中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 910-927 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

The Band Gap Problem: the State of the Art of First-Principles Electronic Band Structure Theory

Jiang Hong   

  1. Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
PDF ( 2923 ) Cited
Export

EndNote

Ris

BibTeX

Electronic band structure is one of the most fundamental properties of a material that plays a crucial role in many important applications, and its accurate description has been a long-standing challenge for the first-principles electronic structure theory. Kohn-Sham Density-functional theory (KS-DFT) within local density or generalized-gradient approximations (LDA/GGA), currently the “standard model” for first-principles computational materials science, suffers from the well-known band gap problem. A lot of efforts have been invested to improve the description of band gaps within the framework of Kohn-Sham DFT or its generalized formalisms. On the other hand, many-body perturbation theory (MBPT) based on Green's function G (GF) provides a different and conceptually more rigorous framework for electronic band structure. The central ingredient of the GF-based MBPT is the exchange-correlation self-energy xc, which can be formally obtained by solving a set of complicated integro-differential equations, named Hedin's equations. The GW approximation, in which xc is simply a product of G and the screened Coulomb interaction (W), is currently the most accurate first-principles approach to describe electronic band properties of extended systems. Compared to LDA/GGA, the computational efforts required for GW calculations are much heavier, so that its applications have been limited to relatively small systems. In this work, we review the basic principles, latest developments, and remaining challenges of first-principles electronic band structure theory from both DFT and GF-based MBPT perspectives. It is hoped that new ideas on further developments can be obtained by setting up the connection between the two different theoretical frameworks. Contents
1 Introduction:Electronic band structures and the band gap problem
1.1 Experimental measurements of electronic band structures
1.2 Theoretical treatments of electronic band structures and the band gap problem
2 Electronic band structures frommean-field approaches
2.1 Hartree theory
2.2 Hartree-Fock theory
3 Electronic band structures from density functional theory
3.1 Density functional theory and Kohn-Sham equations
3.2 The band gap problem and its origin
3.3 The optimized effective potential and related methods
3.4 Generalized Kohn-Sham methods
4 Electronic band structures from Green's function based many-body perturbation theory
4.1 Green's function
4.2 Self-energy and quasi-particle equations
4.3 Hedin's equations and GW approximation
4.4 The G0W0 approach and self-consistency
5 Concluding remarks

CLC Number: 

