收稿日期: 2022-09-29
修回日期: 2023-02-28
网络出版日期: 2023-03-25
基金资助
国家自然科学基金项目(22071025)
Nanocarbon Molecules — the Fascination of Synthetic Chemistry
Received date: 2022-09-29
Revised date: 2023-02-28
Online published: 2023-03-25
Supported by
National Natural Science Foundation of China(22071025)
鄢剑锋 , 徐进栋 , 张瑞影 , 周品 , 袁耀锋 , 李远明 . 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023 , 35(5) : 699 -708 . DOI: 10.7536/PC220933
The discovery and creation of new carbon materials have motivated the evolution of technology. Carbon is one of the central elements, due to the characteristics of carbon atoms and varying electron configurations, diverse molecules will be discovered and formed. The structures and arrangements of carbon atoms in molecules have a significant impact on their properties. Nanocarbon molecules, as novel carbon materials with excellent properties, have found promising applications in nanotechnology, electronics, optics, and biomedical fields. In the past four decades, the discovery and creation of new variety of nanocarbon materials have opened up a new path to advanced science and technology. This paper focuses on the study of the structural characteristics of nanocarbon molecules with novel topological structures, and the way to achieve full synthetic control over these structures that are reported in recent years.
1 Introduction
2 Graphene nanoribbons
3 Negatively Curved Nanocarbons
4 Carbon nanorings and carbon nanobelts
4.1 Synthesis of carbon nanorings
4.2 Synthesis of carbon nanobelts
5 Other structures
6 Conclusion and perspectives
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
|
[2] |
Xu X J, Qin J G, Li Z. Prog. Chem., 2009, 21(12): 2559.
(徐秀娟, 秦金贵, 李振. 化学进展, 2009, 21(12): 2559.).
|
[3] |
Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem. Rev., 2018, 118(16): 7744.
|
[4] |
Shang H, Gu Y, Wang Y B. University Chemistry, 2020, 35: 201.
(商虹, 顾宇, 王英滨. 大学化学, 2020, 35: 201. ).
|
[5] |
Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115(11): 4744.
|
[6] |
Li P, Zhang J. Progress in Chemistry, 2013, 25: 167.
(李盼, 张锦. 化学进展, 2013, 25: 167. ).
|
[7] |
Li Y M, Kono H, Maekawa T, Segawa Y, Yagi A, Itami K. Acc. Mater. Res., 2021, 2(8): 681.
|
[8] |
Majewski M A, Stępień M. Angew. Chem. Int. Ed., 2019, 58(1): 86.
|
[9] |
Itami K, Maekawa T. Nano Lett., 2020, 20(7): 4718.
|
[10] |
Jolly A, Miao D D, Daigle M, Morin J F. Angew. Chem. Int. Ed., 2020, 59(12): 4624.
|
[11] |
Zheng X Q, Feng M, Zhan H B. Progress in Chemistry, 2012, 24: 2320.
(郑小青, 冯苗, 詹红兵. 化学进展, 2012, 24: 2320. ).
|
[12] |
Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P, Amsharov K. Science, 2020, 369(6503): 571.
|
[13] |
Rizzo D J, Veber G, Jiang J W, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F. Science, 2020, 369(6511): 1597.
|
[14] |
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.
|
[15] |
Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S. Science, 2009, 323(5922): 1701.
|
[16] |
Jia X T, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Nanoscale, 2011, 3(1): 86.
|
[17] |
Chen L, Hernandez Y, Feng X L, Müllen K. Angew. Chem. Int. Ed., 2012, 51(31): 7640.
|
[18] |
Yang X Y, Dou X, Rouhanipour A, Zhi L J, Räder H J, Müllen K. J. Am. Chem. Soc., 2008, 130(13): 4216.
|
[19] |
Schwab M G, Narita A, Hernandez Y, Balandina T, Mali K S, De Feyter S, Feng X L, Müllen K. J. Am. Chem. Soc., 2012, 134(44): 18169.
|
[20] |
Miao Q, Yang D Y. Progress in Chemistry, 2020, 32: 1835.
