二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺
收稿日期: 2021-09-07
修回日期: 2021-11-30
网络出版日期: 2022-01-05
基金资助
国家自然科学基金项目(22002122)
西南民族大学中央高校基本科研业务费专项项目(2020NQN08)
Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine
Received date: 2021-09-07
Revised date: 2021-11-30
Online published: 2022-01-05
Supported by
National Natural Science Foundation of China(22002122)
Fundamental Research Funds for the Central Universities, Southwest Minzu University(2020NQN08)
二氧化碳(CO2)是大气中主要温室气体之一,也是丰富、安全、可再生的碳一资源。将CO2催化转化为高附加值化学品不仅能改善人类长期依赖化石资源的困境,还能有效减少CO2排放,助力实现“碳达峰、碳中和”这一“双碳”目标。N,N-二甲基甲酰胺(DMF)是一种年产百万吨级的平台化合物,是优良的溶剂以及重要的化工中间体。因此,以CO2作为羰源,通过高效催化体系的构建实现CO2与二甲胺反应合成DMF具有重要意义。本文分别从还原剂、催化体系和反应机理等角度综述了这一领域近年来的研究进展。最后,对CO2合成DMF催化过程中所面临的问题和未来的发展方向进行了探讨和展望。
吴亚娟 , 罗静雯 , 黄永吉 . 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022 , 34(6) : 1431 -1439 . DOI: 10.7536/PC210909
Global warming and the energy crisis are posing increasingly severe risks for the economy, ecosystems and human health. As one kind of dominant greenhouse gas, carbon dioxide (CO2) contributes most to global warming, while it is also considered as an abundant, nontoxic, and renewable C1 source. Thus far, transforming CO2 into high value-added chemicals through modern technologies has attracted significant attention owing to its unique advantages. It can not only alleviate human reliance on fossil resources, but also effectively weaken the greenhouse effect. It is of great help to achieve China’s “dual-carbon” goal of “carbon peak and carbon neutrality”. N,N-Dimethylformamide (DMF), an extremely versatile solvent and important chemical intermediate, can be synthesized by using CO2 and dimethylamine as raw materials over different catalysts. Therefore, the development of efficient catalytic systems is crucial for the transformation of CO2 into high value-added products. This article reviews the current status and progress in the synthesis of DMF with CO2 and dimethylamine with respect to reducing agents, catalytic systems as well as the reaction mechanisms of these different catalytic systems. Furthermore, we conclude the frontiers and future prospects of the catalytic synthesis of DMF from CO2 and dimethylamine, providing readers a snapshot of this field.
1 Introduction
2 H2 as reducing agent
2.1 Noble catalytic system
2.2 Non-noble catalytic system
3 Other reducing agent
3.1 Hydrosilanes as reducing agent
3.2 Boranes as reducing agent
3.3 Ammonium salts as reducing agent
4 Conclusion and outlook
Key words: CO2; dimethylamine; N,N-dimethylformamide; catalytic system
[1] |
He M Y, Sun Y H, Han B X. Angew. Chem. Int. Ed., 2013, 52(37): 9620.
|
[2] |
Liu Q, Wu L P, Jackstell R, Beller M. Nat. Commun., 2015, 6: 5933.
|
[3] |
Artz J, Müller T E, Thenert K. Chem. Rev., 2018, 118(2): 434.
|
[4] |
Muzart J. Tetrahedron, 2009, 65(40): 8313.
|
[5] |
Weissermel K, Arpe H J. Industrial Organic Chemistry. 3rd ed. Wiley-VCH: Weinheim, 1997.
|
[6] |
Tu T, Shen Y J, Zheng Q S. CN 111205198, 2020.
