中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1153-1165 Previous Articles   Next Articles

Special Issue: 计算化学

• Special Issue of Quantum Chemistry •

State-to-State Reactive Scattering by Quantum Wavepacket Method

Sun Zhigang, Zhang Donghui   

  1. Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
  • Received: Revised: Online: Published:
PDF ( 1149 ) Cited
Export

EndNote

Ris

BibTeX

The studies of gaseous reactive scattering dynamics by quantum wave packet method, especially at product-states resolved level, are reviewed. The current numerical methods for extracting product-states resolved attributives using quantum wave packet method are discussed. This theory now can present detailed and accurate predictions on the dynamics and kinetics of reactions containing three or four atoms. Several typical reactive scattering systems which have been studied using quantum wave packet method at product-states resolved level are briefed. Contents
1 Introduction
2 Brief review of historical development of quantum wave packet method applications in reactive scattering field
3 Theoretical methods of quantum wave packet
3.1 Discrete variable representation
3.2 Construction of initial wave packet and S-matrix extraction
3.3 Popular propagators
4 Theoretical methods for extraction product-states resolved information using quantum wave packet method
4.1 Product Jacobi coordinate based method
4.2 Reactant Jacobi coordinate based method
4.3 Reactant product-decoupling method
5 Typical reactive scattering systems studied by quantum wave packet method at product-states resolved level
5.1 Typical triatomic molecules reactive scattering
5.2 Typical tetraatomic molecules reactive scattering
6 Conclusions and outlook

CLC Number: 

