基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用
![]() |
谢振达 讲师;2019年于浙江工业大学获得博士学位。目前的主要研究方向为以1,8-萘酰亚胺为荧光基团的新型荧光探针构建及其生物成像研究。以第一作者或参与者身份在Sens. Actuators B:Chem.和Talanta等国内外期刊发表数篇SCI论文,并获国家发明专利授权多项。 |
![]() |
胡金锋 二级教授/博士生导师;1996年于兰州大学获博士学位。相继在中国医学科学院药物研究所、德国HKI天然产物研究所、美国密西西比大学、Scripps研究所、美国红杉科学公司、华东师范大学和复旦大学等单位学习和工作。主持国家级和省部级科研项目近20项,发表SCI论文180余篇。主要从事天然化合物新颖结构发现及其生物功能多样性研究、基于天然产物的化学生物学和新型天然药物先导化合物等方面的科学研究。 |
收稿日期: 2021-11-24
修回日期: 2022-01-17
网络出版日期: 2022-04-01
基金资助
台州市科技项目(2003gy14)
台州学院科研项目(2019PY021)
国家大学生创新创业训练计划项目资助(202010350033)
Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes
Received date: 2021-11-24
Revised date: 2022-01-17
Online published: 2022-04-01
Supported by
Taizhou Science and Technology Project(2003gy14)
Project of Taizhou University(2019PY021)
National College Students Innovation and Entrepreneurship Training Program(202010350033)
生命受细胞内复杂的代谢过程控制。科学界正在进行的努力之一是研究和理解这些动态生化反应以及生物分子在维持生命中的作用。荧光探针具有操作简单、成本低、灵敏度高、可在活体中多通道和实时可视化等优点,已被广泛用于分析物在生理和病理过程中的可视化研究。然而,多数荧光探针只可响应单分析物,不适于复杂生物体系中多分析物的分析检测。近5年来,以1,8-萘酰亚胺为荧光报告基团的多分析物荧光探针在生物或环境领域得到了快速的发展。依据探针荧光发光机制,本文将其分为单发光机制(PET、ICT和FRET)、双发光机制(PET-ICT、PET-FRET和ICT-FRET等双机制协同作用)等方式,综述了国内外基于1,8-萘酰亚胺的多分析物荧光探针在设计策略、识别过程、光学性质和细胞成像等方面的新进展,并对此类荧光探针的发展趋势和挑战进行了展望。
赖燕琴 , 谢振达 , 付曼琳 , 陈暄 , 周戚 , 胡金锋 . 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022 , 34(9) : 2024 -2034 . DOI: 10.7536/PC211117
Life are governed by cellular complex metabolic processes. One of the on-going endeavours in the scientific community is to study and understand these dynamic biochemical reactions and the roles of biomolecules in sustaining life. Fluorescent probes have been widely used in the visualization of analytes in physiological and pathological processes, due to their advantages such as easy operation, low cost, high sensitivity, capability of multi-channel and real-time visualization in vivo. However, most fluorescent probes can only respond to single analyte, which is not suitable to mornitor multiple analytes in complex biological system. In recent five years, significantly more multi-analyte fluorescent probes based on 1,8-naphthimide fluorophore have been designed in biological or environmental field. Categorized by the fluorescent mechanisms, such as single fluorescent mechanism (e.g. photoinduced electron transfer (PET), intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET)), dual fluorescent mechanisms (e.g. PET-ICT, PET-FRET, and ICT-FRET) and so on, this review highlights the recent progress in designing strategies, corresponding recognition process, optical property and cell imaging of 1,8-naphthalimide-based multi-analyte fluorescent probes. Finally, the development trend and possible challenges of such fluorescent probes are prospected.
1 Introduction
2 Multi-analyte fluorescent probes based on single fluorescent mechanism
2.1 Multi-analyte fluorescent probes based on PET
2.2 Multi-analyte fluorescent probes based on ICT
2.3 Multi-analyte fluorescent probes based on FRET
3 Multi-analyte fluorescent probes based on dual fluorescent mechanisms
3.1 Multi-analyte fluorescent probes based on PET and ICT
3.2 Multi-analyte fluorescent probes based on PET and FRET
3.3 Multi-analyte fluorescent probes based on ICT and FRET
3.4 Multi-analyte fluorescent probes based on ICT and TICT
4 Other multi-analyte fluorescent probes
5 Conclusion and outlook
[1] |
Liu H W, Chen L L, Xu C Y, Li Z, Zhang H Y, Zhang X B, Tan W H. Chem. Soc. Rev., 2018, 47(18): 7140.