( 涂涛, 申雅靓, 郑庆舒. CN 111205198, 2020.).
|
[7] |
Haynes P, Slaugh L H, Kohnle J F. Tetrahedron Lett., 1970, 11(5): 365.
|
[8] |
Kudo K, Phala H, Sugita N, Takezaki Y. Chem. Lett., 1977, 6(12): 1495.
|
[9] |
Heng P, Kiyoshi K, Nobuyuki S. Bull. Inst. Chem. Res., Kyoto Univ., 1981, 59(2): 88.
|
[10] |
Schreiner S, Yu J Y, Vaska L. J. Chem. Soc., Chem. Commun., 1988(9): 602.
|
[11] |
Schreiner S, Yu J Y, Vaska L. Inorganica Chimica Acta, 1988, 147(2): 139.
|
[12] |
Ishida H, Tanaka H, Tanaka K, Tanaka T. Chem. Lett., 1987, 16(4): 597.
|
[13] |
Jessop P G, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc., 1994, 116(19): 8851.
|
[14] |
Jessop P G, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc., 1996, 118(2): 344.
|
[15] |
Kröcher O, Köppel R A, Baiker A. Chem. Commun., 1997(5): 453.
|
[16] |
Kayaki Y, Suzuki T, Ikariya T. Chem. Lett., 2001, 30(10): 1016.
|
[17] |
Behr A, Ebbinghaus P, Naendrup F. Chem. Eng. Technol., 2004, 27(5): 495.
|
[18] |
Zhang L, Han Z B, Zhao X Y, Wang Z, Ding K L. Angew. Chem. Int. Ed., 2015, 54(21): 6186.
|
[19] |
Ding K L, Zhang L, Han Z B, Wang Z, Zhao X Y. CN , 2016.
( 丁奎岭, 张磊, 韩召斌, 王正, 赵晓宇. CN 105985254, 2016.).
|
[20] |
Ding K L, Qiu J, Yan T, Zhang L, Wang Z. CN 109553641, 2017.
( 丁奎岭, 邱佳, 闫涛, 张磊, 王正. CN 109553641, 2017.).
|
[21] |
Kuhlmann R, Schmitz S, Haβmann K, Prüllage A, Behr A. Appl. Catal. A Gen., 2017, 539: 90.
|
[22] |
Kuhlmann R, Prüllage A, Künnemann K, Behr A, Vorholt A J. J. CO2 Util., 2017, 22: 184.
|
[23] |
Kuhlmann R, Nowotny M, Künnemann K U, Behr A, Vorholt A J. J. Catal., 2018, 361: 45.
|
[24] |
Kuhlmann R, Künnemann K U, Hinderink L, Behr A, Vorholt A J. ACS Sustainable Chem. Eng., 2019, 7(5): 4924.
|
[25] |
Minato M, Zhou D Y, Sumiura K I, Hirabayashi R, Yamaguchi Y, Ito T. Chem. Commun., 2001(24): 2654.
|
[26] |
Minato M, Zhou D Y, Sumiura K I, Oshima Y, Mine S, Ito T, Kakeya M, Hoshino K, Asaeda T, Nakada T, Osakada K. Organometallics, 2012, 31(14): 4941.
|
[27] |
Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson P J, Scopelliti R, Laurenczy G, Beller M. Angew. Chem. Int. Ed., 2010, 49(50): 9777.
|
[28] |
Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc., 2012, 134(51): 20701.
|
[29] |
Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M. Chem. Eur. J., 2012, 18(1): 72.
|
[30] |
Daw P, Chakraborty S, Leitus G, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal., 2017, 7(4): 2500.
|
[31] |
Affan M A, Jessop P G. Inorg. Chem., 2017, 56(12): 7301.
|
[32] |
Affan M A, Schatte G, Jessop P G. Inorg. Chem., 2020, 59(19): 14275.
|
[33] |
Kröcher O, Köppel R A, Baiker A. Chem. Commun., 1996(13): 1497.
|
[34] |
Kröcher O, Köppel R A, Fr?ba M, Baiker A. J. Catal., 1998, 178(1): 284.
|
[35] |
Schmid L, Baiker A. Stud. Surf. Sci. Catal., 2000, 557.
|
[36] |
Krocher O, Koppel R A, Baiker A J. Mol. Catal. A: Chem., 1999, 140(2): 185.
|
[37] |
Kayaki Y, Shimokawatoko Y, Ikariya T. Adv. Synth. Catal., 2003, 345(12): 175.
|
[38] |
Gunasekar G H, Padmanaban S, Park K, Jung K D, Yoon S. ChemSusChem, 2020, 13(7): 1735.
|
[39] |
Wang G Q, Jiang M, Ji G J, Sun Z, Li C Y, Yan L, Ding Y J. ACS Sustainable Chem. Eng., 2020, 8(14): 5576.
