中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 607-616 DOI: 10.7536/PC160111 Previous Articles   Next Articles

• Review and comments •

Photothermal Microscopy: An Absorption-Based Single Molecule Imaging Technology

Yuan Tinglian1,2, Jiang Yingyan1, Wang Wei1*   

  1. 1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
    2. College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21527807).
PDF ( 1907 ) Cited
Export

EndNote

Ris

BibTeX

Photothermal microscopy (PTM) is an emerging label-free optical microscopy technique that can image the photothermal property of single nanoparticles and single molecules. The image contrast relied on the sensitive detection of local temperature gradients and refractive index distribution associated with the photothermal effect of individual molecules or nanoparticles when it was illuminated with particular incident light. Since non-radiative relaxation is usually the dominant process for an excited molecule to return back to the ground state, photothermal properties are of more generalized significance compared to fluorescence. The past decade has witnessed the great growth and development of photothermal microscopy, mainly because of its advantages of label-free detection, high sensitivity and stability. Furthermore, this technique has received increasing attention in nano-science and life science, ranging from fundamental studies on molecule-photon interactions to promising applications in single cell imaging and bio-sensing. The review mainly describes the imaging principle, optical apparatus, technical concerns for performance optimization of PTM, and subsequently enumerates the important applications in live-cell studies and bioscience. In the last section, we provide perspectives regarding the major strength and challenges for the further development and applications of photothermal microscopy technology.

Contents
1 Introduction
2 Principle and apparatus of PTM
2.1 Imaging principle
2.2 Photothermal interference contrast (PIC)
2.3 Photothermal heterodyne imaging (PHI)
2.4 Performance optimization
3 Imaging single molecules and single nanoparticles
3.1 Plasmonic nanoparticles
3.2 Semiconductor nanocrystals
3.3 Carbon nanotubes
3.4 Organic molecules
4 Application
4.1 Photothermal probes for live cell imaging
4.2 Label-free imaging of biomolecules
4.3 PTM combined with other techniques
5 Conclusion and outlook

CLC Number: 

