中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1679-1692 DOI: 10.7536/PC200942   Next Articles

• Review •

Cathode Catalysts for Non-Aqueous Lithium-Air Batteries

Mengting Xu1, Yanqing Wang1, Ya Mao2, Jingjuan Li1,3, Zhidong Jiang1(), Xianxia Yuan1()   

  1. 1 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2 State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources,Shanghai 200245, China
    3 College of Environmental and Chemical Engineering, Shanghai University of Electric Power,Shanghai 200090, China
  • Received: Revised: Online: Published:
  • Contact: Zhidong Jiang, Xianxia Yuan
  • Supported by:
    National Natural Science Foundation of China(21776176); National Natural Science Foundation of China(21476138); Aerospace Science and Technology Innovation Fund(SAST2017-134); Shanghai Sailing Program(17YF1412400)
Richhtml ( 67 ) PDF ( 1067 ) Cited
Export

EndNote

Ris

BibTeX

With expanding demand for high-performance batteries, Li-air batteries have been in spotlight due to the ultra-high theoretical energy density. Although some breakthroughs have been accomplished recently, their commercial level applications are still constrained by intense problems and challenges. Among them, sluggish reaction kinetics is assented as one of the serious issues responsible for unsatisfactory battery performance. Thus, an immense measure of exploration on cathode catalysts has been performed lately to improve the battery performance and facilitate the development. In this work, primary advancement and accomplishments on cathode catalysts for non-aqueous Li-air batteries have been summarized and comparatively discussed, and the future directions and developments have likewise been proposed.

Contents

1 Introduction

2 Working principle of non-aqueous lithium-air batteries

3 Cathode catalysts for non-aqueous lithium-air batteries

3.1 Noble metal and the alloys

3.2 Transition metal oxides

3.3 Transition metal sulfides

3.4 Soluble redox mediators

4 Conclusion and outlook

Fig. 1 Comparison of specific energy density between various rechargeable batteries and gasoline[4]. Copyright 2010, American Chemical Society
Fig. 2 Schematic diagram of various types of lithium-air battery[6]. Copyright 2015, Royal Society of Chemistry
Fig. 3 Schematic diagram of working principle of non-aqueous lithium-air battery[4].Copyright 2010, American Chemical Society
Fig. 4 The schematic illustrations of the active sites in black carbon(a), prinstine HGNs(b) and Pt-HGNs(c); the mechanism for the nucleation of Li2O2 on active site of substrate(d) and Pt catalyst(e); the formation of toroidal Li2O2 on the surface of pristine HGNs(f) and Pt-HGNs(g) electrodes[19]. Copyright 2016, John Wiley and Sons
Fig. 5 SEM(a~c) and TEM(d~f) images of MnOx; cycling performance of Li-air batteries with MnOx at 100 mA·g-1 with a controlled capacity of 1000 mAh·g-1(g), insets: the initial(h) and 315th(i) discharge/charge curve of the MnOx electrode[30]. Copyright 2016, Royal Society of Chemistry
Fig. 6 Schematic illustration for synthesis of prelithiated NCO/CF(PL-NCO/CF) composite films(a); first-cycle discharge/charge profiles of PL-NCO/CF electrodes with different lithiation depths(0.02、0.25、0.50 and 0.75 V) and the pristine NCO/CF electrode at a current density of 0.1 mA·cm-2(b); cyclic stability of the electrodes at 0.1 mA·cm-2(c)[40]. Copyright 2016, American Chemical Society
Fig. 7 Schematic illustration of the synthesis of single- and double-wall MnCo2O4 nanotubes(a); initial discharge-charge curves of MnCo2O4 catalysts based Li-O2 batteries(b) and the rate ability(c); cyclic performance of the batteries with single-(d) and double-wall(e) MnCo2O4 based electrodes at 400 mA·g-1 with a controlled capacity of 1000 mAh· g - 1 [46]. Copyright 2018, Royal Society of Chemistry
Fig. 8 Schematic illustrations of the Li-air battery(a), the nitridation process of LaNiO3(b), and the formation and decomposition of Li2O2 during discharge/charge process(c)[57]. Copyright 2018, American Chemical Society
Fig. 9 SEM(a, c, e, f, i, j) and TEM(b, d, g, h) images of NiS(a-d)[63], Copyright 2015, Springer Nature, SnS2 (e-h)[72],Copyright 2018, John Wiley and Sons, and NiCo2S4(i-j)[74], Copyright 2019, IOP Publishing
Fig. 10 Reaction mechanism of redox mediators as cathode catalysts[81,82]. Copright 2019, John Wiley and Sons, Copyright 2019, Royal Society of Chemistry
Fig. 11 Discharge/charge profiles of the electrodes at a discharge depth of 1000 mAh·g-1 and a current rate of 2000 mA·g-1(a); electrochemical profiles(b) and cyclability(c) of the CNT fibril electrodes with a LiI catalyst; cyclability of the CNT fibril electrodes with the LiI catalyst at a controlled capacity of 3000 mAh·g-1(d)[87]. Copyright 2014, John Wiley and Sons
Fig. 12 Schematic illustration of a shuttle mechanism of redox mediator in Li-air batteries(a); mechanism of a self-defense redox mediator of InI3(b)[99]. Copyright 2016, Royal Society of Chemistry
[1]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741
[2]
Hoque M M, Hannan M A, Mohamed A, Ayob A. Renew. Sustain. Energy Rev., 2017, 75: 1363.