|
[2] |
Jiang C Y, Huang H J, Kang X Y, Yang L, Xi Z, Sun H Y, Pluth M D, Yi L. Chem. Soc. Rev., 2021, 50(13): 7436.
|
[3] |
Jiao X Y, Li Y, Niu J Y, Xie X L, Wang X, Tang B. Anal. Chem., 2018, 90(1): 533.
|
[4] |
Liu X, Li N, Li M, Chen H, Zhang N N, Wang Y L, Zheng K B. Coord. Chem. Rev., 2020, 404: 213109.
|
[5] |
Ren C P, Nie W, Leng J Q, Liu Z B. Prog. Chem., 2021, 33(6): 942.
( 任春平, 聂雯, 冷俊强, 刘振波. 化学进展, 2021, 33(6): 942. ).
|
[6] |
Wang X C, Wang Y S, Han Q X, Sun X L. Prog. Chem., 2021, 33(9): 1496.
( 王学川, 王岩松, 韩庆鑫, 孙晓龙. 化学进展, 2021, 33(9): 1496. ).
|
[7] |
Wang S, Ren W X, Hou J T, Won M, An J, Chen X Y, Shu J, Kim J S. Chem. Soc. Rev., 2021, 50(16): 8887.
|
[8] |
Zhou Y Q, Wang X, Zhang W, Tang B, Li P. Front. Chem. Sci. Eng., 2022, 16(1): 4.
|
[9] |
Kolanowski J L, Liu F, New E J. Chem. Soc. Rev., 2018, 47(1): 195.
|
[10] |
Chen S H, Pang C M, Chen X Y, Yan Z H, Huang S M, Li X D, Zhong Y T, Wang Z Y. Chin. J. Org. Chem., 2019, 39: 1846.
( 陈思鸿, 庞楚明, 陈孝云, 严智浩, 黄诗敏, 李香弟, 钟雅婷, 汪朝阳, 有机化学, 2019, 39: 1846).
|
[11] |
Yu H B, Xiao Y, Jin L J. J. Am. Chem. Soc., 2012, 134(42): 17486.
|
[12] |
Ma Q Q, Zhuo W F, Zhai Z D, Gong G S, Zhang T, Xiao H B, Zhou Z Y, Liu Y Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 261: 120031.
|
[13] |
Ma Q J, Wang C Y, Mao G J, Tian M J, Sun J G, Feng S X. New J. Chem., 2020, 44(42): 18389.
|
[14] |
Hou X F, Li Z S, Li Y Q, Zhou Q H, Liu C H, Fan D, Wang J J, Xu R J, Xu Z H. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 246: 119030.
|
[15] |
Xie Z D, Ge J Y, Zhang H T, Bai T W, He S Y, Ling J, Sun H Y, Zhu Q. Sens. Actuat. B Chem., 2017, 241: 1050.
|
[16] |
Wang X Y, Qi S L, Du J S, Li Q, Zhu L B, Xue L Q, Zhao Q, Yang Q B, Li Y X, Cong X L. Chin. J. Org. Chem., 2021, 41: 719.
( 王欣宇, 戚少龙, 杜建时, 李强, 祝录宝, 薛龙启, 赵晴, 杨清彪, 李耀先, 丛宪玲. 有机化学, 2021, 41: 719.).
|
[17] |
Zhu L Q, Fu M L, Yin B, Wang L, Chen Y J, Zhu Q. Dyes Pigments, 2020, 172: 107859.
|
[18] |
Zhu Z F, Ding H C, Wang Y S, Fan C B, Tu Y Y, Liu G, Pu S Z. Tetrahedron, 2020, 76(26): 131291.
|
[19] |
Dong B L, Song X Z, Wang C, Kong X Q, Tang Y H, Lin W Y. Anal. Chem., 2016, 88(7): 4085.
|
[20] |
Shen W, Ge J Y, He S Y, Zhang R Y, Zhao C Y, Fan Y, Yu S A, Liu B, Zhu Q. Chem. Asian J., 2017, 12(13): 1532.
|
[21] |
Geraghty C, Wynne C, Elmes R B P. Coord. Chem. Rev., 2021, 437: 213713.