[1] Yu P Y, Cardona M. Fundamentals of semiconductors: physics and materials properties (3rd ed) Berlin: Springer, 2001
[2] Huefner S. Photoelectron Spectroscopy: Prinples and Applications (3rd ed. ) Berlin: Springer, 2003
[3] Hedin L, Lundqvist B I. Solid State Phys., 1969, 23: 1
[4] Godby R W, Garcia-Gonzalez P. In A Primer in Density Functional Theory (Eds Fiohais C, Nogueira F, Marques M), Berlin Heidelberg: Springer-Verlag, 2003
[5] Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules; New York: Oxford University Press, 1989
[6] Dreizler R M, Gross E K U. Density Functional Theory: An Approach to the Quantum Many-Body Problem, Berlin: Springer-Verlag, 1990
[7] Jones R O, Gunnarsson O. Rev. Mod. Phys., 1989, 61: 689-746
[8] Kohn W, Sham L J. Phys. Rev. A, 1965, 140: 1133
[9] Martin R M. Electronic Structure: Basic Theory and Practical Methods, Cambridge: Cambridge University Press, UK, 2004
[10] Aryasetiawan F, Gunnarsson O. Rep. Prog. Phys., 1998, 61: 237-312
[11] Seidl M, Goerling A, Vogl P, Majewski J A, Levy M. J. Chem. Phys., 1996, 53: 3764-3774
[12] Kummel S, Kronik L. Rev. Mod. Phys., 2008, 80: 3-60
[13] Becke A D. J. Chem. Phys., 1993, 98: 1372
[14] Bylander D M, Kleinman L. Phys. Rev. B, 1990, 41: 7868-7871
[15] Fetter A L., Walecka J D. Quantum theory of many-particle systems, New York: McGraw-Hill, 1971
[16] Aulbur W G, Joensson L, Wilkins J W. Solid State Phys., 2000, 54: 1-218
[17] Hedin, L. Phys. Rev., 1965, 139: A796
[18] 蒋鸿(Jiang H). 物理化学学报(Acta. Phys. Chim. Sin. ), 2010, 26: 1017-1033
[19] Hybertsen M S, Louie S G. Phys. Rev. B, 1986, 34: 5390-5413
[20] Onida G, Reining, L., Rubio, A. Rev. Mod. Phys., 2002, 74: 601-659
[21] Aryasetiawan F. In Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation (Ed. Anisimov V I), Gordon and Breach Science Publishers, 2000
[22] Kotani T, van Schilfgaarde M, Faleev S V. Phys. Rev. B, 2007, 76: art. no. 165106
[23] Sham L J, Kohn W. Phys. Rev., 1966, 145: 561-567
[24] Niquet Y M, Gonze X. Phys. Rev. B, 2004, 70: art. no. 245115
[25] Kohn W. Rev. Mod. Phys., 1999, 71: 1253-1266
[26] Inkson J C. Many-body theory of solids: An Introduction; New York: Plenum, 1983
[27] Shavitt I, Bartlett R J. Many-body methods in chemistry and physics; Cambridge: Cambridge University Press, 2009
[28] Slater J C. Phys. Rev., 1953, 91: 528-530
[29] Hohenberg P, Kohn W. Phys. Rev. B, 1964, 136: 864
[30] Levy M. Phys. Rev. A, 1982, 26: 1200-1208
[31] Perdew J P, Kurth S. In A Primer in Density Functional Theory (Eds. Fiohais C, Nogueira F, Marques M), Verlag Berlin Heidelberg: Springer, 2003, 1-55
[32] Perdew J P, Parr R G, Levy M, Balduz J L. Phys. Rev. Lett., 1982, 49: 1691-1694
[33] Perdew J P, Levy M. Phys. Rev. Lett., 1983, 51: 1884-1887
[34] Sham L J, Schlüter M. Phys. Rev. Lett., 1983, 51: 1888-1891
[35] Sharp R T, Horton G K. Phys. Rev., 1953, 90: 317
[36] Talman J D, Shadwick W F. Phys. Rev. A, 1976, 14: 36-40
[37] Slater J C, Statz H, Koster G F. Phys. Rev., 1953, 91: 205-205
[38] Sahni V, Gruenebaum J, Perdew J P. Phys. Rev. B, 1982, 26: 4371-4377
[39] Engel E. In A Primer in Density Functional Theory, 2003, 620: 56-122
[40] Gorling A, Levy M. Phys. Rev. B, 1993, 47: 13105-13113
[41] Jiang H, Engel E. J. Chem. Phys., 2005, 123: art. no. 224102
[42] Gorling A, Levy M. Phys. Rev. A, 1994, 50: 196-204
[43] Yang W, Wu Q. Phys. Rev. Lett., 2002, 89: art. no. 143002
[44] Kummel S, Perdew J. P. Phys. Rev. B, 2003, 68: art. no. 035103
[45] Kümmel S, Kronik L. Rev. Mod. Phys., 2008, 80: 3-60
[46] Stadele M, Majewski J A, Vogl P, Gorling A. Phys. Rev. Lett., 1997, 79: 2089-2092
[47] Stadele M, Moukara M, Majewski J A., Vogl P, Gorling A. Phys. Rev. B, 1999, 59: 10031-10043
[48] Godby R W, Garcia-Conzalez P. Lect. Notes Phys., 2003, 620: 185-217
[49] Magers D H, Lipscomb, W. N., Bartlett, R. J., Stanton, J. F. J. Chem. Phys., 1989, 91: 1945-1947
[50] Bylander D M, Kleinman L. Phys. Rev. B, 1995, 52: 14566-14570
