中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (9): 1199-1212 DOI: 10.7536/PC190303 Previous Articles   Next Articles

Organic Spin Valves and Their Magnetoresistance Effect

Xuanyu Liu1, Xiaoting Zhu1, Shuaishuai Ding2, Rongjin Li1,**(), Wenping Hu1,2   

  1. 1. Departmet of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Online: Published:
  • Contact: Rongjin Li
  • About author:
    ** E-mail:
  • Supported by:
    The National Natural Science Foundation of China(No.61674116)
Richhtml ( 36 ) PDF ( 1322 ) Cited
Export

EndNote

Ris

BibTeX

With the discovery of the giant magnetoresistance effect(GMR), spintronics has rapidly emerged as a new discipline. Spintronics, which utilizes the spin property of electrons, may combine logic operations, information storage and communication to foster the next-generation electronics. Organic semiconductors are attractive for spintronics because of their intrinsically long spin relaxation time due to their low spin-orbit coupling and weak hyperfine interactions. Organic spin valves(OSVs) are important basic structures to study spin injection and transport in organic materials. This review generalizes the progress of OSVs. The spin relaxation mechanisms in organic semiconductors are summarized briefly. Key scientific questions such as the strategy to realize room temperature spin transport and the sign problem of magnetoresistance in OSVs are specially emphasized. Emerging functional devices which utilize the spin property of electrons such as spin organic light-emitting diode(OLED) and spin-photovoltaic device are introduced. Finally, the future development of organic spintronics is prospected.