doi: 10.1016/j.rser.2016.11.126
[3]
Surya K, Michael M S, Prabaharan S R S. Solid State Ion., 2018, 317: 89.
[4]
Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1(14): 2193.

doi: 10.1021/jz1005384
[5]
Farooqui U R, Ahmad A L, Hamid N A. Renew. Sustain. Energy Rev., 2017, 77: 1114.

doi: 10.1016/j.rser.2016.11.220
[6]
Ma Z, Yuan X X, Li L, Ma Z F, Wilkinson D P, Zhang L, Zhang J J. Energy Environ. Sci., 2015, 8(8): 2144.
[7]
Chen Y H, Freunberger S A, Peng Z Q, BardÉ F, Bruce P G. J. Am. Chem. Soc., 2012, 134(18): 7952.

doi: 10.1021/ja302178w
[8]
He P, Wang Y G, Zhou H S. Chem. Commun., 2011, 47(38): 10701.

doi: 10.1039/c1cc14144a
[9]
Kitaura H, Zhou H. Adv. Energy Mater., 2012, 2(7): 889.

doi: 10.1002/aenm.201100789
[10]
Mehta M, Bevara V, Andrei P. J. Power Sources, 2015, 286: 299.

doi: 10.1016/j.jpowsour.2015.03.158
[11]
Wang Y G, Zhou H S. J. Power Sources, 2010, 195(1): 358.

doi: 10.1016/j.jpowsour.2009.06.109
[12]
Geng D S, Ding N, Hor T S A, Chien S W, Liu Z L, Wuu D, Sun X L, Zong Y. Adv. Energy Mater., 2016, 6(9): 1502164.

doi: 10.1002/aenm.201502164
[13]
Wang J J, Li Y L, Sun X L. Nano Energy, 2013, 2(4): 443.

doi: 10.1016/j.nanoen.2012.11.014
[14]
Laoire C O, Mukerjee S, Abraham K M, Plichta E J, Hendrickson M A. J. Phys. Chem. C, 2010, 114(19): 9178.

doi: 10.1021/jp102019y
[15]
Song K, Jung J, Park M, Park H, Kim H J, Choi S I, Yang J, Kang K, Han Y K, Kang Y M. ACS Catal., 2018, 8(10): 9006.

doi: 10.1021/acscatal.8b02172
[16]
Wu F, Xing Y, Bi X X, Yuan Y F, Wang H H, Shahbazian-Yassar R, Li L, Chen R J, Lu J, Amine K. J. Power Sources, 2016, 332: 96.

doi: 10.1016/j.jpowsour.2016.09.090
[17]
Hayashi M, Sakamoto S, Nohara M, Iwata M, Suzuki K, Hirayama M, Nakamura J, Arai H, Kanno R, Komatsu T. Electrochemistry, 2019, 87(1): 52.

doi: 10.5796/electrochemistry.18-00046
[18]
Kang Y J, Jung S C, Kim H J, Han Y K, Oh S H. Nano Energy, 2016, 27: 1.

doi: 10.1016/j.nanoen.2016.06.040
[19]
Wu F, Xing Y, Zeng X Q, Yuan Y F, Zhang X Y, Shahbazian-Yassar R, Wen J G, Miller D J, Li L, Chen R J, Lu J, Amine K. Adv. Funct. Mater., 2016, 26(42): 7626.
[20]
Sevim M, Francia C, Amici J, Vankova S, Şener T, Metin Ö. J. Alloys Compd., 2016, 683: 231.

