共价有机框架材料在光催化CO2还原中的应用
![]() |
路猛 华南师范大学特聘副研究员。2021年获得南京师范大学化学博士学位,2021-至今在华南师范大学化学学院团簇中心工作。工作后获国家自然科学基金青年科学基金项目、中国博士后科学基金面上资助、华南师范大学青年教师科研培育基金项目、博士后创新人才支持计划“博新计划”等科研项目。主要从事COFs及其复合材料在能源领域的应用探索。近五年来在J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Nat. Commun.、Adv. Mater.、ACS Central Science、Applied Catalysis B: Environmental.、Science Bulletin等期刊上发表论文20余篇。论文被引1500多次, ESI高引论文2篇,个人H-index 12。 |
![]() |
兰亚乾 华南师范大学二级教授、博士生导师,教育部工程研究中心主任,英国皇家化学学会会士。2009年获得东北师范大学物理化学博士学位,2010-2012年日本学术振兴会(JSPS)博士后,日本产业技术综合研究所(AIST)关西中心外国人特别研究员。独立工作后获国家杰出青年基金、第四批国家“万人计划”科技创新领军人才、科技部中青年科技创新领军人才、教育部青年长江学者奖励计划、国家优秀青年科学基金、江苏省“双创团队”领军人才、江苏省杰出青年基金等人才称号。主要从事COF、MOF、团簇等晶态材料在能源领域的应用探索。近五年来以通讯作者在Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、PNAS、Adv. Mater.、Matter、Chem、Natl. Sci. Rev.、JACS Au等期刊上发表通讯作者论文180余篇。论文被他引20000多次, ESI高引论文25篇,个人H-index 74,连续入选科睿唯安 “高被引科学家”(化学)和爱思唯尔“高被引学者”(化学)。 |
收稿日期: 2022-10-02
修回日期: 2022-10-28
网络出版日期: 2023-02-20
基金资助
国家自然科学基金项目(21871141)
国家自然科学基金项目(21871142)
国家自然科学基金项目(22071109)
国家自然科学基金项目(21901122)
国家自然科学基金项目(22105080)
国家自然科学基金项目(22201083)
中国博士后科学基金面上项目(2020M682747)
中国博士后科学基金面上项目(2021M701270)
广东省基础与应用基础研究基金面上项目(2023A1515010779)
广东省基础与应用基础研究基金面上项目(2023A1515010928)
Covalent Organic Frameworks for Photocatalytic CO2 Reduction
Received date: 2022-10-02
Revised date: 2022-10-28
Online published: 2023-02-20
Supported by
National Natural Science Foundation of China(21871141)
National Natural Science Foundation of China(21871142)
National Natural Science Foundation of China(22071109)
National Natural Science Foundation of China(21901122)
National Natural Science Foundation of China(22105080)
National Natural Science Foundation of China(22201083)
China Postdoctoral Science Foundation(2020M682747)
China Postdoctoral Science Foundation(2021M701270)
Guangdong Basic and Applied Basic Research Foundation(2023A1515010779)
Guangdong Basic and Applied Basic Research Foundation(2023A1515010928)
全球范围内化石燃料的大量消耗导致了能源危机,同时其所排放的CO2等温室气体使环境问题日渐突出。将CO2等废气进一步转化为高附加值燃料是解决能源与环境问题的理想方案。利用取之不尽的太阳能作为能源实现光催化CO2还原为能源化合物被认为是有效解决此问题的最佳途径之一。共价有机框架材料(COFs)是一类新型晶态多孔有机聚合物材料,具有结构稳定性、可设计性和结构多样化的特征,因此在光催化CO2还原领域表现出了巨大潜力。本文概述了近年来COFs在光催化CO2还原领域中的催化应用研究进展,包括引入不同金属离子提供活性位点、增加光敏性官能团提高其对可见光利用率等方法。最后对以COFs材料为光催化CO2还原催化剂的研究进行了总结和展望,我们认为更进一步的新材料合成、修饰与催化机理研究仍是前景广阔的研究领域。
刘雨菲 , 张蜜 , 路猛 , 兰亚乾 . 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023 , 35(3) : 349 -359 . DOI: 10.7536/PC220936
With the massive global consumption of fossil fuels, the energy crisis is getting worse and the emission of greenhouse gases such as CO2 has made the environmental problems become increasingly prominent. Photocatalytic reduction of CO2 to energy compounds is considered to be one of the best ways to effectively solve this problem. Covalent organic frameworks (COFs) are a new type of crystalline porous organic polymer materials with high stability and pre-design ability, which makes COFs own great potential ability in the field of photocatalytic CO2 reduction. This paper summarizes the research progress of COFs in the field of photocatalytic CO2 reduction, including the introduction of different metal ions to provide the active site and increasing the photosensitive functional groups to improve their utilization of visible light. Since the research of COFs as photocatalytic CO2 reduction catalyst is still an initial field, further exploration of synthesis, modification, and mechanism of COFs for CO2 reduction is still promising research work.