[1] Miller J. Physics Today, 2010, 63: 20.
[2] Weisenburger S, Sandoghdar V. Contemporary Physics, 2015, 56: 123.
[3] Kozankiewicz B, Orrit M. Chemical Society Reviews, 2014, 43: 1029.
[4] van Dijk M A, Tchebotareva A L, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognet L, Lounis B. Physical Chemistry Chemical Physics, 2006, 8: 3486.
[5] van Dijk M A, Lippitz M, Orrit M. Accounts of Chemical Research, 2005, 38: 594.
[6] Ignatovich F V, Novotny L. Physical Review Letters, 2006, 96: 013901.
[7] Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T. Analytical Chemistry, 2001, 73: 2112.
[8] Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. Science, 2002, 297: 1160.
[9] Gaiduk A, Yorulmaz M, Ruijgrok P V, Orrit M. Science, 2010, 330: 353.
[10] Berciaud S, Cognet L, Blab G A, Lounis B. Physical Review Letters, 2004, 93: 257402.
[11] Berciaud S, Lasne D, Blab G A, Cognet L, Lounis B. Physical Review B, 2006, 73: 045424.
[12] Selmke M, Braun M, Cichos F. ACS Nano, 2012, 6: 2741.
[13] Selmke M, Braun M, Schachoff R, Cichos F. Physical Chemistry Chemical Physics, 2013, 15: 4250.
[14] Selmke M, Cichos F. Physical Review Letters, 2013, 110: 103901.
[15] Vermeulen P, Cognet L, Lounis B. Journal of Microscopy, 2014, 254: 115.
[16] Cognet L, Berciaud S, Lasne D, Lounis B. Analytical Chemistry, 2008, 80: 2288.
[17] Gaiduk A, Ruijgrok P V, Yorulmaz M, Orrit M. Chemical Science, 2010, 1: 343.
[18] Ruijgrok P V. Doctoral Dissertation of Leiden University, 2012.
[19] Mustafa Y. Doctoral Dissertation of Leiden University, 2013.
[20] Chang W S, Link S. Journal of Physical Chemistry Letters, 2012, 3: 1393.
[21] Govorov A O, Richardson H H. Nano Today, 2007, 2: 30.
[22] Lu S, Min W, Chong S, Holtom G R, Xie X S. Applied Physics Letters, 2010, 96: 113701.
[23] Selmke M, Heber A, Braun M, Cichos F. Applied Physics Letters, 2014, 105: 013511.
[24] Arunkarthick S, Bijeesh M M, Varier G K, Kowshik M, Nandakumar P. Journal of Microscopy, 2014, 256: 111.
[25] Nedosekin D A, Galanzha E I, Dervishi E, Biris A S, Zharov V P. Small, 2014, 10: 135.
[26] Zharov V P. Nature Photonics, 2011, 5: 110.
[27] Brenner M P, Lohse D. Physical Review Letters, 2008, 101: 214505.
[28] Kim J W, Galanzha E I, Shashkov E V, Moon H M, Zharov V P. Nature Nanotechnology, 2009, 4: 688.
[29] Nedosekin D A, Foster S, Nima Z A, Biris A S, Galanzha E I, Zharov V P. Drug Metabolism Reviews, 2015, 47: 346.
[30] Heylman K D, Knapper K A, Goldsmith R H. Journal of Physical Chemistry Letters, 2014, 5: 1917.
[31] Miyazaki J, Tsurui H, Kawasumi K, Kobayashi T. Optics Express, 2015, 23: 3647.
[32] Miyazaki J, Tsurui H, Kawasumi K, Kobayashi T. Optics Letters, 2015, 40: 479.
[33] He J, Miyazaki J, Wang N, Tsurui H, Kobayashi T. Optics Express, 2015, 23: 9762.
[34] He J, Miyazaki J, Wang N, Tsurui H, Kobayashi T. Optics Letters, 2015, 40: 1141.
[35] Miyazaki J, Tsurui H, Kobayashi T. Biomedical Optics Express, 2015, 6: 3217.
[36] Miyazaki J, Tsurui H, Kawasumi K, Kobayashi T. Optics Express, 2015, 22: 18833.
[37] Tong L, Cheng J X. Materials Today, 2011, 14: 264.
[38] Devadas M S, Devkota T, Johns P, Li Z M, Lo S S, Yu K, Huang L B, Hartland G V. Nanotechnology, 2015, 26: 354001.
[39] Basche T. Angewandte Chemie International Edition, 2011, 50: 3602.
[40] Jain P K, Huang X, El-Sayed I H, El-Sayad M A. Plasmonics, 2007, 2: 107.
[41] Richardson H H, Hickman Z N, Govorov A O, Thomas A C, Zhang W, Kordesch M E. Nano Letters, 2006, 6: 783.
[42] Berciaud S, Cognet L, Tamarat P, Lounis B. Nano Letters, 2005, 5: 515.
