, Pan K, Deng J P. Ind. Eng. Chem. Res., 2019, 58(2): 1105.

doi: 10.1021/acs.iecr.8b05307
[41]
Liang J Y, Yang B W, Deng J P. Chem. Eng. J., 2018, 344: 262.

doi: 10.1016/j.cej.2018.03.076
[42]
Chen B, Deng J P, Yang W T. Adv. Funct. Mater., 2011, 21(12): 2345.
[43]
Yang B W, Deng J P. J. Mater. Sci., 2018, 53(16): 11932.

doi: 10.1007/s10853-018-2448-4
[44]
Liang J Y, Deng J P. Macromolecules, 2018, 51(11): 4003.

doi: 10.1021/acs.macromol.8b00580
[45]
Li H F, Zhang B M, Guo X L. Prog. Chem., 2011, 23(6): 1196.
(李宏福, 张博明, 郭兴林. 化学进展, 2011, 23(6): 1196.)
[46]
Manoharan V N, Elsesser M T, Pine D J. Science, 2003, 301: 483.

pmid: 12881563
[47]
Walther A, Müller A H E. Chem. Rev., 2013, 113(7): 5194.

doi: 10.1021/cr300089t
[48]
Gong Z, Hueckel T, Yi G R, Sacanna S. Nature, 2017, 550(7675): 234.

doi: 10.1038/nature23901
[49]
Zhang Y J, Kang L, Huang H J, Deng J P. ACS Appl. Mater. Interfaces, 2020, 12(5): 6319.

doi: 10.1021/acsami.9b21222
[50]
Li P P, Pan K, Deng J P. Nanoscale, 2019, 11(48): 23197.

doi: 10.1039/C9NR07816A
[51]
Zhao B, Lin J F, Deng J P, Liu D. Macromol. Rapid Commun., 2018, 39(20): 1800072.

doi: 10.1002/marc.201800072
[52]
Li W F, Deng J P. ACS Appl. Mater. Interfaces, 2016, 8(25): 16273.

doi: 10.1021/acsami.6b02654
[53]
Siriwardane D A, Kulikov O, Reuther J F, Novak B M. Macromolecules, 2017, 50(3): 832.

doi: 10.1021/acs.macromol.6b02456
[54]
Yu H L, Pan K, Deng J P. Macromolecules, 2018, 51(15): 5656.

doi: 10.1021/acs.macromol.8b01282
[55]
Pourjavadi A, Kohestanian M, Streb C. Mater. Sci. Eng.: C, 2020, 108: 110418.

doi: 10.1016/j.msec.2019.110418
[56]
Schmaljohann D. Adv. Drug Deliv. Rev., 2006, 58(15): 1655.

doi: 10.1016/j.addr.2006.09.020
[57]
Duan B C, Zou S W, Sun Y, Xu X J. Biomacromolecules, 2019, 20(4): 1567.

doi: 10.1021/acs.biomac.8b01780
[58]
Wang J, Wang T, Chem. J. Chin. Univ., 2020, 41(3): 377.
(王军, 王铁. 高等学校化学学报, 2020, 41(3): 377.)
[59]
Luo Z L, Yue Y Y, Zhang Y F, Yuan X, Gong J P, Wang L L, He B, Liu Z, Sun Y L, Liu J, Hu M F, Zheng J. Biomaterials, 2013, 34(21): 4902.

doi: 10.1016/j.biomaterials.2013.03.081
[60]
Lin D W, Xing Q G, Wang Y F, Qi W, Su R X, He Z M. Prog. Chem., 2019, 31(12): 1623.
(林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 化学进展, 2019, 31(12): 1623.)

doi: 10.7536/PC190446
[61]
Chen X, He Y, Kim Y, Lee M. J. Am. Chem. Soc., 2016, 138(18): 5773.

doi: 10.1021/jacs.6b02401 pmid: 27078796
[62]
Cao W J, Xiong X Y, Gong Y C, Li Z L, Li Y P. China Biotechnol., 2019, 6: 62.
(曹文杰, 熊向源, 龚妍春, 李资玲, 李玉萍. 中国生物工程杂志, 2019, 6: 62.).
[63]
Yan T F, Li F, Qi S W, Tian J, Tian R Z, Hou J X, Luo Q, Dong Z Y, Xu J Y, Liu J Q. Chem. Commun., 2020, 56(1): 149.

doi: 10.1039/C9CC08380D
[64]
Farah S, Anderson D G, Langer R. Adv. Drug Deliv. Rev., 2016, 107: 367.

doi: 10.1016/j.addr.2016.06.012
[65]
Yong X Y, Hu Q S, Zhou E G, Deng J P, Wu Y P. ACS Biomater. Sci. Eng., 2019, 5(10): 5072.

doi: 10.1021/acsbiomaterials.9b01276
[66]
Khodabandeh A, Arrua R D, Coad B R, Rodemann T, Ohigashi T, Kosugi N, Thickett S C, Hilder E F. Polym. Chem., 2018, 9(2): 213.

doi: 10.1039/C7PY01770G
[67]
Zhao C S, Nie S Q, Tang M, Sun S D. Prog. Polym. Sci., 2011, 36(11): 1499.