Fig. 1 (a) Schematics of spin valve effect. The left side is the case that the magnetization of the two electrodes is anti-parallel and the right side is parallel.(b) Electrical resistance versus external magnetic field in spin-valve. Coercivities of two ferromagnets are |H1| and |H2|, respectively[11]
Fig. 2 Schematic of spin relaxation mechanisms. Top, middle, and bottom panels represent spin relaxation mechanism of Elliott-Yafet, D’yakonov-Perel and hyperfine interaction, respectively[14]
Table 1 Representative FM materials used as OSV electrodes[12, 31]
Table 2 MR response and spin diffusion length of spin valves composed of different organic layers and ferromagnetic electrodes at different temperatures.
OSCs(Thickness) FM Electrodes MR @Tempreture Spin diffusion length ref
T6(150 nm) LSMO(100 nm)/LSMO(100 nm) 30%@RT - 42
Alq3(130 nm) LSMO(100 nm)/Co(3.5 nm) -40%@11 K 45 nm@11 K 30
Alq3(1.6 nm) Co(8 nm)/Al2O3(0.6 nm)/Py(10 nm) 7.5%@4.2 K; 6.8%@77 K;4.6%@RT - 50
Alq3(96 nm) Co(5 nm)/AlOx(2 nm)/Co(10 nm) 19%@5 K - 74
Alq3(2 nm) Fe3O4(110 nm)/AlOx(2 nm)/Co(10 nm) 6%@RT - 75
Alq3(1.6 nm) Ni80Fe20(10 nm)/AlOx(0.6 nm)/Co(8 nm) 6%@RT - 50
BCP(10 nm) Co(11 nm)/AlOx(1.5 nm)/Ni80Fe20(11 nm) 3.5%@RT - 61
BTQBT LSMO(100 nm)/LSMO(100 nm) 29%@9.1 K;8.8%@10 K 100 nm@9.1 K 76
C60(5 nm) Co(15 nm)/AlOx(0.9 nm)Py(20 nm) 10%@RT 55
C60(80 nm) Fe3O4(70 nm)/AlOx(2 nm)/Co(10 nm) 6.9% @150 K;5.3%@RT 110 nm@RT 60
C60(120 nm) LSMO(50 nm)/Co(15 nm) -13.3%@20 K 86±8 nm@120 K 77
CuPc(100 nm) Fe(25 nm)/Co(5 nm) 6.4%@40 K;3.2%@80 K;
1.8%@120 K
- 78
CuPc(100 nm) LSMO(50 nm)/Co(20 nm) -6%@10 K;-0.84%@RT 50 nm@10 K 58
CVB(100 nm) LSMO/Co(5 nm) 18%±3%@14 K - 46
Pentacene LSMO(100 nm)/LSMO(100 nm) 6%@5.3 K 55 nm@5.3 K 76
Peteacene(300 nm) LSMO(100 nm)/LSMO(100 nm) 2%@9 K - 79
P(NDI2OD-T2)(35 nm) LSMO(100 nm)/AlOx(1.5 nm)/Co(10 nm) 90%@4.2 K;6.8%@RT 64 nm@4.2 K 56
PVDF(6.9 nm) Fe3O4(75 nm)/AlOx(2 nm)/Co 2.6%@RT - 62
P3MT(15 nm) LSMO(50 nm)/Co(15 nm) 2.7%@RT - 80
RRP3HT(100 nm) LSMO/Co(10 nm) 80%@5 K;1.5%@RT - 38
RRP3HT(75 nm/150 nm) Fe50Co50(20/40 nm)/Ni81Fe19(20 nm) 0.1%@RT;0.04%@RT 62±10 nm 39
RRP3HT(80 nm) LSMO(100 nm)/AlOx(1 nm)/Co(10 nm) 15.6%@2 K;-0.2%@2 K - 40
Rubrene(4.6 nm) Fe(10 nm)/Co(8 nm) 16%@4.2 K;6%@RT 13.3 nm@0.45 K 59
Rubrene(2 nm) Fe3O4(100 nm)/AlOx(2 nm)/Co(10 nm) 6%@RT - 44
α-NPD(105 nm) LSMO/Co(5 nm) 14±3%@14 K - 46
Rubrene(10 nm) V[TCNE]x(50 nm)/ V[TCNE]x(300 nm) -0.04%@100 K - 36
Rubrene(10 nm) Fe(50 nm)/ V[TCNE]x(300 nm) -0.18%@100 K - 81
TPD(200 nm) Co2MnSi(20 nm)/Co(7 nm) 10.7%@5 K;7.8%@RT - 57
TPD(200 nm) LSMO/Co(7 nm) 19%@5 K - 57
TPP(20 nm) LSMO(100 nm)/Co(5 nm) 17%@80 K - 82
BF3(50 nm) NiFe/AlOx(2 nm)/Co 3%@40 K - 83
CNAP(1~3 nm) NiFe(30 nm)/AlOx(2 nm)/Co(50 nm) 10%@5 K;6%@RT - 45
CNAP(5~15 nm) NiFe(30 nm)/AlOx(2 nm)/Co(50 nm) 4%~6%@5 K;1%~2%@RT - 45
PTCDA(2 nm) NiFe(25 nm)/Co(15 nm)/AlOx(0.6 nm)/AlOx
(0.6 nm)/Co(30 nm)
13.5%@RT - 84
1H-DOO-PPV(25 nm) LSMO(200 nm)/Co(15 nm) 2%@10 K - 85
1D-DOO-PPV(25 nm) LSMO(200 nm)/Co(15 nm) 35% or 45%@10 K - 85
Fig. 3 (a) Schematic diagram of the LSMO/T6/LSMO lateral spin-valve device[42].(b) Schematic diagram of the LSMO/Alq3/Co vertical spin-valve device[30].(c) Schematic side views of a double-layer OSV device(LSMO/Alq3/Co/Alq3/Co)[43].(d) Device structure of V[TCNE]x/rubrene/V[TCNE]x[36]
Fig. 4 (a) Schematic diagram of LSMO/Alq3/Co spin valve[30].(b) GMR loop of a LSMO(100 nm)/Alq3(130 nm)/Co(3.5 nm) spin-valve device measured at 11 K[30].(c) ΔR/R vs temperature of LSMO/Alq3/Co spin valve measured at V=2.5 mV. Inset: Temperature dependence of magnetization of Co and LSMO electrodes measured using MOKE[30]
Fig. 5 (a) Schematic diagrams of a BLAG spin valve and a conventional spin valve. Cross-sectional schematic diagram of conventional device(b) indicates the short circuit area(sketched by solid white line) due to the diffusion of Co atoms. For the BLAG device(c) several layers of Co nanodots are formed using BLAG prior to the deposition of top electrodes which effectively minimizes the interdiffusion process[63]
Fig. 6 Schematic diagram of the indirect deposition[70]
Fig. 7 Schematic diagram of the sign inversion in OSV due to a strong chemical reaction at the metal-molecule interface[69] 。。。
Fig. 8 (a~c) Schematic representation of hybridization between magnetic metal and molecule[88].(d) Hybrid schematic diagram of Co/AlOx/P3HT/LSMO spin valve[40]
Fig. 9 Schematic illustration of metal penetration influencing the MR response[41]. Typical MR response and related interface between polymer and top ferromagnetic electrodes of(a, b) thick polymer with direct-evaporated Co, (c, d) thin polymer with direct-evaporated Co, and(e, f) thin polymer with transferred Co, respectively
Fig. 10 (a) Simplified energy diagram for a V[TCNE]x/rubrene/V[TCNE]x tunnel junction.(b) Schematic chart of spin polarization energy band of magnetic electrode[36]
Fig. 11 Bipolar spin valve effect. (a) Magneto electroluminescence as a function of applied magnetic field. The switching of the MEL corresponds to the coercive field of the ferromagnetic electrodes. (b) Normalized magneto-conductance(MC) for a homopolar and bipolar device as a function of bias voltage. The MC for bipolar device remains unchanged beyond the turned on voltage[32, 90]
Fig. 12 Schematic of the spin photovoltaic device, together with its magnetocurrent and photovoltaic characterization.(a) Schematic representation of the C60-based molecular spin-photovoltaic(MSP) device, composed(from bottom to top) of Si, SiO2/Co/AlOx/C60 and Ni80Fe20.(b) Magnetocurrent(MC) on the MSP device measured at 295 and 80 K with a bias of 10 mV in dark conditions.(c) Current-voltage curves measured with and without white-light irradiation(7.5 mW/cm2) at room temperature when the relative orientation of the electrodes is parallel(Iout, output current; Vapp, applied voltage)[94]
[1]
He J, Zheng L, Feng D, Liu M, Shao D, Lu Z, Zhang X, Wang W, Wang W, Lu F, Dong H, Cheng Y, Liu H, Liu H, Zheng R . J. Alloy. Compd., 2018, 769:991. https://linkinghub.elsevier.com/retrieve/pii/S0925838818328986

