中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (10): 1890-1896 Previous Articles   Next Articles

• Review •

Coarse-Grained Molecular Dynamics Simulation of Surfactants in Aqueous Solution

Chen Jingfei1,3, Hao Jingcheng1,2*   

  1. 1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 1630 ) Cited
Export

EndNote

Ris

BibTeX

Molecular dynamics simulation has already become one of the indispensable ways to explore the surfactant aggregates in solution. Recent years, coarse-grained methods can both reproduce thermodynamics and structure properties for surfactant systems and extend time and space scale of simulation for overcoming the shortcoming of mesoscale simulation and atomic-scale simulations, which have become one of the focus in the field of computational chemistry. The latest development of coarse-grained molecular dynamics simulation of surfactants in solution is reviewed briefly in this paper. For each coarse-grained model, the modeling strategy, potential expressions, parameter fitting, and evaluation of force field are introduced in detail, followed by the illustration of validity of coarse-grained force field in surfactant systems. Finally, we also discuss some unresolved critical problems in surfactant coarse-grained models, which would be significant to the further development of coarse-grained simulation in surfactant systems. Contents 1 Introduction
2 Martini coarse grained force field
2.1 Non-bonded interaction
2.2 Bonded interaction
2.3 Simulating surfactant self-assembly with martini force field
3 Shinoda et al. coarse grained force field
4 Other coarse grained methods
5 Conclusion and outlook

CLC Number: 