doi: 10.1016/j.progpolymsci.2011.05.004
[68]
Chen X X, Sun W W, Yang C Y, Yang R, Yuan L M. Membr. Sci. Technol., 2020, 40(1): 78.
(谌学先, 孙维维, 杨璨瑜, 杨蕊, 袁黎明. 膜科学与技术, 2020, 40(1): 78.)
[69]
Wang S B. Microporous Mesoporous Mater., 2009, 117(1/2): 1.

doi: 10.1016/j.micromeso.2008.07.002
[70]
Bagheri E, Ansari L, Abnous K, Taghdisi S M, Charbgoo F, Ramezani M, Alibolandi M. J. Control. Release, 2018, 277: 57.

doi: 10.1016/j.jconrel.2018.03.014
[71]
Bakhshian Nik A, Zare H, Razavi S, Mohammadi H, Torab Ahmadi P, Yazdani N, Bayandori M, Rabiee N, Izadi Mobarakeh J. Microporous Mesoporous Mater., 2020, 299: 110115.

doi: 10.1016/j.micromeso.2020.110115
[72]
Wang J G, Wang W Q, Sun P C, Yuan Z Y, Li B H, Jin Q H, Ding D T, Chen T H. J. Mater. Chem., 2006, 16(42): 4117.

doi: 10.1039/b609243h
[73]
Zengin A, Cinar G, Guler M O. Curr. Appl. Phys., 2017, 17(5): 785.

doi: 10.1016/j.cap.2017.02.026
[74]
Yokoi T, Yamataka Y, Ara Y, Sato S, Kubota Y, Tatsumi T. Microporous Mesoporous Mater., 2007, 103(1/3): 20.

doi: 10.1016/j.micromeso.2007.01.018
[75]
Park K W, Kim J Y, Seo H J, Kwon O Y. Sci. Rep., 2019, 9(1): 13360.

doi: 10.1038/s41598-019-50053-y
[76]
Wang B, Chi C, Shan W, Zhang Y H, Ren N, Yang W L, Tang Y. Angew. Chem. Int. Ed., 2006, 45(13): 2088.

doi: 10.1002/(ISSN)1521-3773
[77]
Li J, Xu L, Yang B X, Bao Z H, Pan W S, Li S M. Mater. Sci. Eng.: C, 2015, 55: 367.

doi: 10.1016/j.msec.2015.05.039
[78]
Lu T, Li G J, Li J. Microporous Mesoporous Mater., 2020, 294: 109834.

doi: 10.1016/j.micromeso.2019.109834
[79]
Yu H L, Yong X Y, Liang J Y, Deng J P, Wu Y P. Ind. Eng. Chem. Res., 2016, 55(21): 6037.

doi: 10.1021/acs.iecr.6b01031
[80]
Song L J, Pan M, Zhao R, Deng J P, Wu Y P. J. Control. Release, 2020, 324: 156.

doi: 10.1016/j.jconrel.2020.05.019
[81]
Li H R, Li H T, Wei C, Ke J, Li J, Xu L, Liu H Z, Yang Y, Li S M, Yang M S. Eur. J. Pharm. Sci., 2018, 117: 321.

doi: 10.1016/j.ejps.2018.03.013
[82]
Li H R, Song L N, Hu B B, Li Z, Li S M, Wang Z Y. J. Shenyang Pharmaceut. Univ., 2017, 4: 15.
(李鹤然, 宋立娜, 胡贝贝, 李贞, 李三鸣, 王中彦. 沈阳药科大学学报, 2017, 4: 15.).
[83]
Cui M S, Xie L Y, Zhang S W, Chen L, Xi Y R, Wang Y M, Guo Y Y, Xu L. Colloids Surf. B: Biointerfaces, 2019, 184: 110483.

doi: 10.1016/j.colsurfb.2019.110483
[84]
Pu Y Y, Li Y, Zhuang W, Zhang M, Li B Z, Yang Y G. Chin. Chem. Lett., 2012, 23(10): 1201.

doi: 10.1016/j.cclet.2012.07.010
[85]
Zhang W, Zheng N, Chen L, Xie L Y, Cui M S, Li S M, Xu L. Pharmaceutics, 2018, 11(1): 4.

doi: 10.3390/pharmaceutics11010004
[86]
Wang Y M, Li W, Liu T T, Xu L, Guo Y Y, Ke J, Li S M, Li H R. Mater. Sci. Eng.: C, 2019, 103: 109737.

doi: 10.1016/j.msec.2019.109737
[87]
Guo Z, Du Y, Liu X B, Ng S C, Chen Y, Yang Y H. Nanotechnology, 2010, 21(16): 165103.

doi: 10.1088/0957-4484/21/16/165103
[88]
Wulff G, Sarhan A, Zabrocki K. Tetrahedron Lett., 1973, 14(44): 4329.

doi: 10.1016/S0040-4039(01)87213-0
[89]
Andersson L, Ekberg B, Mosbach K. Tetrahedron Lett., 1985, 26(30): 3623.

