中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 609-625 DOI: 10.7536/PC130843 Previous Articles   Next Articles

• Review •

Ruthenium Sensitizers for Dye-Sensitized Solar Cells

Sun Huafei, Pan Tingting, Hu Guiqi, Sun Yuanwei, Wang Dongting, Zhang Xianxi*   

  1. Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Basic Research Program of China (973 Program)(No. 2011CBA00701), National Natural Science Foundation of China (No. 21171084), the Returned Overseas Researcher Foundation from the Ministry of Education, the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province, and Taishan Scholar Research Fund

PDF ( 765 ) Cited
Export

EndNote

Ris

BibTeX

Dye-sensitized solar cell (DSSC) is one of the major development trends of solar cells due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs using ruthenium complexes as sensitizers have achieved the highest photo-to-electric conversion efficiencies over 11% with very good stability, implying potential practical applications. It is very important to study the structure-performance-relationships between the structures and the photo-to-electric conversion performances. In this paper, we review the recent research progress of the ruthenium sensitizers. The sensitizers are divided into several groups according to the various substituent groups attached to the bipyridine ring and the numbers of the —NCS ligand. The relationships between the structures, the spectroscopic properties, the electron injection efficiency, the electron transfer and recombination are discussed. The structure characters of the high efficiency sensitizers are summarized, which provides valuable information for design and screening of better sensitizers. Furthermore, special attention has been paid to the design principles of these dyes. Co-sensitization, an emerging technique to extend the absorption range, is also discussed as a choice to improve the performance of the solar cell devices. The working principle of the DSSC is also discussed in detail.

Contents
1 Introduction
1.1 The structure and working principle of DSSC
1.2 Sensitizers
2 Ruthenium sensitizer
2.1 N3, N719, Black dye and HIS-2
2.2 Amphiphilic ruthenium photosensitizers
2.3 Highly molar extinction and stability bipyridyl ruthenium dye
2.4 The ruthenium sensitizers containing a -NCS
2.5 The ruthenium sensitizers modifying the carboxyl bipyridyl side
2.6 The ruthenium sensitizers without -NCS
2.7 The ruthenium sensitizers containing hole transporting units
2.8 The ruthenium sensitizers containing phenanthroline or quinoline ligands
2.9 Sensitizers with novel anchoring groups
3 Conclusion

CLC Number: 