(缪谦, 杨代月. 化学进展, 2020, 32: 1835.).
|
[21] |
Kim K, Lee T, Kwon Y, Seo Y, Song J, Park J K, Lee H, Park J Y, Ihee H, Cho S J, Ryoo R. Nature, 2016, 535(7610): 131.
|
[22] |
Pun S H, Wang Y J, Chu M, Chan C K, Li Y K, Liu Z F, Miao Q. J. Am. Chem. Soc., 2019, 141(24): 9680.
|
[23] |
Pun S H, Chan C K, Luo J Y, Liu Z F, Miao Q. Angew. Chem. Int. Ed., 2018, 57(6): 1581.
|
[24] |
Zhang Y Q, Zhu Y K, Lan D N, Pun S H, Zhou Z, Wei Z, Wang Y, Lee H K, Lin C, Wang J P, Petrukhina M A, Li Q, Miao Q. J. Am. Chem. Soc., 2021, 143(13): 5231.
|
[25] |
Chaolumen, Stepek I A, Yamada K E, Ito H, Itami K. Angew. Chem. Int. Ed., 2021, 60(44): 23508.
|
[26] |
Kato K, Takaba K, Maki-Yonekura S, Mitoma N, Nakanishi Y, Nishihara T, Hatakeyama T, Kawada T, Hijikata Y, Pirillo J, Scott L T, Yonekura K, Segawa Y, Itami K. J. Am. Chem. Soc., 2021, 143(14): 5465.
|
[27] |
Feng C N, Kuo M Y, Wu Y T. Angew. Chem. Int. Ed., 2013, 52(30): 7791.
|
[28] |
Márquez I R, Fuentes N, Cruz C M, Puente-Muñoz V, Sotorrios L, Marcos M L, Choquesillo-Lazarte D, Biel B, Crovetto L, GÓmez-Bengoa E, Teresa González M, Martin R, Cuerva J M, Campaña A G. Chem. Sci., 2017, 8(2): 1068.
|
[29] |
Qiu Z L, Chen X W, Huang Y D, Wei R J, Chu K S, Zhao X J, Tan Y Z. Angewandte Chemie Int. Ed., 2022, 61(18): e202116955.
|
[30] |
Pun S H, Miao Q. Acc. Chem. Res., 2018, 51(7): 1630.
|
[31] |
Cheung K Y, Chan C K, Liu Z F, Miao Q. Angew. Chem. Int. Ed., 2017, 56(31): 9003.
|
[32] |
González Miera G, Matsubara S, Kono H, Murakami K, Itami K. Chem. Sci., 2022, 13(7): 1848.
|
[33] |
Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Nat. Chem., 2013, 5(7): 572.
|
[34] |
Zhou Q F, Jiang B, Yang H B. Progress in Chemistry, 2018, 30: 628.
(周启峰, 江波, 杨海波. 化学进展, 2018, 30: 628.).
|
[35] |
Parekh V, Guha P. J. Indian Chem. Soc. 1934, 11: 95.
|
[36] |
Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R. J. Am. Chem. Soc., 2008, 130(52): 17646.
|
[37] |
Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed., 2009, 48(33): 6112.
|
[38] |
Zhang F, Götz G, Winkler H D, Schalley C, Bäuerle P. Angew. Chem. Int. Ed., 2009, 48(36): 6632.
|
[39] |
Yamago S, Watanabe Y, Iwamoto T. Angewandte Chemie Int. Ed., 2010, 49(4): 644.
|
[40] |
Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Mitoma N, Kuwabara T, Yagi A, Segawa Y, Itami K. Nat. Commun., 2022, 13: 3713.
|
[41] |
Lu D P, Zhuang G L, Wu H T, Wang S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2017, 56(1): 158.