doi: 10.1016/S0040-4039(00)89207-2
[90]
Hosoya K, Yoshizako K, Shirasu Y, Kimata K, Araki T, Tanaka N, Haginaka J. J. Chromatogr. A, 1996, 728(1/2): 139.

doi: 10.1016/0021-9673(95)01165-X
[91]
Luliński P. Mater. Sci. Eng.: C, 2017, 76: 1344.

doi: 10.1016/j.msec.2017.02.138
[92]
Zhang H Q. Adv. Mater., 2020, 32(3): 1806328.

doi: 10.1002/adma.v32.3
[93]
Tuwahatu C A, Yeung C C, Lam Y W, Roy V A L. J. Control. Release, 2018, 287: 24.

doi: 10.1016/j.jconrel.2018.08.023
[94]
Beyazit S, Tse Sum Bui B, Haupt K, Gonzato C. Prog. Polym. Sci., 2016, 62: 1.

doi: 10.1016/j.progpolymsci.2016.04.001
[95]
Haupt K, Medina Rangel P X, Bui B T S. Chem. Rev., 2020, 120(17): 9554.

doi: 10.1021/acs.chemrev.0c00428
[96]
Gaálová J, Yalcinkaya F, Cuřínová P, Kohout M, Yalcinkaya B, Koštejn M, Jirsák J, Stibor I, Bara J E, van der Bruggen B, Izák P. J. Membr. Sci., 2020, 596: 117728.

doi: 10.1016/j.memsci.2019.117728
[97]
Goyal G, Bhakta S, Mishra P. ACS Appl. Nano Mater., 2019, 2(10): 6747.

doi: 10.1021/acsanm.9b01649
[98]
Liu Y, Li Z Q, Jia L. J. Chromatogr. A, 2020, 1622: 461147.

doi: S0021-9673(20)30387-3 pmid: 32450989
[99]
Li Z Y, Liu Z S, Zhang Q W, Duan H Q. Chin. Chem. Lett., 2007, 18(3): 322.

doi: 10.1016/j.cclet.2007.01.037
[100]
Jaiswal L, Rakkit S, Pochin K, Jaisamut P, Tanthana C, Tanmanee N, Srichana T, Suedee R. Process. Biochem., 2015, 50(12): 2035.

doi: 10.1016/j.procbio.2015.09.016
[101]
Monier M, Youssef I, Abdel-Latif D A. Chem. Eng. J., 2019, 356: 693.

doi: 10.1016/j.cej.2018.09.028
[102]
Liu Y J, Liu Y C, Liu Z M, Zhao X C, Wei J T, Liu H C, Si X X, Xu Z G, Cai Z W. J. Hazard. Mater., 2020, 392: 122251.

doi: 10.1016/j.jhazmat.2020.122251
[103]
Liang J Y, Wu Y, Deng J P. ACS Appl. Mater. Interfaces, 2016, 8(19): 12494.

doi: 10.1021/acsami.6b04057
[104]
Yin J F, Cui Y, Yang G L, Wang H L. Chem. Commun., 2010, 46(41): 7688.

doi: 10.1039/c0cc01782e
[105]
Kao C L, Chen Y F, Huang P C, Hsu C Y, Kuei C H. RSC Adv., 2015, 5(20): 15511.

doi: 10.1039/C4RA16698A
[106]
Sajini T, Thomas R, Mathew B. Polymer, 2019, 173: 127.

doi: 10.1016/j.polymer.2019.04.031
[107]
Kupai J, Rojik E, Huszthy P, Szekely G. ACS Appl. Mater. Interfaces, 2015, 7(18): 9516.

doi: 10.1021/acsami.5b00755
[108]
Ribeiro A R L, Maia A S, Ribeiro C, Tiritan M E. Trac Trends Anal. Chem., 2020, 124: 115783.

doi: 10.1016/j.trac.2019.115783
[109]
Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan M. Molecules, 2018, 23(2): 262.

doi: 10.3390/molecules23020262
[1] Dongya Bai, Junyao He, Bin Ouyang, Jin Huang, Pu Wang. Biocatalytic Asymmetric Synthesis of Chiral Aryl Alcohols [J]. Progress in Chemistry, 2017, 29(5): 491-501.
[2] . Synthesis of Chiral Drugs by Titanium-catalyzed Enantioselective Sulfoxidation [J]. Progress in Chemistry, 2010, 22(09): 1760-1766.
[3] Chen Yijun* Wu Xuri. Biocatalysis in Drug Discovery and Development [J]. Progress in Chemistry, 2007, 19(012): 1947-1954.
[4] Zhang Chun,Zheng yansong**,Mei Fuming,Li Guangxing. Recognition of Bioactive Molecules by Calixarenes [J]. Progress in Chemistry, 2004, 16(06): 934-.
[5] Shi Ruixue,Guo Chenghai,Zou Xiaohong,Zhu Chunye,Zuo Yanjun,Deng Yundu. The Development of Research in Molecular Imprinting Technique [J]. Progress in Chemistry, 2002, 14(03): 182-.
Viewed
Full text


Abstract

Enantioselective Release of Chiral Drugs