Contents1 Introduction
2 Covalent organic frameworks
2.1 Basic information of COFs
2.2 Application of COFs in photocatalysis
3 Basic principles of photocatalytic CO2 reduction
4 COFs for photocatalytic CO2 reduction
5 Conclusion and outlook
[1] |
Guo K, Zhu X L, Peng L L, Fu Y H, Ma R, Lu X Q, Zhang F M, Zhu W D, Fan M H. Chem. Eng. J., 2021, 405: 127011.
|
[2] |
Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.
|
[3] |
El-Kaderi H M, Hunt J R, Mendoza-CortÉs J L, Coôteé A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.
|
[4] |
Meng Y, Luo Y, Shi J L, Ding H M, Lang X J, Chen W, Zheng A M, Sun J L, Wang C. Angew. Chem. Int. Ed., 2020, 59(9): 3624.
|
[5] |
Lu M, Doctoral Dissertation of Nanjing Normal University, 2021.
(路猛. 南京师范大学博士论文, 2021.).
|
[6] |
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.
|
[7] |
Chen R F, Shi J L, Ma Y, Lin G Q, Lang X J, Wang C. Angew. Chem. Int. Ed., 2019, 58(19): 6430.
|
[8] |
Chen X Y, Geng K Y, Liu R Y, Tan K T, Gong Y F, Li Z P, Tao S S, Jiang Q H, Jiang D L. Angew. Chem., 2020, 132(13): 5086.
|
[9] |
Liu W B, Li X K, Wang C M, Pan H H, Liu W P, Wang K, Zeng Q D, Wang R M, Jiang J Z. J. Am. Chem. Soc., 2019, 141(43): 17431.
|
[10] |
Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5(7): 2789.
|
[11] |
Liu Y T, Wu H, Wu S Q, Song S Q, Guo Z Y, Ren Y X, Zhao R, Yang L X, Wu Y Z, Jiang Z Y. J. Membr. Sci., 2021, 618: 118693.
|
[12] |
Zeng Y F, Zou R Q, Zhao Y L. Adv. Mater., 2016, 28(15): 2855.
|
[13] |
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J. Science, 2015, 349(6253): 1208.
|
[14] |
Diercks C S, Lin S, Kornienko N, Kapustin E A, Nichols E M, Zhu C H, Zhao Y B, Chang C J, Yaghi O M. J. Am. Chem. Soc., 2018, 140(3): 1116.
|
[15] |
Zhang H W, Zhu Q Q, Yuan R R, He H M. Sens. Actuat. B Chem., 2021, 329: 129144.
|
[16] |
Wang Y J, Yue X L, Wu T, Huai Y J, Cheng Q L, Zhang M Y. Energy Environmental Protection, 2022, 36(2): 52.