|
[42] |
Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N, Matsuyama N, Seki S, Yamago S. Nat. Commun., 2013, 4: 2694.
|
[43] |
Sun Z, Ikemoto K, Fukunaga T M, Koretsune T, Arita R, Sato S, Isobe H. Science, 2019, 363(6423): 151.
|
[44] |
Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science, 2019, 365(6450): 272.
|
[45] |
Huang Z A, Chen C, Yang X D, Fan X B, Zhou W, Tung C H, Wu L Z, Cong H. J. Am. Chem. Soc., 2016, 138(35): 11144.
|
[46] |
Li K, Xu Z Q, Deng H, Zhou Z N, Dang Y F, Sun Z. Angew. Chem. Int. Ed., 2021, 60(14): 7649.
|
[47] |
Huang Q, Zhuang G L, Jia H X, Qian M M, Cui S S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2019, 58(19): 6244.
|
[48] |
Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356(6334): 172.
|
[49] |
Cheung K Y, Gui S J, Deng C F, Liang H F, Xia Z M, Liu Z F, Chi L F, Miao Q. Chem, 2019, 5(4): 838.
|
[50] |
Cheung K Y, Watanabe K, Segawa Y, Itami K. Nat. Chem., 2021, 13(3): 255.
|
[51] |
Han Y, Dong S Q, Shao J W, Fan W, Chi C Y. Angew. Chem. Int. Ed., 2021, 60(5): 2658.
|
[52] |
Zhang Q, Zhang Y E, Tong S, Wang M X. J. Am. Chem. Soc., 2020, 142(3): 1196.
|
[53] |
Shi T H, Guo Q H, Tong S, Wang M X. J. Am. Chem. Soc., 2020, 142(10): 4576.
|
[54] |
Li Y M, Segawa Y, Yagi A, Itami K. J. Am. Chem. Soc., 2020, 142(29): 12850.
|
[55] |
Xue B C, Cai W S, Shao X G. Progress in Chemistry, 2008, 20: 1501.
(薛冰纯, 蔡文生, 邵学广. 化学进展, 2008, 20: 1501. ).
|
[56] |
Fan W, Matsuno T, Han Y, Wang X H, Zhou Q F, Isobe H, Wu J S. J. Am. Chem. Soc., 2021, 143(39): 15924.
|
[57] |
Segawa Y, Watanabe T, Yamanoue K, Kuwayama M, Watanabe K, Pirillo J, Hijikata Y, Itami K. Nat. Synth, 2022, 1(7): 535.
|
[58] |
Zhu Y P, Xia Z M, Cai Z Y, Yuan Z Y, Jiang N Q, Li T, Wang Y G, Guo X Y, Li Z H, Ma S, Zhong D Y, Li Y, Wang J B. J. Am. Chem. Soc., 2018, 140(12): 4222.
|
[59] |
Hou H, Zhao X J, Tang C, Ju Y Y, Deng Z Y, Wang X R, Feng L B, Lin D H, Hou X, Narita A, Mu¨llen K, Tan Y Z. Nat. Commun., 2020, 11: 3976.
|
[60] |
Zhu Z Z, Chen Z C, Yao Y R, Cui C H, Li S H, Zhao X J, Zhang Q Y, Tian H R, Xu P Y, Xie F F, Xie X M, Tan Y Z, Deng S L, Quimby J M, Scott L T, Xie S Y, Huang R B, Zheng L S. Sci. Adv., 2019, 5(8): eaaw0982.
|
[61] |
Wang S H, Yuan J, Xie J L, Lu Z H, Jiang L, Mu Y X, Huo Y P, Tsuchido Y, Zhu K L. Angew. Chem. Int. Ed., 2021, 60(34): 18443.
|
[62] |
Leonhardt E J, Jasti R. Nat. Rev. Chem., 2019, 3(12): 672.
|
/
〈 |
|
〉 |