doi: 10.1016/j.jallcom.2018.08.024
[2]
Ren J, Fu J, Xie S . Physics, 2006, 35:852.
[3]
Binasch G, Grünberg P, Saurenbach F, Zinn W . Phys. Rev. B, 1989, 39:4828.
[4]
Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J . Phys. Rev. Lett., 1988, 61:2472. https://www.ncbi.nlm.nih.gov/pubmed/10039127

doi: 10.1103/PhysRevLett.61.2472 pmid: 10039127
[5]
Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y, Yang H . Nat. Commun., 2017, 8:14761. https://www.ncbi.nlm.nih.gov/pubmed/28281542

doi: 10.1038/ncomms14761 pmid: 28281542
[6]
Bodnar S Y, Smejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik A A, Elmers H J, Klaui M, Jourdan M . Nat. Commun, 2018, 9:348. https://www.ncbi.nlm.nih.gov/pubmed/29367633

doi: 10.1038/s41467-017-02780-x pmid: 29367633
[7]
Yu J, Bang D, Mishra R, Ramaswamy R, Oh J H, Park H J, Jeong Y, Thach V P, Lee D K, Go G, Lee S W, Wang Y, Shi S, Qiu X, Awano H, Lee K J, Yang H . Nat. Mater, 2019, 18:29. https://www.ncbi.nlm.nih.gov/pubmed/30510269