(王玉杰, 岳喜龙, 吴彤, 怀燕瑾, 程庆霖, 张曼莹. 能源环境保护, 2022, 36(2): 52.).
|
[17] |
Ge L, Qiao C Y, Tang Y K, Zhang X K, Jiang X Q. Nano Lett., 2021, 21(7): 3218.
|
[18] |
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.
|
[19] |
Zhou Y S, Wang Z T, Huang L, Zaman S, Lei K, Yue T, Li Z A, You B, Xia B Y. Adv. Energy Mater., 2021, 11(8): 2003159.
|
[20] |
Lu M, Zhang M, Liu J, Chen Y F, Liao J P, Yang M Y, Cai Y P, Li S L, Lan Y Q. Angewandte Chemie Int. Ed., 2022, 61(15): e202200003.
|
[21] |
Yang S Z, Hu W H, Zhang X, He P L, Pattengale B, Liu C M, Cendejas M, Hermans I, Zhang X Y, Zhang J, Huang J E. J. Am. Chem. Soc., 2018, 140(44): 14614.
|
[22] |
Lu M, Li Q, Liu J, Zhang F M, Zhang L, Wang J L, Kang Z H, Lan Y Q. Appl. Catal. B Environ., 2019, 254: 624.
|
[23] |
Bi J H, Xu B, Sun L, Huang H M, Fang S Q, Li L Y, Wu L. ChemPlusChem, 2019, 84(8): 1149.
|
[24] |
Zhong W F, Sa R J, Li L Y, He Y J, Li L Y, Bi J H, Zhuang Z Y, Yu Y, Zou Z G. J. Am. Chem. Soc., 2019, 141(18): 7615.
|
[25] |
Lv H W, Sa R J, Li P Y, Yuan D Q, Wang X C, Wang R H. Sci. China Chem., 2020, 63(9): 1289.
|
[26] |
Lu M, Liu J, Li Q, Zhang M, Liu M, Wang J L, Yuan D Q, Lan Y Q. Angew. Chem., 2019, 131(36): 12522.
|
[27] |
Zhang M, Lu M, Lang Z L, Liu J, Liu M, Chang J N, Li L Y, Shang L J, Wang M, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2020, 59(16): 6500.
|
[28] |
Lu M, Zhang M, Liu J, Yu T Y, Chang J N, Shang L J, Li S L, Lan Y Q. J. Am. Chem. Soc., 2022, 144(4): 1861.
|
[29] |
Wang X Y, Fu Z W, Zheng L R, Zhao C X, Wang X, Chong S Y, McBride F, Raval R, Bilton M, Liu L J, Wu X F, Chen L J, Sprick R S, Cooper A I. Chem. Mater., 2020, 32(21): 9107.
|
[30] |
Fu Z W, Wang X Y, Gardner A M, Wang X, Chong S Y, Neri G, Cowan A J, Liu L J, Li X B, Vogel A, Clowes R, Bilton M, Chen L J, Sprick R S, Cooper A I. Chem. Sci., 2020, 11(2): 543.
|
[31] |
Gong Y N, Zhong W H, Li Y, Qiu Y Z, Zheng L R, Jiang J, Jiang H L. J. Am. Chem. Soc., 2020, 142(39): 16723.
|
[32] |
Lei K, Wang D, Ye L Q, Kou M P, Deng Y, Ma Z Y, Wang L, Kong Y. ChemSusChem, 2020, 13(7): 1725.
|
[33] |
Zhang M, Chang J N, Chen Y F, Lu M, Yu T Y, Jiang C, Li S L, Cai Y P, Lan Y Q. Adv. Mater., 2021, 33(48): 2105002.
|
[34] |
Huang Y M, Du P Y, Shi W X, Wang Y, Yao S, Zhang Z M, Lu T B, Lu X Q. Appl. Catal. B Environ., 2021, 288: 120001.
|
/
〈 |
|
〉 |