[1] Chapin D M, Fuller C S, Pearson G L. J. Appl. Phys., 1954, 25: 676.
[2] Green M A, Emery K, Hishikawa Y, Warta W. Prog. Photovoltaics, 2009, 17: 85.
[3] O'Regan B, Grätzel M. Nature, 1991, 353: 737.
[4] Bonaccorso F. Int. J. Photoenergy, 2010, 727134: 1.
[5] Caramori S, Cristino V, Boaretto R, R Argazzi, Bignozzi C A, Carlo A D. Int. J. Photoenergy, 2010, 458614: 1.
[6] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev., 2010, 110: 6595.
[7] Nazeeruddin M K, Barano E, Grätzel M. Sol. Energy, 2011, 85: 1172.
[8] Singh S P, Islam A, Yanagida M, Han L. Int. J. Photoenergy, 2011, 520848: 1.
[9] Islam A, Singh S P, Han L. Funct. Mater. Lett., 2011, 4: 21.
[10] Islam A, Singh S P, Yanagida M, Karim M R, Han L. Int. J. Photoenergy, 2011, 757421: 1.
[11] Johansson P, Rowley J, Taheri A, Johansson P G, Rowley J, Taheri A, Meyer G J, Singh S P, Islam A, Han L. Langmuir, 2011, 27: 14522.
[12] Islam A, S Singh P, Han L. Int. J. Photoenergy, 2011, 204639: 1.
[13] Akhtaruzzaman M, Islam A, Fan Y Akhtaruzzaman M, Islam A, Yang F, Asao N, Kwon E, Singh S P, Han L, Yamamoto Y. Chem. Commun., 2011, 47: 12400.
[14] Yella A, Lee HW, Tsao H N, Chen Y Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Science, 2011, 334: 629.
[15] Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Grätzel M. J. Am. Chem. Soc., 1993, 115: 6382.
[16] Nazeeruddin M K, Angelis F D, Fantacci S, Selloni A, ViscardiG, Liska P, Ito S, Takeru B, Grätzel M. J. Am. Chem. Soc., 2005, 127: 16835.
[17] Chen C Y, Wang M k, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J D, Tsai J H, Grätzel C, Wu C G, Zakeeruddin S M, Grätzel M. ACS. Nano., 2009, 3: 3103.
[18] Nazeeruddin M K, Péchy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi CA, Grätzel M. J. Am. Chem. Soc., 2001, 123: 1613.
[19] Numata Y, Singh S P, Islam A, Imai M I A, Nozaki K, Han L Y. Adv. Funct. Mater., 2013, 23: 1817.
[20] Wang P, Zakeeruddin S M, Baker R K, Moser J E, Grätzel M. Adv. Mater., 2003, 15: 2101.
[21] Lagref J J, Nazeeruddin M K, Grätzel M. Synth. Met., 2003, 138: 333.
[22] Kong F T, Dai S Y, Wang K J. Chin. J. Chem., 2007, 25: 168.
[23] Kawano R, Nazeeruddin M K, Sato A, Grätzel M, Watanabe M. Electrochem. Commun., 2007, 9: 1134.
[24] Klein C, Nazeeruddin M K, Liska P, Censo D D, Hirata N, Palomares E, Durrant J R, Grätzel M. Inorg. Chem., 2005, 44: 178.
[25] Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Grätzel M. J. Am. Chem. Soc., 2005, 127: 808.
[26] Kuang D, Ito S, Wenger Be, Klein C, Moser J E, Humphry-Baker R, Zakeeruddin S M, Grätzel M. J. Am. Chem. Soc., 2006, 128: 4146.
[27] Giribabu L, Kumar C. V, Rao C S, Reddy V G, Reddy P Y, Chandrasekharama M, Soujanya Y. Energy Environ. Sci., 2009, 2: 770.
[28] Wang P, Zakeeruddin S M, Moser J E. J. Adv. Mater., 2004, 16: 1806.
[29] Gao F F, Wang Y, Shi D, Zhang J, Wang M K, Jing X Y, Baker R H, Wang P, Zakeeruddin S M, Grätzel M. J. Am. Chem. Soc., 2008, 130: 10720.
[30] Yu Q J, Liu S, Zhang M, Cai N, Wang Y, Wang P. J. Phys. Chem. C, 2009, 113: 14559.
[31] Gao F F, Wang Y, Zhang J, Shi D, Wang M K, Humphry-Baker R H, Wang P, Zakeeruddin S M, Grätzel M. Chem. Commun., 2008, 2635.
[32] Gao F F, Cheng Y M, Yu Q J, Liu S, Shi D, Li Y H, Wang P. Inorg. Chem., 2009, 48: 2664.
[33] Cao Y M, Bai Y, Yu Q J, Cheng Y M, Liu S, Shi D, Gao F F, Wang P. J. Phys. Chem. C, 2009, 113: 6290.
[34] Lv X J, Wang F F, Li Y H. ACS Appl. Mater. Inter., 2010, 2: 1980.
[35] Jiang K J, Masaki N, Xia J B, Noda S, Yanagida S. Chem. Commun., 2006, 460.
[36] Wu S J, Chen C Y, Chen J G, Li J Y, Tung Y L, Ho K C, Wu C G. Dyes Pigments, 2009, 84: 95.
[37] Kuang D, Klein C, Ito S, Moser J E, Humphry-Baker R, Zakeeruddin S M, Grätzel M. Adv. Funct. Mater., 2007, 17: 154.
[38] Kuang D, Klein C, Snaith H J, Humphry-Baker R, Zakeeruddin S M, Grätzel M. Inorg. Chim. Acta, 2008, 361: 699.
[39] Ocakoglua K, Soguta S, Saricab H, Guloglub P, Erten-Ela S. Synthetic Met., 2013, 174: 24.
[40] El-Shafei A, Hussain M, Islam A, Han L Y. Prog. Photovolt: Res. Appl., 2013.
[41] Péchy P, Rotzinger F P, Nazeeruddin M K, Kohle O, Zakeeruddin S M, Humphry-Baker R, Grätzel M. J. Chem. Soc., Chem. Commun., 1995, 65
[42] Giribabu L, Singh V K, Srinvasu M, Kunar C, Reddy V G, Soujnya Y, Reddy P Y. J. Chem. Sci., 2011, 123: 371.
[43] Giribabu L, Bessho T, Srinivasu M, Vijaykumar ChSoujanya Y, Reddy P Y, Reddy V G, Yum J H, Grätzel M, Nazeeruddin M K. Dalton Trans., 2011, 40: 4497
[44] Kim J J, Choi H, Paek S, Kim C, Lim K, Ju M J, Kang H S, Kang M S, Ko J. Inorg. Chem., 2011, 50: 11340.
[45] Jang S R, Yum J H, Klein C, Kim K J, Wagner P, David O, Grätzel M, Nazeeruddin M K. J. Phys. Chem. C, 2009, 113: 1998.
[46] Bessho T, Yoneda EJ, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M. J. Am. Chem. Soc., 2009, 131: 5933.
[47] Kisserwan H, Ghaddar T H. Dalton Trans., 2011, 40: 3877.
[48] Wu K L, Ku W P, Wang S W, Yella A, Chi Y, Liu S H, Chou P T, Nazeeruddin M K, Grätzel M. Adv. Funct. Mater., 2013, 23: 2285.
[49] Li G C, Bomben P G, Robson K C D, Gorelsky S I, Berlinguette C P, Shatruk M. Chem. Commun., 2012, 48: 8790.
[50] Guimaraes R R, Parussulo A LA, Toma H E, Araki K. Inorg, Chim. Acta, 2013, 404: 23.
[51] Dragonetti C, Valore A, Colombo A, Magni M, Mussini P, Roberto D, Ugo R, Arianna V, Trifletti V, Manfredi N, Abbotto A. Inorg. Chim. Acta, 2013, 405: 98.
[52] Siu C H, Ho C L, He J, Chen T, Cui X N, Zhao J Z, Wong W Y. J. Organomet. Chem., 2013, 748: 75.
[53] Hirata N, Lagref J J, Palomares E J, Durrant J R, Nazeeruddin M K, Gratzel M, Censo D D. Chem. Eur. J., 2004, 10: 595.
[54] Karthikeyan C S, Peter K, Wietasch H, Thelakkat M. Sol. Energy Mat. Sol. C, 2007, 91: 432.
[55] Karthikeyan C S, Wietasch H, Thelakkat M. Adv. Mater., 2007, 19: 1091.
[56] 凡素华( Fan S H), 王科志( Wang K Z)., 无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24(8): 1206.
[57] 凡素华( Fan S H), 杨维春( Yang W C), 王科志(Wang K Z). 化学学报(Acta Chimica Sinica), 2008, 66(6): 690.
[58] Li X H, Gui J, Yang H, Wu W J, Li F Y, Tian H, Huang C H. Inorg. Chim. Acta, 2008, 361: 2835.
[59] Chang D M, Kim Y S. J. Nanosci. Nanotechnol., 2012, 12: 5709.
[60] Jin Z Z, Masuda H, Yamanaka N, Minami M, Nakamura T, Nishikitani Y. Chem. Sus Chem., 2008, 1: 901.
[61] Jin Z Z, Masuda H, Yamanaka N, Minami M, Nakamura T, Nishikitani Y. Chem. Lett., 2009, 38: 44.
[62] Jin Z Z, Masuda H, Yamanaka N, Minami M, Nakamura T, Nishikitani Y. J. Phys. Chem. C, 2009, 113: 2618.
[63] Lu S l, Wu T, Ren B F, Geng R. J. Mater. Sci. : Mater. Electron., 2013, 24: 2346.
[64] Hara K, Sugihara H, Tachibana Y, Islam A, Yanagida M, Sayama K, Arakawa H. Langmuir, 2001, 17: 5992.
[65] Yanagida M, Yamaguchi T, Kurashige M, Hara K, Katoh R, Sugihara H, Arakawa H. Inorg. Chem., 2003, 42: 7921.
[66] Singh S P, Gupta K S V, Srinivasu P, Islam A, Karim M R. J. Chem., 2013, 367617: 1.
[67] Chen C Y, Lu H C, Wu C G, Chen J G, Ho K C. Adv. Funct. Mater., 2007, 17: 29.
[68] Onozawa-Komatsuzaki N, Yanagida M, Funaki T, Kasuga K, Sayama K, Sugihara H. Sol. Energy Mat. Sol. C, 2011, 95: 310.
[69] Wang P, Klein C, Moser J E, Humphry-Baker R, Cevey-Ha N L, Charvet R, Comte P, Zakeeruddin S M, Grätzel M. J. Phys. Chem. B, 2004, 108: 17553.
[70] Warnan J, Guerin V M, Anne F B, Pellegrin Y, Blart E, Jacquemin D, Pauporte T, Odobel F. J. Phys. Chem. C, 2013, 117: 8652.
[71] Banerjee T, Kaniyankandy S, Das A, Ghosh H N. Inorg. Chem., 2013, 52: 5366.
[72] Erten-Ela S, Colak S G, Ocakogluo K. Inorg. chimi. Acta, 2013, 405: 252.
[73] Brewster T P, Konezny S J, Sheehan S W, Martini L A, Schmuttenmaer C A, Batista V S, Crabtree R H. Inorg. Chem., 2013, 52: 6752.