doi: 10.1038/s41563-018-0236-9 pmid: 30510269
[8]
Sanvito S, Rocha A R . J. Comput. Theor. Nanosci., 2006, 3:624.
[9]
Sanvito S . Chem Soc Rev, 2011, 40:3336. https://www.ncbi.nlm.nih.gov/pubmed/21552606

doi: 10.1039/c1cs15047b pmid: 21552606
[10]
Žutić I, Fabian J Sarma D S . Rev. Mod. Phys., 2004, 76:323.
[11]
Jang H J, Richter C A . Adv. Mater., 2017, 29:1602739.
[12]
Yao X, Duan Q, Tong J, Chang Y, Zhou L, Qin G, Zhang X . Materials, 2018, 11:721.
[13]
Andrews D L, Scholes G D, Wiederrecht G P . Comprehensive Nanoscience and Technology. NY: Elsevier Science & Technology, 2011. 109.
[14]
Iniewski K. Nano-Semiconductors Devices and Technology, Boca Raton: CRC Press, 2012, 97.
[15]
Patibandla S, Kanchibotla B, Pramanik S, Bandyopadhyay S, Cahay M . Int. J. Nanotechnol. Mol. Comput., 2009, 1:20.
[16]
Tsukahara M, Yamada M, Naito T, Yamada S, Sawano K, Lazarov V K, Hamaya K . Appl. Phys. Express, 2019, 12:033002. https://iopscience.iop.org/article/10.7567/1882-0786/ab0252

doi: 10.7567/1882-0786/ab0252
[17]
Harmon N J, Flatte M E . Phys Rev Lett, 2013, 110:176602. https://www.ncbi.nlm.nih.gov/pubmed/23679752

doi: 10.1103/PhysRevLett.110.176602 pmid: 23679752
[18]
Zuppiroli L, Bussac M N, Paschen S, Chauvet O, Forro L . Phys. Rev. B, 1994, 50:5196. https://www.ncbi.nlm.nih.gov/pubmed/9976858

doi: 10.1103/physrevb.50.5196 pmid: 9976858
[19]
Cheng Y C, Silbey R J . J. Chem. Phys., 2008, 128:114713. https://www.ncbi.nlm.nih.gov/pubmed/18361607

doi: 10.1063/1.2894840 pmid: 18361607
[20]
Fabian J, Sarma S D . J. Vac. Sci. Technol. B, 1999, 17:1708.
[21]
Bennati M, Németh K, Surján P R, Mehring M . J. Chem. Phys., 1996, 105:4441.
[22]
Elliott R J . Phys. Rev., 1954, 96:266.
[23]
Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M . Nat. Nanotechnol., 2007, 2:216. https://www.ncbi.nlm.nih.gov/pubmed/18654265

doi: 10.1038/nnano.2007.64 pmid: 18654265
[24]
Pramanik S, Bandyopadhyay S, Garre K, Cahay M . Phys. Rev. B, 2006, 74:235329.
[25]
D’yakonov M I, Perel’ V I . Sov. Phys., 1965, 33:1053.
[26]
Bir G, Aronov A, Pikus G . Sov. Phys. JETP, 1976, 42:705.
[27]
Geng R, Subedi R C, Luong H M, Pham M T, Huang W, Li X, Hong K, Shao M, Xiao K, Hornak L A, Nguyen T D . Phys. Rev. Lett., 2018, 120:086602.
[28]
Cui Y, Zhu J G, Tao H L, Liu S M, Lv Y Z, He M, Song B, Chen Y G, Zhang Z H . Comp. Mater. Sci., 2019, 158:260.
[29]
Miyagawa H, Funaki N, Koshiba S, Takahashi N, Inada Y, Mizumaki M, Kawamura N, Suzuki M . J. Magn. Magn. Mater., 2019, 476:213.
[30]
Xiong Z H, Wu D, Vardeny V Z, Shi J . Nature, 2004, 427:821. https://www.ncbi.nlm.nih.gov/pubmed/14985756