|
[22] |
Chen Y J, Wang K, Fu M L, Zhou H H, Shen W, Hu Y, Zhu Q. Dyes Pigments, 2021, 195: 109717.
|
[23] |
Dong H Q, Wei T B, Ma X Q, Yang Q Y, Zhang Y F, Sun Y J, Shi B B, Yao H, Zhang Y M, Lin Q. J. Mater. Chem. C, 2020, 8(39): 13501.
|
[24] |
Zhou L, Xie L J, Liu C H, Xiao Y. Chin. Chem. Lett., 2019, 30(10): 1799.
|
[25] |
Zhu H C, Liu C Y, Su M J, Rong X D, Zhang Y, Wang X, Wang K, Li X W, Yu Y M, Zhang X, Zhu B C. Coord. Chem. Rev., 2021, 448: 214153.
|
[26] |
Yu H T, Guo Y, Zhu W C, Havener K, Zheng X J. Coord. Chem. Rev., 2021, 444: 214019.
|
[27] |
Oshchepkov A S, Oshchepkov M S, Oshchepkova M V, Al-Hamry A, Kanoun O, Kataev E A. Adv. Optical Mater., 2021, 9(6): 2001913.
|
[28] |
Xie Z D, Yin B, Shen J J, Hong D Q, Zhu L Q, Ge J Y, Zhu Q. Org. Biomol. Chem., 2018, 16(25): 4628.
|
[29] |
Xie Z D, Zhou Y Y, Fu M L, Ni L C, Tong Y P, Yu Y, Li N, Yang Z Y, Zhu Q, Wang J X. Talanta, 2021, 231: 122365.
|
[30] |
Shen W, Wang P, Xie Z D, Zhou H H, Hu Y, Fu M L, Zhu Q. Talanta, 2021, 234: 122621.
|
[31] |
Hwang J J, Lee S J, Kim T Y, Cho J H, Koh J Y. J. Neurosci., 2008, 28(12): 3114.
|
[32] |
Lee H J, Cho C W, Seo H, Singha S, Jun Y W, Lee K H, Jung Y, Kim K T, Park S, Bae S C, Ahn K H. Chem. Commun., 2016, 52(1): 124.
|
[33] |
Dickinson B C, Peltier J, Stone D, Schaffer D V, Chang C J. Nat. Chem. Biol., 2011, 7(2): 106.
|
[34] |
Lou Z R, Li P, Pan Q, Han K L. Chem. Commun., 2013, 49(24): 2445.
|
[35] |
Lv X, Yuan X, Wang Y, Guo W. New J. Chem., 2018, 42(18): 15105.
|
[36] |
Borak J, Diller W F. J. Occup. Environ. Med., 2001, 43(2): 110.
|
[37] |
Wang S L, Li C, Song Q H. Anal. Chem., 2019, 91(9): 5690.
|
[38] |
Wu L Q, Qi S L, Liu Y, Wang X Y, Zhu L B, Yang Q B, Du J S, Xu H, Li Y X. Anal. Bioanal. Chem., 2021, 413(4): 1137.
|
[39] |
Zhang B B, Yang X P, Zhang R, Liu Y, Ren X L, Xian M, Ye Y, Zhao Y F. Anal. Chem., 2017, 89(19): 10384.
|
[40] |
Jiao C P, Liu Y Y, Lu W J, Zhang P P, Ma X, Wang Y F. RSC Adv., 2019, 9(54): 31196.
|
[41] |
Yang K S, Kohler R H, Landon M, Giedt R, Weissleder R. Sci. Rep., 2015, 5: 10129.
|
[42] |
Zhang H, Wang K, Xuan X P, Lv Q Z, Nie Y M, Guo H M. Chem. Commun., 2016, 52(37): 6308.
|
[43] |
Tang Y H, Kong X Q, Xu A, Dong B L, Lin W Y. Angew. Chem. Int. Ed., 2016, 55(10): 3356.
|
[44] |
Xie X L, Tang F Y, Shangguan X Y, Che S Y, Niu J Y, Xiao Y S, Wang X, Tang B. Chem. Commun., 2017, 53(48): 6520.
|
[45] |
Ma Y Y, Tang Y H, Zhao Y P, Lin W Y. Anal. Chem., 2019, 91(16): 10723.
|
[46] |
Staab C A, Ålander J, Brandt M, Lengqvist J, Morgenstern R, Grafström R C, Höög J O. Biochem. J., 2008, 413(3): 493.