doi: 10.1016/j.jallcom.2016.05.094
[21]
Zhao L Y, Xing Y, Chen N, Lai J N, Li L, Wu F, Chen R J. J. Power Sources, 2020, 463: 228161.

doi: 10.1016/j.jpowsour.2020.228161
[22]
Wang G Q, Tu F F, Xie J, Du G H, Zhang S C, Cao G S, Zhao X B. Adv. Sci., 2016, 3(10): 1500339.

doi: 10.1002/advs.v3.10
[23]
Ogasawara T, DÉbart A, Holzapfel M, Novák P, Bruce P G. J. Am. Chem. Soc., 2006, 128(4): 1390.

pmid: 16433559
[24]
DÉbart A, Paterson A, Bao J L, Bruce P. Angew. Chem. Int. Ed., 2008, 47(24): 4521.

doi: 10.1002/(ISSN)1521-3773
[25]
Lu C J, Zhu F Q, Yin J G, Zhang J B, Yu Y W, Hu X L. J. Inorg. Mater., 2018, 33(9): 1029.

doi: 10.15541/jim20180093
[26]
Park M S, Kim J H, Kim K J, Jeong G, Kim Y J. J. Nanosci. Nanotechnol., 2013, 13(5): 3611.

doi: 10.1166/jnn.2013.7248
[27]
Wang F, Wen Z Y, Wu X W. ChemistrySelect, 2016, 1(21): 6749.

doi: 10.1002/slct.201601274
[28]
Tu F F, Wang Q N, Xie J, Cao G S, Zhang S C, Wang J W, Mao S X, Zhao X B, Yang H Y. Energy Storage Mater., 2017, 6: 164.
[29]
Alam K, Seriani N, Sen P. Phys. Chem. Chem. Phys., 2020, 22(17): 9233.

doi: 10.1039/C9CP06081B
[30]
Zhang S P, Wen Z Y, Lu Y, Wu X W, Yang J H. J. Mater. Chem. A, 2016, 4(43): 17129.
[31]
Wei Z H, Zhao T S, Zhu X B, Tan P. J. Power Sources, 2016, 306: 724.

doi: 10.1016/j.jpowsour.2015.12.095
[32]
Lang X S, Ge F, Cai K D, Li L, Wang Q S, Zhang Q G. J. Alloys Compd., 2019, 770: 451.

doi: 10.1016/j.jallcom.2018.08.142
[33]
Kim K S, Park Y J. Nanoscale Res. Lett., 2012, 7(1): 1.

doi: 10.1186/1556-276X-7-1
[34]
Ming J, Zhao F Y, Wu Y Q, Park J B, Sun Y K, Lee J K. Nanoscale, 2013, 5: 10390.

doi: 10.1039/c3nr02384b pmid: 24056975
[35]
Li C X, Liu D B, Xiao Y K, Liu Z X, Song L, Zhang Z P. ACS Appl. Energy Mater., 2019, 2(4): 2939.

doi: 10.1021/acsaem.9b00291
[36]
Liu T, Huang T, Yu A S. J. Mater. Chem. A, 2019, 7(34): 19745.
[37]
Cui Y M, Wen Z Y, Liu Y. Energy Environ. Sci., 2011, 4(11): 4727.

doi: 10.1039/c1ee02365a
[38]
Park G E, Le H T T, Kim H S, Didwal P N, Park C J. Ceram. Int., 2020, 46(12): 20335.

doi: 10.1016/j.ceramint.2020.05.122
[39]
Li Y, Zou L L, Li J, Guo K, Dong X W, Li X W, Xue X Z, Zhang H F, Yang H. Electrochimica Acta, 2014, 129: 14.

doi: 10.1016/j.electacta.2014.02.070
[40]
Liu B, Yan P F, Xu W, Zheng J M, He Y, Luo L L, Bowden M E, Wang C M, Zhang J G. Nano Lett., 2016, 16(8): 4932.

doi: 10.1021/acs.nanolett.6b01556
[41]
Xue H R, Mu X W, Tang J, Fan X L, Gong H, Wang T, He J P, Yamauchi Y. J. Mater. Chem. A, 2016, 4(23): 9106.