doi: 10.1038/nature02325 pmid: 14985756
[31]
Bergenti I, Manna P K, Lin C H, Graziosi P, Liu X, Causer G L, Liscio F, Ruotolo A, Dediu V A, van Lierop J, Klose F, Lin K W . J. Appl. Phys., 2018, 124:183903.
[32]
Devkota J, Geng R, Subedi R C, Nguyen T D . Adv. Funct. Mater., 2016, 26:3881.
[33]
van ’t Erve O M J, Hanbicki A T, Holub M, Li C H, Awo-Affouda C, Thompson P E, Jonker B T . Appl. Phys. Lett., 2007, 91:212109.
[34]
Lou X, Adelmann C, Crooker S A, Garlid E S, Zhang J, Reddy K S M, Flexner S D, Palmstrøm C J, Crowell P A . Nat. Phys., 2007, 3:197.
[35]
Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F . Nature, 2004, 427:817. https://www.ncbi.nlm.nih.gov/pubmed/14985755

doi: 10.1038/nature02277 pmid: 14985755
[36]
Li B, Kao C Y, Yoo J W, Prigodin V N, Epstein A J . Adv. Mater., 2011, 23:3382. https://www.ncbi.nlm.nih.gov/pubmed/21721052

doi: 10.1002/adma.201100903 pmid: 21721052
[37]
Bedoya-Pinto A, Miralles S G, Vélez S, Atxabal A, Gargiani P, Valvidares M, Casanova F, Coronado E, Hueso L E . Adv. Funct. Mater., 2018, 28:1702099. http://doi.wiley.com/10.1002/adfm.v28.16

doi: 10.1002/adfm.v28.16
[38]
Majumdar S, Laiho R, Laukkanen P, Väyrynen I J, Majumdar H S, Österbacka R . Appl. Phys. Lett., 2006, 89:122114. http://aip.scitation.org/doi/10.1063/1.2356463

doi: 10.1063/1.2356463
[39]
Morley N A, Rao A, Dhandapani D, Gibbs M R J, Grell M, Richardson T . J. Appl. Phys., 2008, 103:07F306. http://aip.scitation.org/doi/10.1063/1.2829245

doi: 10.1063/1.2829245
[40]
Ding S, Tian Y, Li Y, Mi W, Dong H, Zhang X, Hu W, Zhu D . ACS Appl. Mater. Interfaces, 2017, 9:15644. https://www.ncbi.nlm.nih.gov/pubmed/28452463

doi: 10.1021/acsami.7b02804 pmid: 28452463
[41]
Ding S, Tian Y, Wang H, Zhou Z, Mi W, Ni Z, Zou Y, Dong H, Gao H, Zhu D, Hu W . ACS Nano, 2018, 12:12657. https://www.ncbi.nlm.nih.gov/pubmed/30412379

doi: 10.1021/acsnano.8b07468 pmid: 30412379
[42]
Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S . Solid State Commun., 2002, 122:181. https://linkinghub.elsevier.com/retrieve/pii/S003810980200090X

doi: 10.1016/S0038-1098(02)00090-X
[43]
Liang S H, Geng R, Zhang Q T, You L, Subedi R C, Wang J, Han X F, Nguyen T D . Org. Electron., 2015, 26:314. https://linkinghub.elsevier.com/retrieve/pii/S156611991530077X

doi: 10.1016/j.orgel.2015.07.056
[44]
Zhang X, Ma Q, Suzuki K, Sugihara A, Qin G, Miyazaki T, Mizukami S . ACS Appl. Mater. Interfaces, 2015, 7:4685. https://www.ncbi.nlm.nih.gov/pubmed/25668508

doi: 10.1021/am508173j pmid: 25668508
[45]
Suzuki K Z, Izumi T, Zhang X, Sugihara A, Pham S T, Taka H, Sato S, Isobe H, Mizukami S . APL Materials, 2017, 5:046101. http://aip.scitation.org/doi/10.1063/1.4979548

doi: 10.1063/1.4979548
[46]
Wang F J, Yang C G, Vardeny Z V, Li X G . Phys. Rev.B, 2007, 75:245324. https://link.aps.org/doi/10.1103/PhysRevB.75.245324