[1] Wang Guiqiang, Duan Yandong, Zhang Juan, Lin Yuan, Zhuo Shuping. Doped Titania Nanocrystalline Photoanodes for Efficiency Improvement of Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2014, 26(07): 1255-1264.
[2] Lin Yuan, Wang Shanghua, Fu Nianqing, Zhang Jingbo, Zhou Xiaowen, Xiao Xurui. Preparation and Properties of Flexible Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2011, 23(0203): 548-556.
[3] Qin Da, Guo Xiaozhi, Sun Huicheng, Luo Yanhong, Meng Qingbo, Li Dongmei. Solid State Electrolytes for Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2011, 23(0203): 557-568.
[4] Li Xianggao, Lü Haijun, Wang Shirong, Guo Junjie, Li Jing. Sensitizers of Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2011, 23(0203): 569-588.
[5] . Recent Progress in Flexible Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2010, 22(11): 2248-2253.
[6] Sheng Xianliang Liu Naren Zhai Jin An Liping. Application of One-Dimensional Nanomaterials in Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2009, 21(09): 1969-1979.
[7] . Recent Progress of Solar Cells Based on Perylene Bisimide Derivatives [J]. Progress in Chemistry, 2008, 20(11): 1751-1760.
[8]

Song Xiaorui1,2 Wang Xuesong1** Zhang Baowen1**

. D-π-A Type Organic Photosensitizers with Aromatic Amine as Electron-Donating Group---- Application in Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2008, 20(10): 1524-1533.