doi: 10.1039/C6TA01712F
[42]
Xue H R, Wu S C, Tang J, Gong H, He P, He J P, Zhou H S. ACS Appl. Mater. Interfaces, 2016, 8(13): 8427.

doi: 10.1021/acsami.5b10856
[43]
Wang P X, Shao L, Zhang N Q, Sun K N. J. Power Sources, 2016, 325: 506.

doi: 10.1016/j.jpowsour.2016.06.065
[44]
Niu F E, Wang N N, Yue J, Chen L, Yang J, Qian Y T. Electrochimica Acta, 2016, 208: 148.

doi: 10.1016/j.electacta.2016.05.026
[45]
Li S L, Xu J, Ma Z, Zhang S M, Wen X F, Yu X B, Yang J, Ma Z F, Yuan X X. Chem. Commun., 2017, 53(58): 8164.

doi: 10.1039/C7CC01995E
[46]
Wu H T, Sun W, Shen J R, Lu C Y, Wang Y, Wang Z H, Sun K N. Nanoscale, 2018, 10(27): 13149.

doi: 10.1039/C8NR02795A
[47]
Li Z X, Lv Y, Yu Y W, Yin J G, Song K F, Yang B Q, Yuan L F, Hu X L. J. Alloys Compd., 2020, 817: 152736.
[48]
Karkera G, Chandrappa S G, Prakash A S. Chem. Eur. J., 2018, 24(65): 17303.

doi: 10.1002/chem.201803569
[49]
Kim J C, Lee G H, Lee S, Oh S I, Kang Y K, Kim D W. Adv. Mater. Interfaces, 2018, 5(4): 1701234.

doi: 10.1002/admi.v5.4
[50]
Song K F, Yang B Q, Li Z X, Lv Y, Yu Y W, Yuan L F, Shen X D, Hu X L. Appl. Surf. Sci., 2020, 529: 147064.

doi: 10.1016/j.apsusc.2020.147064
[51]
Jadhav H S, Kalubarme R S, Jadhav A H, Seo J G. J. Alloys Compd., 2016, 666: 476.

doi: 10.1016/j.jallcom.2016.01.131
[52]
Zhang X, Wang C Y, Chen Y N, Wang X G, Xie Z J, Zhou Z. J. Power Sources, 2018, 377: 136.
[53]
Francia C, Amici J, Tasarkuyu E, Çoşkun A, Gül Ö F, Şener T. Int. J. Hydrog. Energy, 2016, 41(45): 20583.

doi: 10.1016/j.ijhydene.2016.09.042
[54]
Fu Z H, Lin X J, Huang T, Yu A S. J. Solid State Electrochem., 2012, 16(4): 1447.

doi: 10.1007/s10008-011-1467-8
[55]
Cheng J F, Jiang Y X, Zhang M, Sun Y, Zou L, Chi B, Pu J, Jian L. ChemCatChem, 2018, 10(7): 1635.

doi: 10.1002/cctc.v10.7
[56]
Xu Q, Han X P, Ding F, Zhang L, Sang L, Liu X J, Xu Q,. J. Alloys Compd., 2016, 664: 750.

doi: 10.1016/j.jallcom.2015.12.180
[57]
Zhang J B, Zhang C F, Li W, Guo Q, Gao H C, You Y, Li Y T, Cui Z M, Jiang K C, Long H J, Zhang D W, Xin S. ACS Appl. Mater. Interfaces, 2018, 10(6): 5543.

doi: 10.1021/acsami.7b17289
[58]
Lin H Q, liu P, Wang S F, Zhang Z B, Dai Z Y, Tan S Z, Chen D J. J. Power Sources, 2019, 412: 701.

doi: 10.1016/j.jpowsour.2018.12.005
[59]
Kim J G, Kim Y, Noh Y, Lee S, Kim Y, Kim W B. ACS Appl. Mater. Interfaces, 2018, 10(6): 5429.

doi: 10.1021/acsami.7b14599
[60]
Chen X L, Chen S S, Nan B, Jia F L, Lu Z G, Deng H. Ionics, 2017, 23(9): 2241.

doi: 10.1007/s11581-017-2079-9
[61]
Luo Y, Lu F L, Jin C, Wang Y R, Yang R Z, Yang C H. J. Power Sources, 2016, 319: 19.

doi: 10.1016/j.jpowsour.2016.04.047
[62]
Gong Y D, Zhang X L, Li Z P, Wang Z W, Sun C W, Chen L Q. ChemNanoMat, 2017, 3(7): 485.