[1] Schrodinger E. Annu. Phys., 1926, 79: 489-501
[2] Ehrenfest P. Z. Phys., 1927, 45: 455-460
[3] Kosloff R. J. Phys. Chem., 1988, 92: 2087-2100
[4] Heller E J. J. Chem. Phys., 1975, 62: 1544-1555
[5] Drolshagen G, Heller E J. J. Chem. Phys., 1983, 79: 2072-2082
[6] Lee S Y, Heller E J. J. Chem. Phys., 1979, 71: 4777-4788
[7] Kosloff R. Ann. Rev. Phys. Chem., 1994, 45: 145-178
[8] Light J C, Hamilton I P, Lill J V. J. Chem. Phys., 1985, 82: 1400-1409
[9] Feit M D, Fleck J A, Steiger A. J. Comput. Phys., 1982, 47: 412-433
[10] Tal-Ezer H, Kosloff R. J. Chem. Phys., 1984, 81: 3967-3971
[11] Zewail A H. J. Phys. Chem. A, 2000, 104: 5660-5694
[12] Garraway B M, Suominen K A. Rep. Prog. Phys., 1995, 58: 365-419
[13] Mowrey R C, Kouri D J. J. Chem. Phys., 1986, 84: 6466-6473
[14] Xiao C L, Xu X, Liu S, Wang T, Dong W R, Yang T G, Sun Z G, Dai D X, Xu X, Zhang D H, Yang X M. Science, 2011, 333: 440-442
[15] McCullough E A, Wyatt R E. J. Chem. Phys., 1971, 54: 3578-3592
[16] Kosloff R, Kosloff D. J. Chem. Phys., 1983, 79: 1823-1833
[17] Neuhauser D, Baer M, Judson R S, Kouri D. J. Chem. Phys., 1990, 93: 312-321
[18] Neuhauser D, Judson R S, Jaffe R L, Baer M, Kouri D J. Chem. Phys. Lett., 1991, 176: 546-550
[19] Neuhauser D. J. Chem. Phys., 1994, 100: 9272-9275
[20] Zhang D H, Zhang J Z H J. Chem. Phys., 1994, 101: 1146-1156
[21] Zhang D H, Collins M A, Lee S Y. Science, 2000, 290: 961-963
[22] Pogrebnya S K, Echave J, Clary D C. J. Chem. Phys., 1997, 107: 8975-8984
[23] Yang M H.J. Chem. Phys., 2008, 129: art.no.064315
[24] Yang M H, Lee S Y, Zhang D H. J. Chem. Phys., 2007, 126: art.no.064303
[25] Zhou Y, Fu B N, Wang C R, Collins M A, Zhang D H. J. Chem. Phys., 2011, 134: art.no.024323
[26] Zhou Y, Wang C R, Zhang D H. J. Chem. Phys., 2011, 135: art.no.024313
[27] Zhang W Q, Zhou Y, Wu G R, Lu Y P, Pan H L, Fu B N, Shuai Q, Liu L, Liu S, Zhang L L, Jiang B, Dai D X, Lee S Y, Xie Z, Braams B J, Collins M A, Zhang D H, Yang X M. P. Natl. Acad. Sci. USA, 2010, 107: 12782-12785
[28] Judson R S, Kouri D J, Neuhauser D, Baer M. Phys. Rev. A, 1990, 42: 451-366
[29] Peng T, Zhang Z H. J. Chem. Phys., 1996, 105: 6072-6074
[30] Althorpe S C. J. Chem. Phys., 2001, 114: 1601-1616
[31] Yuan K J, Cheng Y, Liu X H, Harich S, Zhang D H, Yang X M. Phys. Rev. Lett., 2006, 96: art.no.103202
[32] Lin S Y, Guo H. Phys. Rev. A, 2006, 74: art.no.022703
[33] Hankel M, Smith S C, Allan R J, Gray S K, Balint-Kurti G G. J. Chem. Phys., 2006, 125: art.no.164303
[34] Sun Z G, Lin X, Lee S Y, Zhang D H. J. Phys. Chem. A, 2009, 113: 4145-4154
[35] Sun Z G, Zhang D H, Xu CX, Zhou S L, Xie D Q, Lendvay G, Lee SY, Lin S Y, Guo H. J. Am. Chem. Soc., 2008, 130: 14962-14963
[36] Sun Z G, Liu L, Lin S Y, Schinke R, Guo H, Zhang D H. P. Natl. Acad. Sci. USA, 2010, 107: 555-558
[37] Zhang D H, Light J C. J. Chem. Phys., 1996, 105: 1291-1294
[38] Zhu W, Dai J Q, Zhang J Z H, Zhang D H. J. Chem. Phys., 1996, 105: 4881-4884
[39] Zhang D H, Xie D Q, Yang M H, Lee S Y. Phys. Rev. Lett., 2002, art.no.89: 283203
[40] Zhang D H. J. Chem. Phys., 2006, 125: art.no.133102
[41] Liu S, Xu X, Zhang D H. J. Chem. Phys., 2011, 135: art.no.141108
[42] Cvitas M T, Althorpe S C. J. Chem. Phys., 2011, 134: art.no.024309
[43] Chu T S, Han K L, Hankel M, Balint-Kurti G G, Kuppermann A, Abrol R. J. Chem. Phys., 2010, 130: art.no.144301
[44] Sun Z G, Zhang D H, Alexander M H. J. Chem. Phys., 2010, 132: art.no.084112
[45] Lin S Y, Guo H, Jiang B, Zhou S L, Xie D Q. J. Phys. Chem. A, 2010, 114: 9655-9661
[46] Light J C, Carrington T Jr. Adv. Chem. Phys., 2007, 114: 263-310
[47] Kroes G J, Neuhauser D. J. Chem. Phys., 1996, 105: 8690-8698
[48] Bandrauk A D, Shen H. J. Chem. Phys., 1993, 99: 1185-1193
[49] Blanes S, Moan P C. J. Comput. Appl. Math., 2002, 142: 313-330
[50] Sun Z G, Guo H, Zhang D H. J. Chem. Phys., 2009, 130: art.no.174102
[51] Sun Z G, Yang W T, Zhang D H. Phys. Chem. Chem. Phys. 2012, 14: 1827-1845
[52] Chen R Q, Guo H. J. Chem. Phys., 1996, 105: 3569-3578
[53] Gray SK, Balint-Kurti G G. J. Chem. Phys. 1998, 108: 950-962
[54] Fu B N, Zhang D H. J. Phys. Chem. A, 2007, 111: 9516-9521
[55] Dai J Q, Zhang J Z H. J. Phys. Chem. A, 1996, 100: 6898-6903
[56] Tannor D J, Week D E. J. Chem. Phys., 1993, 98: 3884-3893
[57] G髆ez-Carrasco S, Roncero O. J. Chem. Phys. 2006, 125: art.no.054102
[58] Zhang D H, Zhang J Z H. J. Chem. Phys., 1994, 101: 3671-3678
[59] Sun Z G, Guo H, Zhang D H. J. Chem. Phys. 2010, 132: 084112
[60] Althorpe S C, Kouri D J, Hoffman D K. J. Chem. Phys., 1997, 107: 7816-7824
[61] Sun Z G, Liu S, Zhang D H. J. Chem. Phys. To be submitted.
[62] Skouteris D, Castillo J F, Manolopoulos D E. Comp. Phys. Comm., 2000, 133: 128-135
[63] Launay J M. Theoretica Chimica Acta. 1991, 79: 183-190
[64] Dobbyn A J, Knowles P J.Faraday Discuss. 1998, 110: 247
[65] Xu C X, Xie D Q, Zhang D H, Lin S Y, Guo H. J. Chem. Phys., 2005, 122: art.no.2443054
[66] Gao Y Q, Marcus R A. Science, 2001, 293: 259-263
[67] Zhang D H, Zhang J Z H. J. Chem. Phys., 1999, 110: 7622-7626
[68] Tully J C. J. Chem. Phys., 1974, 60: 3042-3050
[69] Alexander M H, Manolopoulos D E, Werner H J. J. Chem. Phys., 2000, 113: 11084-11100
[70] Lee S H, Liu K P.J. Chem. Phys. 1999, 111: 6253-6259
[71] Alexander M H, Capecchi G, Werner H J. Science, 2002, 296: 715-718
[72] Wang X A, Dong W R, Xiao C L, Che L, Ren Z F, Dai D X, Wang X Y, Casavecchia P, Yang X M, Jiang B, Xie D Q, Sun Z G, Lee S Y, Zhang D H, Werner W J, Amlexander M H. Science, 2008, 322: 573-576
[1] Dai Dongxu, Yang Xueming**. Recent Advances in State-state Chemical Reaction Dynamics [J]. Progress in Chemistry, 2007, 19(11): 1633-1645.
[2] Huayang Wang, Xiaomin Sun, Zhengting Cai** ,Dacheng Feng. Experimental Measurement and Theoretical Simulation on the Chemical Reactive Scattering Resonance States [J]. Progress in Chemistry, 2006, 18(01): 1-6.