doi: 10.1103/PhysRevB.75.245324
[47]
Dediu V, Hueso L E, Bergenti I, Riminucci A, Borgatti F, Graziosi P, Newby C, Casoli F, De Jong M P, Taliani C, Zhan Y . Phys. Rev. B, 2008, 78:115203. https://link.aps.org/doi/10.1103/PhysRevB.78.115203

doi: 10.1103/PhysRevB.78.115203
[48]
Schneider C M, Bressler P, Schuster P, Kirschner J, de Miguel J J, Miranda R . Phys. Rev. Lett., 1990, 64:1059. https://www.ncbi.nlm.nih.gov/pubmed/10042152

doi: 10.1103/PhysRevLett.64.1059 pmid: 10042152
[49]
Wang F J, Xiong Z H, Wu D, Shi J, Vardeny Z V . Synth. Met., 2005, 155:172. https://linkinghub.elsevier.com/retrieve/pii/S0379677905007393

doi: 10.1016/j.synthmet.2005.07.345
[50]
Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpati B, Moodera J S . Phys. Rev. Lett., 2007, 98:016601. https://www.ncbi.nlm.nih.gov/pubmed/17358495

doi: 10.1103/PhysRevLett.98.016601 pmid: 17358495
[51]
Chen B B, Zhou Y, Wang S, Shi Y J, Ding H F, Wu D . Appl. Phys. Lett., 2013, 103:072402. http://aip.scitation.org/doi/10.1063/1.4818614

doi: 10.1063/1.4818614
[52]
Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R, Venkatesan T . Phys. Rev. Lett., 1998, 81:1953. https://link.aps.org/doi/10.1103/PhysRevLett.81.1953

doi: 10.1103/PhysRevLett.81.1953
[53]
Drew A J, Hoppler J, Schulz L, Pratt F L, Desai P, Shakya P, Kreouzis T, Gillin W P, Suter A, Morley N A, Malik V K, Dubroka A, Kim K W, Bouyanfif H, Bourqui F, Bernhard C, Scheuermann R, Nieuwenhuys G J, Prokscha T, Morenzoni E . Nat. Mater., 2009, 8:109. https://www.ncbi.nlm.nih.gov/pubmed/19029892

doi: 10.1038/nmat2333 pmid: 19029892
[54]
Majumdar S, Majumdar H S, Laiho R, Österbacka R . J. Alloy. Compd., 2006, 423:169. https://linkinghub.elsevier.com/retrieve/pii/S0925838806002076