doi: 10.1002/cnma.v3.7
[63]
Ma Z, Yuan X X, Zhang Z L, Mei D L, Li L, Ma Z F, Zhang L, Yang J, Zhang J J. Sci. Rep., 2015, 5(1): 1.
[64]
Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie R F, Curtiss L A, Salehi-Khojin A. ACS Nano, 2016, 10(2): 2167.

doi: 10.1021/acsnano.5b06672
[65]
Sadighi Z, Liu J P, Zhao L, Ciucci F, Kim J K. Nanoscale, 2018, 10(47): 22549.

doi: 10.1039/c8nr07106c pmid: 30480696
[66]
Hu A J, Long J P, Shu C Z, Liang R X, Li J B. ACS Appl. Mater. Interfaces, 2018, 10(40): 34077.

doi: 10.1021/acsami.8b06912
[67]
Sun G R, Li F, Wu T, Cong L N, Sun L Q, Yang G C, Xie H M, Mauger A, Julien C M, Liu J. Inorg. Chem., 2019, 58(3): 2169.

doi: 10.1021/acs.inorgchem.8b03300
[68]
Sennu P, Christy M, Aravindan V, Lee Y G, Nahm K S, Lee Y S. Chem. Mater., 2015, 27(16): 5726.

doi: 10.1021/acs.chemmater.5b02364
[69]
Lin X D, Yuan R M, Cai S R, Jiang Y H, Lei J, Liu S G, Wu Q H, Liao H G, Zheng M S, Dong Q F. Adv. Energy Mater., 2018, 8(18): 1800089.

doi: 10.1002/aenm.v8.18
[70]
Lyu Z Y, Zhang J, Wang L J, Yuan K D, Luan Y P, Xiao P, Chen W. RSC Adv., 2016, 6(38): 31739.

doi: 10.1039/C6RA00723F
[71]
Hou X X, Mao Y Y, Yin J W, Yuan X X. Aerospace Shanghai, 2020, 2: 75.
( 侯晓彦, 毛亚, 殷洁伟, 原鲜霞. 上海航天 2020, 2: 75.)
[72]
Hou X Y, Mao Y, Yang J, Ma Z F, Yuan X X. ChemElectroChem, 2018, 5(22): 3373.

doi: 10.1002/celc.v5.22
[73]
Li S L, Jiang Z D, Hou X Y, Xu J, Xu M T, Yu X B, Ma Z F, Yang J, Yuan X X. J. Electrochem. Soc., 2020, 167(2): 020520.

doi: 10.1149/1945-7111/ab68c6
[74]
Xu M T, Hou X Y, Yu X B, Ma Z F, Yang J, Yuan X X. J. Electrochem. Soc., 2019, 166(6): F406.

doi: 10.1149/2.1151906jes
[75]
Sadighi Z, Liu J P, Ciucci F, Kim J K. Nanoscale, 2018, 10(33): 15588.

doi: 10.1039/c8nr03942a pmid: 30090885
[76]
Long J P, Hou Z Q, Shu C Z, Han C, Li W J, Huang R, Wang J Z. ACS Appl. Mater. Interfaces, 2019, 11(4): 3834.

doi: 10.1021/acsami.8b15699
[77]
Hou Z Q, Feng S, Hei P, Yang T S, Ran Z Q, Zheng R X, Liao X, Shu C Z, Long J P. J. Power Sources, 2019, 441: 227168.

doi: 10.1016/j.jpowsour.2019.227168
[78]
Hu A J, Long J P, Shu C Z, Xu C X, Yang T S, Liang R X, Li J B. Electrochimica Acta, 2019, 301: 69.

doi: 10.1016/j.electacta.2019.01.163
[79]
Chen Y H, Freunberger S A, Peng Z Q, Fontaine O, Bruce P G. Nat. Chem., 2013, 5(6): 489.
[80]
Feng N N, He P, Zhou H S. ChemSusChem, 2015, 8(4): 600.

doi: 10.1002/cssc.v8.4
[81]
Landa-Medrano I, Lozano I, Ortiz-Vitoriano N, Ruiz de Larramendi I, Rojo T. J. Mater. Chem. A, 2019, 7(15): 8746.

doi: 10.1039/c8ta12487f
[82]
Tamirat A G, Guan X Z, Liu J Y, Luo J Y, Xia Y Y. Chem. Soc. Rev., 2020, 49(20): 7454.
[83]
Bergner B J, Schürmann A, Peppler K, Garsuch A, Janek J. J. Am. Chem. Soc., 2014, 136(42): 15054.