[43] Zijlstra P, Paulo P M R, Orrit M. Nature Nanotechnology, 2012, 7: 379.
[44] Jain P K, Huang X, El-Sayed I H, El-Sayed M A. Accounts of Chemical Research, 2008, 41: 1578.
[45] Murphy C J, Gole A M, Stone J W, Sisco P N, Alkilany A M, Goldsmith E C, Baxter S C. Accounts of Chemical Research, 2008, 41: 1721.
[46] Berciaud S, Cognet L, Lounis B. Nano Letters, 2005, 5: 2160.
[47] Berciaud S, Cognet L, Poulin P, Weisman R B, Lounis B. Nano Letters, 2007, 7: 1203.
[48] Moerner W E, Kador L. Physical Review Letters, 1989, 62: 2535.
[49] Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 11350.
[50] Blab G A, Cognet L, Berciaud S, Alexandre I, Husar D, Remacle J, Lounis B. Biophysical Journal, 2006, 90: L13.
[51] Lasne D, Blab G A, Berciaud S, Heine M, Groc L, Choquet D, Cognet L, Lounis B. Biophysical Journal, 2006, 91: 4598.
[52] Leduc C, Si S, Gautier J, Soto Ribeiro M, Wehrle Haller B, Gautreau A, Giannone G, Cognet L, Lounis B. Nano Letters, 2013,13: 1489.
[53] Bogart L K, Taylor A, Cesbron Y, Murray P, Levy R. ACS Nano, 2012, 6: 5961.
[54] Lasne D, Blab G A, De Giorgi F, Ichas F, Lounis B, Cognet L. Optics Express, 2007, 15: 14184.
[55] Gruszecki W I, Luchowski R, Zubik M, Grudzinski W. Analytical Chemistry, 2015, 87: 9572.
[56] Gaiduk A, Ruijgrok P V, Yorulmaz M, Orrit M. Physical Chemistry Chemical Physics, 2011, 13: 149.
[57] Gaiduk A, Yorulmaz M, Orrit M. ChemPhysChem, 2011, 12: 1536.
[58] Jung Y, Reif R, Zeng Y, Wang R K. Nano Letters, 2011, 11: 2938.
[59] Pache C, Bocchio N L, Bouwens A, Villiger M, Berclaz C, Goulley J, Gibson M I, Santschi C, Lasser T. Optics Express, 2012, 20: 21385.
[60] Kaiplavil S, Mandelis A. Nature Photonics, 2014, 8: 635.
[61] Atlan M, Gross M, Desbiolles P, Absil E, Tessier G, Coppey M M. Optics Express, 2008, 33: 500.
[62] Absil E, Tessier G, Gross M, Atlan M, Warnasooriya N, Suck S, Coppey M M, Fournier D. Optics Express, 2010, 18: 780.
[63] Vasudevan S, Chen G C K, Lin Z, Ng B K. Applied Optics, 2015, 54: 4478.
[64] Min W, Lu S J, Chong S S, Roy R, Holtom G R, Xie X S. Nature, 2009, 461: 1105.
[65] Chong S, Min W, Xie X S. Journal of Physical Chemistry Letters, 2010, 1: 3316.
[66] Kukura P, Celebrano M, Renn A, Sandoghdar V. Journal of Physical Chemistry Letters, 2010, 1: 3323.
[67] Celebrano M, Kukura P, Renn A, Sandoghdar V. Nature Photonics, 2011, 5: 95.
[68] Octeau V, Cognet L, Duchesne L, Lasne D, Schaeffer N, Fernig D G, Lounis B. ACS Nano, 2009, 3: 345.
[69] Raduenz R, Rings D, Kroy K, Cichos F. Journal of Physical Chemistry A, 2009, 113: 1674.
[70] Paulo P M R, Gaiduk A, Kulzer F, Krens S F G, Spaink H P, Schmidt T, Orrit M. Journal of Physical Chemistry C, 2009, 113: 11451.
[71] Selmke M, Braun M, Schachoff R, Cichos F. Physical Chemistry Chemical Physics, 2013, 15: 4250.
[72] Liu G L, Kim J, Lu Y, Lee L P. Nature Materials, 2005, 5: 27.
[73] Buchs G, Bagiante S, Steele G A. Nature Communications, 2014, 5: 4987.
[74] Tsen A W, Donev L A K, Kurt H, Herman L H, Park J. Nature Nanotechnology, 2008, 4: 108.
[75] Gao Z, Oudjedi L, Faes R, Morote F, Jaillet C, Poulin P, Lounis B, Cognet L. Scientific Reports, 2015, 5:17093.
[76] Chen Z, Shan X, Guan Y, Wang S, Zhu J J, Tao N. ACS Nano, 2015, 9: 11574.
[1] Liu Xiaojun, Tu Yang, Gai Hongwei*. Imaging of Single Molecules by Wide-Field Optical Microscopy [J]. Progress in Chemistry, 2013, 25(0203): 370-379.
[2] Han Quan,Yan Hongtao. Laser Thermal Lens Spectrometry [J]. Progress in Chemistry, 2002, 14(01): 24-.