doi: 10.1016/j.jallcom.2005.12.104
[55]
Gobbi M, Golmar F, Llopis R, Casanova F, Hueso L E . Adv. Mater., 2011, 23:1609.
[56]
Li F, Li T, Chen F, Zhang F . Sci. Rep., 2015, 5:9355.
[57]
Kawasugi Y, Ujino T, Tada H . Org. Electron., 2013, 14:3186.
[58]
Jiang S W, Wang P, Chen B B, Zhou Y, Ding H F, Wu D . Appl. Phys. Lett., 2015, 107:042407.
[59]
Shim J H, Raman K V, Park Y J, Santos T S, Miao G X, Satpati B, Moodera J S . Phys. Rev. Lett., 2008, 100:226603.
[60]
Zhang X, Mizukami S, Kubota T, Ma Q, Oogane M, Naganuma H, Ando Y, Miyazaki T . Nat. Commun., 2013, 4:1392.
[61]
Sun X, Bedoya-Pinto A, Llopis R, Casanova F, Hueso L E . Appl. Phys. Lett., 2014, 105:083302.
[62]
Zhang X, Tong J, Zhu H, Wang Z, Zhou L, Wang S, Miyashita T, Mitsuishi M, Qin G . J. Mater. Chem. C, 2017, 5:5055.
[63]
Sun D, Yin L, Sun C, Guo H, Gai Z, Zhang X G, Ward T Z, Cheng Z, Shen J . Phys. Rev. Lett., 2010, 104:236602.
[64]
Sun M. Mi W . J. Mater. Chem. C, 2018, 6:6619.
[65]
Gu X R, Guo L D, Sun X N . Chin. Phys. B, 2018, 27:107202.
[66]
Brede J, Atodiresei N, Kuck S, Lazic P, Caciuc V, Morikawa Y, Hoffmann G, Blugel S, Wiesendanger R . Phys. Rev. Lett., 2010, 105:047204.
[67]
Moorsom T, Wheeler M, Mohd Khan T, Al Ma’Mari F, Kinane C, Langridge S, Ciudad D, Bedoya-Pinto A, Hueso L, Teobaldi G, Lazarov V K, Gilks D, Burnell G, Hickey B J, Cespedes O . Phys. Rev. B, 2014, 90:125311.
[68]
Morley N A, Drew A J, Zhang H, Scott K, Hudziak S, Morgan D J . Appl. Surf. Sci., 2014, 313:850.
[69]
Ciudad D, Gobbi M, Kinane C J, Eich M, Moodera J S, Hueso L E . Adv. Mater., 2014, 26:7561.
[70]
Wang S, Shi Y J, Lin L, Chen B B, Yue F J, Du J, Ding H F, Zhang F M, Wu D . Synth. Met., 2011, 161:1738.
[71]
Jang H J, Lee J S, Pookpanratana S J, Hacker C A, Tran I C, Richter C A . J. Phys. Chem. C, 2015, 119:12949.
[72]
Yang Z H, Pang R, Shi X Q . J. Phys. Chem. C, 2015, 119:10532.
[73]
Sun X, Bedoya-Pinto A, Mao Z, Gobbi M, Yan W, Guo Y, Atxabal A, Llopis R, Yu G, Liu Y, Chuvilin A, Casanova F, Hueso L E . Adv. Mater., 2016, 28:2609.
[74]
Zhang X, Mizukami S, Kubota T, Oogane M, Naganuma H, Ando Y, Miyazaki T . IEEE Trans.Magn., 2011, 47:2649.
[75]
Zhang X, Mizukami S, Ma Q, Kubota T, Oogane M, Naganuma H, Ando Y, Miyazaki T . J. Appl. Phys., 2014, 115:172608.
[76]
Ikegami T, Kawayama I, Tonouchi M, Nakao S, Yamashita Y, Tada H . Appl. Phys. Lett., 2008, 92:153304.
[77]
Liang S, Geng R, Yang B, Zhao W, Chandra Subedi R, Li X, Han X, Nguyen T D . Sci. Rep., 2016, 6:19461.
[78]
Liu Y, Lee T, Katz H E, Reich D H . J. Appl. Phys., 2009, 105:07C708.
[79]
Jiang S W, Wang P, Jiang S C, Chen B B, Wang M, Jiang Z S, Wu D . Spin, 2014, 4:1440008.
[80]
Geng R, Roy A, Zhao W, Subedi Ram C, Li X, Locklin J, Nguyen Tho D . Adv. Funct. Mater., 2016, 26:3999.
[81]
Li B, Zhou M, Lu Y, Kao C Y, Yoo J W, Prigodin V N, Epstein A J . Org. Electron., 2012, 13:1261.
[82]
Xu W, Szulczewski G J, LeClair P, Navarrete I, Miao G, Guo H, Gupta A . Appl. Phys. Lett., 2007, 90:072506.
[83]