doi: 10.1021/ja508400m
[84]
Feng N N, Mu X W, Zhang X P, He P, Zhou H S. ACS Appl. Mater. Interfaces, 2017, 9(4): 3733.

doi: 10.1021/acsami.6b14889
[85]
Kundu D P, Black R, Adams B, Nazar L F. ACS Cent. Sci., 2015, 1(9): 510.

doi: 10.1021/acscentsci.5b00267
[86]
Nasybulin E, Xu W, Engelhard M H, Li X S, Gu M, Hu D H, Zhang J G. Electrochem. Commun., 2013, 29: 63.

doi: 10.1016/j.elecom.2013.01.011
[87]
Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, LeprÓ X, Ovalle-Robles R, Baughman R H, Kang K. Angew. Chem. Int. Ed., 2014, 53(15): 3926.

doi: 10.1002/anie.201400711
[88]
Kwak W J, Hirshberg D, Sharon D, Afri M, Frimer A A, Jung H G, Aurbach D, Sun Y K. Energy Environ. Sci., 2016, 9(7): 2334.

doi: 10.1039/C6EE00700G
[89]
Liang Z J, Lu Y C. J. Am. Chem. Soc., 2016, 138(24): 7574.

doi: 10.1021/jacs.6b01821
[90]
Lacey M J, Frith J T, Owen J R. Electrochem. Commun., 2013, 26: 74.

doi: 10.1016/j.elecom.2012.10.009
[91]
Gao X W, Chen Y H, Johnson L, Bruce P G. Nat. Mater., 2016, 15(8): 882.

doi: 10.1038/nmat4629
[92]
Tesio A Y, Blasi D, Olivares-Marín M, Ratera I, Tonti D, Veciana J. Chem. Commun., 2015, 51(99): 17623.

doi: 10.1039/C5CC07242E
[93]
Sun D, Shen Y, Zhang W, Yu L, Yi Z Q, Yin W, Wang D, Huang Y H, Wang J, Wang D L, Goodenough J B. J. Am. Chem. Soc., 2014, 136(25): 8941.

doi: 10.1021/ja501877e
[94]
Ryu W H, Gittleson F S, Thomsen J M, Li J Y, Schwab M J, Brudvig G W, Taylor A D. Nat. Commun., 2016, 7(1): 1.
[95]
Deng H, Qiao Y, Zhang X P, Qiu F L, Chang Z, He P, Zhou H S. J. Mater. Chem. A, 2019, 7(29): 17261.

doi: 10.1039/c9ta04946k
[96]
Gao X W, Chen Y H, Johnson L R, Jovanov Z P, Bruce P G. Nat. Energy, 2017, 2(9): 1.

doi: 10.1038/ng0992-1
[97]
Wei C N, Karuppiah C, Yang C C, Shih J Y, Lue S J. J. Phys. Chem. Solids, 2019, 133: 67.
[98]
Chen Z F, Lin X D, Xia H, Hong Y H, Liu X Y, Cai S R, Duan J N, Yang J J, Zhou Z Y, Chang J K, Zheng M S, Dong Q F. J. Mater. Chem. A, 2019, 7(23): 14260.

doi: 10.1039/C9TA03133B
[99]
Zhang T, Liao K M, He P, Zhou H S. Energy Environ. Sci., 2016, 9(3): 1024.

doi: 10.1039/C5EE02803E
[100]
Lee C K, Park Y J. ACS Appl. Mater. Interfaces, 2016, 8(13): 8561.

doi: 10.1021/acsami.6b01775
[101]
Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer A A, Sun Y K, Aurbach D. ACS Appl. Mater. Interfaces, 2015, 7(30): 16590.

doi: 10.1021/acsami.5b04145
[102]
Ahn S M, Suk J, Kim D Y, Kang Y K, Kim H K, Kim D W. Adv. Sci., 2017, 4(10): 1700235.

doi: 10.1002/advs.201700235
[103]
Lee D J, Lee H, Kim Y J, Park J K, Kim H T. Adv. Mater., 2016, 28(5): 857.
[104]
Kwak W J, Park S J, Jung H G, Sun Y K. Adv. Energy Mater., 2018, 8(9): 1702258.

doi: 10.1002/aenm.v8.9
No related articles found!