[1] 赵国玺(Zhao G X), 朱步瑶(Zhu B Y). 表面活性剂作用原理(Principles of surfactant action). 北京: 中国轻工业出版社(Beijing: China Light Industry Press), 2003. 225-305
[2] Nusselder J J H, Engberts J B F N. J. Am. Chem. Soc., 1989, 111: 5000-5002
[3] Svenson S. Curr. Opin. Colloid Interface Sci., 2004, 9: 201-212
[4] Abe M, Scamehorn J F. Mixed Surfactant Systems. New York: CRC Press, 2005
[5] Binks B P. Modern Characterization Methods of Surfactant Systems. New York: CRC Press, 1999
[6] Rajagopalan R. Curr. Opin. Colloid Interface Sci., 2001, 6: 357-365
[7] Shi L, Tummala N R, Striolo A. Langmuir, 2010, 26: 5462-5474
[8] Shi W X, Guo H X. J. Phys. Chem. B, 2010, 114: 6365-6376
[9] Chanda J, Bandyopadhyay S. J. Chem. Theory Comput., 2005, 1: 963-971
[10] Domínguez H. J. Phys. Chem. B, 2007, 111: 4054-4059
[11] Domínguez H. J. Phys. Chem. B, 2011, 115: 12422-12428
[12] Bruce C D, Berkowitz M L, Perera L, Forbes M D E. J. Phys. Chem. B, 2002, 106: 3788-3793
[13] Bruce C D, Senapati S, Berkowitz M L, Perera L, Forbes M D E. J. Phys. Chem. B, 2002, 106: 10902-10907
[14] Allen R, Bandyopadhyay S, Klein M L. Langmuir, 2000, 16: 10547-10552
[15] Sammalkorpi M, Karttunen M, Haataja M. J. Am. Chem. Soc., 2008, 130: 17977-17980
[16] Sterpone F, Briganti G, Melchionna S, Pierleoni C. Langmuir, 2008, 24: 6067-6071
[17] Abel S, Waks M, Marchi M, Urbach W. Langmuir, 2006, 22: 9112-9120
[18] Sangwai A V, Sureshkumar R. Langmuir, 2011, 27: 6628-6638
[19] Faeder J, Ladanyi B M. J. Phys. Chem. B, 2001, 105: 11148-11158
[20] Velinova M, Sengupta D, Tadjer A V, Marrink S J. Langmuir, 2011, 27: 14071-14077
[21] Kuramochi H, Andoh Y, Yoshii N, Okazaki S. J. Phys. Chem. B, 2009, 113: 15181-15188
[22] Ginzburg V V, Chang K, Jog P K, Argenton A B, Rakesh L. J. Phys. Chem. B, 2011, 115: 4654-4661
[23] Rekvig L, Kranenburg M, Vreede J, Hafskjold B, Smit B. Langmuir, 2003, 19: 8195-8205
[24] Duan B G, Zhang X F, Qiao B F, Kong B, Yang X Z. J. Phys. Chem. B, 2009, 113: 8854-8859
[25] Yang C J, Chen X, Qiu H Y, Zhuang W C, Chai Y C, Hao J C. J. Phys. Chem. B, 2006, 110, 21735-21740
[26] Zhang S F, Sun L L, Xu J B, Wu H, Wen H. Energy Fuels, 2010, 24: 4312-4326
[27] Li D W, Liu X Y, Feng Y P. J. Phys. Chem. B, 2004, 108: 11206-11213
[28] Domínguez H. J. Phys. Chem. B, 2011, 115: 12422-12428
[29] Rekvig L, Hafskjold B, Smit B. Langmuir, 2004, 20: 11583-11593
[30] Li Z, Dormidontova E E. Macromolecules, 2010, 43: 3521-3531
[31] Voth G A. Coarse-Graining of Condensed Phase and Biomolecular Systems. New York: CRC Press, 2009. chapter 2, chapter22
[32] Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H. J. Phys. Chem. B, 2007, 111: 7812-7824
[33] Shinoda W, DeVane R, Kleinb M L. Soft Matter, 2008, 4: 2454-2462
[34] Shinoda W, DeVane R, Klein M L. Soft Matter, 2011, 7: 6178-6186
[35] Marrink S J, de Vries A H, Harroun T A, Katsaras J, Wassall S R. J. Am. Chem. Soc., 2008, 130: 10-11
[36] Monticelli L, Kandasamy S, Periole X, Larson R, Tieleman D P, Marrink S J. J. Chem. Th. Comp., 2008, 4: 819-834
[37] Lopez C A, Rzepiela A, de Vries A H, Dijkhuizen L, Hunenberger P H, Marrink S J. J. Chem. Theory Comput., 2009, 5: 3195-3210
[38] Lee H, de Vries A H, Marrink S J, Pastor R W. J. Phys. Chem. B, 2009, 113: 13186-13194
[39] Wu R L, Deng M L, Kong B, Yang X Z. J. Phys. Chem. B, 2009, 113: 15010-15016
[40] Sanders S A, Panagiotopoulos A Z. J. Chem. Phys., 2010, 132: 114902-114910
[41] Shinoda W, DeVane R, Klein M L. Molecular Simulation, 2007, 33: 27-36
[42] Reith D, Putz M, Muller-Plathe F. J. Comput. Chem., 2003, 24: 1624-1636
[43] Izvekov S, Voth G. J. Chem. Phys., 2005, 123: art. no. 134105
[44] Lyubartsev A, Laaksonen A. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1995, 52: 3730-3737
[45] Ruhle V, Junghans C, Lukyanov A, Kremer K, Andrienko D. J. Chem. Theory Comput., 2009, 5: 3211-3223
[46] Plimpton S J. J. Comp. Phys., 1995, 117: 1-19
[1] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[2] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[3] Haochuan Chen, Haohao Fu, Xueguang Shao, Wensheng Cai. Importance Sampling Methods and Free Energy Calculations [J]. Progress in Chemistry, 2018, 30(7): 921-931.
[4] Zhao Jianxi. Complicated Reverse Aggregates of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2015, 27(2/3): 168-173.
[5] Zhang Wen-Bin, Wang Xiao-Man, Wang Xiao-Wei, Liu Dong, Han Shuai-Yuan, Cheng Stephen Z. D.. Giant Molecules Based on Nano-Atoms [J]. Progress in Chemistry, 2015, 27(10): 1333-1342.
[6] Zhao Jianxi. Gemini Surfactants: Role and Significance of Its Spacer in Self-Assembly [J]. Progress in Chemistry, 2014, 26(08): 1339-1351.
[7] Lei Dongsheng, Tong Huimin, Zhang Lei, Zhang Xing, Zhang Shengli, Ren Gang. Structure and Function of Cholesteryl Ester Transfer Protein in Transferring Cholesteryl Ester [J]. Progress in Chemistry, 2014, 26(05): 879-888.
[8] Zhao Lijun, Lei Ming. Computational Chemical Studies on Transthyretin [J]. Progress in Chemistry, 2014, 26(01): 193-202.
[9] Chang Shanyan, Liu Fufeng*. Molecular Simulations of ATP-Binding Cassette Transporters [J]. Progress in Chemistry, 2013, 25(07): 1208-1218.
[10] Wu Ruibo, Cao Zexing, Zhang Yingkai. Computational Simulations of Zinc Enzyme: Challenges and Recent Advances [J]. Progress in Chemistry, 2012, 24(06): 1175-1184.
[11] Zhao Xueyan, Zheng Liqiang, Cao Guirong, Xiao Ruijie. Micelles Based on Ionic Liquids [J]. Progress in Chemistry, 2012, 24(05): 686-695.
[12] Meng Yali, Li Zhen, Chen Jing, Xia Chungu. Application Studies of Ionic Liquid Based Microemulsions [J]. Progress in Chemistry, 2011, 23(12): 2442-2456.
[13] Zhang Yongmin, Guo Zanru, Zhang Jichao, Feng Yujun, Wang Biqing, Wang Jiuxia. Smart Wormlike Micellar Systems [J]. Progress in Chemistry, 2011, 23(10): 2012-2020.
[14] . CO2 Switchable Solvents, Solutes and Surfactants: State of the Art [J]. Progress in Chemistry, 2010, 22(11): 2099-2105.
[15] . Computational Chemistry of Protein Kinase A and Its Inhibitor Balanol [J]. Progress in Chemistry, 2010, 22(05): 993-1001.