|
[40] |
Zhang K, Zong L B, Jia X F. Adv. Synth. Catal., 2021, 363(5): 1335.
|
[41] |
Cui X J, Zhang Y, Deng Y Q, Shi F. Chem. Commun., 2014, 50(2): 189.
|
[42] |
Zhang Y J, Wang H L, Yuan H K, Shi F. ACS Sustainable Chem. Eng., 2017, 5(7): 5758.
|
[43] |
Dai X C, Wang B, Wang A Q, Shi F. Chin. J. Catal., 2019, 40(8): 1141.
|
[44] |
Bi Q Y, Lin J D, Liu Y M, Xie S H, He H Y, Cao Y. Chem. Commun., 2014, 50(65): 9138.
|
[45] |
Kumar S, Kumar P, Deb A, Maiti D, Jain S L. Carbon, 2016, 100: 632.
|
[46] |
Zhang Y, Wang J Q, Zhu H B, Tu T. Chem. Asian J., 2018, 13(20): 3018.
|
[47] |
Shen Y J, Zheng Q S, Chen Z N, Wen D H, Clark J H, Xu X, Tu T. Angew. Chem. Int. Ed., 2021, 60(8): 4125.
|
[48] |
Schaub T, Paciello R, Pazicky M, Fachinetti G, Preti D. US 2013102807, 2013.
|
[49] |
Mu J C, Liu J F, Ran Z Z, Arif M, Gao M, Wang C, Ji S F. Ind. Eng. Chem. Res., 2020, 59(14): 6543.
|
[50] |
Liu J L, Guo C K, Zhang Z F, Jiang T, Liu H Z, Song J L, Fan H L, Han B X. Chem. Commun., 2010, 46(31): 5770.
|
[51] |
Kumar S, Jain S L. RSC Adv., 2014, 4(109): 64277.
|
[52] |
Rahele Z, Seyed Mahdi S, Mahboobeh Z, Seyed Mohsen S. Catal. Lett., 2018, 148(8): 2487.
|
[53] |
Wu Y J, Wang T, Wang H L, Wang X Z, Dai X C, Shi F. Nat. Commun., 2019, 10: 2599.
|
[54] |
Yang J, Wang L J, Sun A L, Zhiani R. Catal. Lett., 2021, 151(2): 573.
|
[55] |
Das Neves Gomes C, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T. Angew. Chem. Int. Ed., 2012, 51(1): 187.
|
[56] |
Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T. J. Am. Chem. Soc., 2012, 134(6): 2934.
|
[57] |
Cantat T, Gomes C, Jacquent O. US 2014018567, 2014.
|
[58] |
Motokura K, Takahashi N, Kashiwame D, Yamaguchi S, Miyaji A, Baba T. Catal. Sci. Technol., 2013, 3(9): 2392.
|
[59] |
Fang C, Lu C L, Liu M H, Zhu Y L, Fu Y, Lin B L. ACS Catal., 2016, 6(11): 7876.
|
[60] |
Nale D B, Bhanage B M. Synlett, 2016, 27(09): 1413.
|
[61] |
Saptal V B, Bhanage B M. ChemSusChem, 2016, 9(15): 1980.
|
[62] |
Ghosh S, Ghosh A, Biswas S, Sengupta M, Roy D, Islam S M. ChemistrySelect, 2019, 4(13): 3961.
|
[63] |
Wang P B, He Q, Zhang H, Sun Q D, Cheng Y J, Gan T, He X H, Ji H B. Catal. Commun., 2021, 149: 106195.
|
[64] |
Nale D B, Rath D, Parida K M, Gajengi A, Bhanage B M. Catal. Sci. Technol., 2016, 6(13): 4872.
|
[65] |
Saptal V B, Sasaki T, Bhanage B M. ChemCatChem, 2018, 10(12): 2593.
|
[66] |
Saptal V B, Juneja G, Bhanage B M. New J. Chem., 2018, 42(19): 15847.
|
[67] |
Kobayashi K, Kikuchi T, Kitagawa S, Tanaka K. Angew. Chem. Int. Ed., 2014, 53(44): 11813.
|
/
〈 |
|
〉 |