[51] Becke A D, Johnson E R. J. Chem. Phys., 2006, 124: art. no. 221101
[52] Tran F, Blaha P. Phys. Rev. Lett., 2009, 102: 246401
[53] Becke A D, Roussel M R. Phys. Rev. A, 1989, 39: 3761-3767
[54] Tran F, Blaha P, Schwarz K. J. Phys. Condens. Mat., 2007, 19: art. no. 196208
[55] Singh D. J. Phys. Rev. B, 2010, 82: art. no. 205102
[56] Koller D, Tran F, Blaha P. Phys. Rev. B, 2011, 83: 195134
[57] Becke A D. J. Chem. Phys., 1993, 98: 5648-5652
[58] Becke A D. J. Chem. Phys., 1993, 98: 1372-1377
[59] Bylander D M, Kleinman L. Phys. Rev. B, 1990, 41: 7868-7871
[60] Seidl A, Gorling A, Vogl P, Majewski J A, Levy M. Phys. Rev. B, 1996, 53: 3764-3774
[61] Levy M P. Natl. Acad. Sci. USA, 1979, 76: 6062-6065
[62] Seidl M, Elsaesser M S, Winkel K, Zifferer G, Mayer E, Loerting, T. Phys. Rev. B, 2011, 83
[63] Baer R, Livshits E, Salzner U. Ann. Rev. Phys. Chem., 2010, 61: 85-109
[64] Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: art. no. 785
[65] Burke K, Ernzerhof M, Perdew J P. Chem. Phys. Lett., 1997, 265: 115-120
[66] Zhang I Y, Xu X. Int. Rev. Phys. Chem., 2011, 30: 115-160
[67] Heyd J, Scuseria G E, Ernzerhof M. J. Chem. Phys., 2003, 118: 8207-8215
[68] Heyd J, Scuseria G E, Ernzerhof M. J. Chem. Phys., 2003, 118: art. no. 8207
[69] Henderson T M, Paier J, Scuseria G E. Phys. Status Solidi B, 2011, 248: 767-774
[70] Leininger T, Stoll H, Werner H J, Savin A. Chem. Phys. Lett., 1997, 275: 151-160
[71] Baer R, Neuhauser D. Phys. Rev. Lett., 2005, 94: art. no. 043002
[72] Bylander D M, Kleinman L, Lee S. Phys. Rev. B, 1990, 42: 1394-1403
[73] Shimazaki T, Asai Y. Chem. Phys. Lett., 2008, 466: 91-94
[74] Marques M A L, Vidal J, Oliveira M J T, Reining L, Botti S. Phys. Rev. B, 2011, 83: 035119
[75] Jaramillo J, Scuseria G E, Ernzerhof M. J. Chem. Phys., 2003, 118: 1068-1073
[76] Arbuznikov A V, Kaupp M. Int. J. Quantum Chem., 2011, 111: 2625-2638
[77] Krukau A V, Scuseria G E, Perdew J P, Savin, A. J. Chem. Phys., 2008, 129: art. no. 124103
[78] Sham L J, Kohn W. Phys. Rev., 1966, 145: 561
[79] Niquet Y M, Gonze, X. Phys. Rev. B, 2004, 70: art. no. 245115
[80] Aryasetiawan F, Gunnarsson O. Rep. Prog. Phys., 1998, 61: 237-312
[81] Linderberg J, Öhrn, Y. Propagators in Quantum Chemistry (2nd ed. ); John Wiley & Sons, 2004
[82] Hedin L. Phys. Rev., 1965, 139: A796-A823
[83] Hybertsen M S, Louie S G. Phys. Rev. B, 1986, 34: 5390-5413
[84] Rohlfing M, Kruger P, Pollmann, J. Phys. Rev. B, 1998, 57: 6485-6492
[85] Rinke P, Qteish A, Neugebauer J, Freysoldt C, Scheffler M. New J. Phys., 2005, 7: 126
[86] Rinke P, Qteish A, Neugebauer J, Scheffler M. Phys. Status Solidi B, 2008, 245: 929-945
[87] Jiang H, Gomez-Abal R I, Rinke P, Scheffler M. Phys. Rev. Lett., 2009, art. no. 102: 126403
[88] Jiang H. Acta Phys-Chim. Sin., 2010, 26: 1017-1033
[89] Rodl C, Fuchs F, Furthmuller J, Bechstedt F. Phys. Rev. B, 2008, art. no. 77: 235114
[90] Holm B, von Barth U. Phys. Rev. B, 1998, 57: 2108-2117
[91] Garcia-Gonzalez P, Godby R W. Phys. Rev. B, 2001, 63: art. no. 075112
[92] Kutepov A, Savrasov S Y, Kotliar G. Phys. Rev. B, 2009, 80: 041103
[93] Faleev S V, van Schilfgaarde M, Kotani T. Phys. Rev. Lett., 2004, 93: art. no. 126406
[94] Bruneval F, Vast N, Reining L. Phys. Rev. B, 2006, 74: art. no. 045102
[95] Kotani T, van Schilfgaarde M. Phys. Rev. B, 2007, 76: art. no. 165106
[96] Shishkin M, Marsman M, Kresse G. Phys. Rev. Lett., 2007, 99: art. no. 246403
[97] Sakuma R, Miyake T, Aryasetiawan F. Phys. Rev. B, 2008, 78: 075106
[98] Liao P L, Carter E A. Phys. Chem. Chem. Phys., 2011, 13: 15189-15199
[1] Ma Yuchen, Liu Chengbu. Many-Body Green's Function Theory for the Study of Excited States [J]. Progress in Chemistry, 2012, 24(06): 981-1000.
[2] Li Hu, Shi Zhangjie. Palladium-Catalyzed C—C Bonds Formation Reactions via Selective C—H Bonds Functionalization [J]. Progress in Chemistry, 2010, 22(07): 1414-1433.
[3] . Carbohydrate Microarrays [J]. Progress in Chemistry, 2008, 20(01): 148-154.