|
[47] |
Ma Y Y, Gao W J, Zhu L L, Zhao Y P, Lin W Y. Chem. Commun., 2019, 55(75): 11263.
|
[48] |
Gao W J, Ma Y Y, Lin W Y. New J. Chem., 2020, 44(32): 13654.
|
[49] |
Tan L B, Ding H Y, Chanmungkalakul S, Peng L P, Yuan G Q, Yang Q M, Liu X G, Zhou L Y. Sens. Actuat. B Chem., 2021, 345: 130331.
|
[50] |
Forneris F, Binda C, Vanoni M A, Battaglioli E, Mattevi A. J. Biol. Chem., 2005, 280(50): 41360.
|
[51] |
Li J Z, Sun Y H, Wang C Y, Guo Z Q, Shen Y J, Zhu W H. Anal. Chem., 2019, 91(18): 11946.
|
[52] |
Chen W J, Ma X X, Chen H J, Liu S H, Yin J. Coord. Chem. Rev., 2021, 427: 213584.
|
[53] |
Qin W J, Xu C C, Zhao Y F, Yu C M, Shen S, Li L, Huang W. Chin. Chem. Lett., 2018, 29(10): 1451.
|
[54] |
He Z S, Chou Y J, Zhou H X, Zhang H, Cheng T Y, Liu G H. Org. Biomol. Chem., 2018, 16(17): 3266.
|
[55] |
Kurz T, Terman A, Gustafsson B, Brunk U T. Biochim. Biophys. Acta BBA Gen. Subj., 2008, 1780(11): 1291.
|
[56] |
Mu S, Zhang J L, Gao H, Wang Y Y, Rizvi S F A, Ding N N, Liu X Y, Wu L, Zhang H X. J. Hazard. Mater., 2022, 422: 126898.
|
[57] |
Zhang C Y, Zhang Q Z, Zhang K, Li L Y, Pluth M D, Yi L, Xi Z. Chem. Sci., 2019, 10(7): 1945.
|
[58] |
Kong X Q, Li M, Dong B L, Yin Y G, Song W H, Lin W Y. Anal. Chem., 2019, 91(24): 15591.
|
[59] |
Zhao X J, Yuan G Q, Ding H Y, Zhou L Y, Lin Q L. J. Hazard. Mater., 2020, 381: 120918.
|
[60] |
Velusamy N, Thirumalaivasan N, Bobba K N, Podder A, Wu S P, Bhuniya S. J. Photochem. Photobiol. B Biol., 2019, 191: 99.
|
[61] |
Du Y C, Wang B W, Jin D, Li M R, Li Y, Yan X L, Zhou X Q, Chen L G. Anal. Chimica Acta, 2020, 1103: 174.
|
[62] |
Li J J, Ban L F, Tang L J. Chin. J. Org. Chem., 2021(1): 241.
( 李娇娇, 班立夫, 汤立军. 有机化学, 2021(1): 241.).
|
[63] |
Li S J, Wang P P, Feng W Q, Xiang Y H, Dou K, Liu Z H. Chem. Commun., 2020, 56(7): 1050.
|
[64] |
Yan F Y, Sun X D, Jiang Y X, Wang R J, Zhang Y Y, Cui Y L. Dyes Pigments, 2020, 182: 108531.
|
[65] |
Guo B P, Jing J, Nie L X, Xin F Y, Gao C C, Yang W, Zhang X L. J. Mater. Chem. B, 2018, 6(4): 580.
|
[66] |
Fang Y, Shi W, Hu Y M, Li X H, Ma H M. Chem. Commun., 2018, 54(43): 5454.
|
[67] |
Brookes P S. Free. Radic. Biol. Med., 2005, 38(1): 12.
|
[68] |
Wu Z, Liu M M, Liu Z C, Tian Y. J. Am. Chem. Soc., 2020, 142(16): 7532.
|
[69] |
Xuan W M, Sheng C Q, Cao Y T, He W H, Wang W. Angew. Chem. Int. Ed., 2012, 51(10): 2282.
|
[70] |
Yin G X, Yu T, Gan Y B, Zhou L, Liu M L, Zhang Y Y, Li H T, Yin P, Yao S Z. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 241: 118602.
|
[71] |
Li K B, Qu W B, Shen Q X, Zhang S Q, Shi W, Dong L, Han D M. Dyes Pigments, 2020, 173: 107918.
|
/
〈 |
|
〉 |