Palosse M, Séguy I, Bedel-Pereira É, Villeneuve-Faure C, Mallet C, Frère P, Warot-Fonrose B, Biziere N, Bobo J F . AIP Advances, 2014, 4:017117.
[84]
Hong J Y, Ou Yang K H, Wang B Y, Li K S, Shiu H W, Chen C H, Chan Y L, Wei D H, Chang F H, Lin H J, Chiang W C, Lin M T . Appl. Phys. Lett., 2014, 104:083301.
[85]
Nguyen T D, Hukic-Markosian G, Wang F, Wojcik L, Li X G, Ehrenfreund E, Vardeny Z V . Nat. Mater., 2010, 9:345.
[86]
Liu Y, Watson S M, Lee T, Gorham J M, Katz H E, Borchers J A, Fairbrother H D, Reich D H . Phys. Rev. B, 2009, 79:075312.
[87]
Bergenti I, Riminucci A, Arisi E, Murgia M, Cavallini M, Solzi M, Casoli F, Dediu V . J. Magn. Magn. Mater., 2007, 316:e987.
[88]
Sanvito S . Nat. Phys., 2010, 6:562.
[89]
Dediu V A, Hueso L E, Bergenti I, Taliani C . Nat. Mater., 2009, 8:707.
[90]
Nguyen T D, Ehrenfreund E, Vardeny Z V . Science, 2012, 337:204.
[91]
Nguyen T D, Ehrenfreund E, Vardeny Z V . Synth. Met., 2013, 173:16.
[92]
Ehrenfreund E, Valy Vardeny Z . Phys. Chem. Chem. Phys., 2013, 15:7967.
[93]
Schulz L, Nuccio L, Willis M, Desai P, Shakya P, Kreouzis T, Malik V K, Bernhard C, Pratt F L, Morley N A, Suter A, Nieuwenhuys G J, Prokscha T, Morenzoni E, Gillin W P, Drew A J . Nat. Mater., 2011, 10:39.
[94]
Sun X, Vélez S, Atxabal A, Bedoya-Pinto A, Parui S, Zhu X, Llopis R, Casanova F, Hueso L E . Science, 2017, 357:677.
[95]
O’Malley K M, Li C Z, Yip H L, Jen A K Y . Adv. Energy Mater., 2012, 2:82.
[96]
Ma’Mari F A, Moorsom T, Teobaldi G, Deacon W, Prokscha T, Luetkens H, Lee S, Sterbinsky G E, Arena D A, MacLaren D A, Flokstra M, Ali M, Wheeler M C, Burnell G, Hickey B J, Cespedes O . Nature, 2015, 524:69.
[97]
Sun X, Gobbi M, Bedoya-Pinto A, Txoperena O, Golmar F, Llopis R, Chuvilin A, Casanova F, Hueso L E . Nat. Commun., 2013, 4:2794.
[98]
Bottegoni F, Celebrano M, Bollani M, Biagioni P, Isella G, Ciccacci F, Finazzi M . Nat. Mater., 2014, 13:790.
[99]
Jansen R . Nat. Mater., 2013, 12:779.
[100]
Endres B, Ciorga M, Schmid M, Utz M, Bougeard D, Weiss D, Bayreuther G, Back C H . Nat. Commun., 2013, 4:2068.
[101]
Han S, Yang L, Gao K, Xie S, Qin W, Ren S . Sci. Rep., 2016, 6:28656.
[102]
Yang L, Han S, Ma X, Qin W, Xie S . Sci. Rep., 2017, 7:8384.
[103]
Yang F, Han S, Xie S . Chin. Phys. B, 2014, 23:058106.
[104]
Yuan X B, Yang M S, Tian Y L, Cai L L, Ren J F . Synth. Met., 2017, 226:46.
[105]
Yuan X B, Cai L L, Tian Y L, Hu G C, Ren J F . Appl. Surf. Sci., 2018, 427:156.
[106]
Yuan X B, Tian Y L, Zhao X W, Yue W W, Hu G C, Ren J F . Appl. Surf. Sci., 2018, 439:1158.
[107]
Kato Y K, Myers R C, Gossard A C, Awschalom D D . Science, 2004, 306:1910.
[108]
Bliokh K Y, Niv A, Kleiner V, Hasman E . Nat. Photonics, 2008, 2:748.
[109]
Nori F . Nature Photonics, 2008, 2:716.
[110]
Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M . Science, 2018, 361:1101.
[111]
Eugenio C, Arthur J E . J. Mater. Chem., 2009, 19:1670.
[112]
Ando K, Fujita S, Ito J, Yuasa S, Suzuki Y, Nakatani Y, Miyazaki T, Yoda H . J. Appl. Phys., 2014, 115:172607.
No related articles found!