石墨烯/金属-有机框架复合材料制备及其应用
收稿日期: 2021-04-27
修回日期: 2021-06-29
网络出版日期: 2021-07-29
基金资助
甘肃省科技计划项目(20YF8GA032)
Preparation and Application of Graphene/Metal-Organic Frameworks Composites
Received date: 2021-04-27
Revised date: 2021-06-29
Online published: 2021-07-29
Supported by
Science and Technology Programs of Gansu Province(20YF8GA032)
金属-有机框架(Metal-Organic Frameworks,MOFs)是由金属离子与有机配体通过配位键连接而成的高度有序多孔网络框架。MOFs具有比表面积大、孔径可调、结构多样等特性,在材料、环境以及生物医药等领域的应用具有潜在的优势。但是,MOFs存在易水解、稳定性较低、导电性差以及不易加工等缺点,与其他材料复合是改善其性能的有效途径之一。石墨烯具有突出的化学稳定性、良好的导电性、光学特性和力学特性等性能。石墨烯与MOFs的复合可有效提高和改善MOFs光电性能、稳定性以及可回收利用性。本综述介绍了原位生长法、界面生长法和共混成型法等石墨烯/MOFs复合材料的制备方法。进一步论述了其在气体分离与存储、水体净化、化学传感器和催化剂领域的应用。最后,对石墨烯/MOFs复合材料制备技术的开发及其潜在应用进行了总结和展望。
乔瑶雨 , 张学辉 , 赵晓竹 , 李超 , 何乃普 . 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022 , 34(5) : 1181 -1190 . DOI: 10.7536/PC210449
Metal-organic frameworks (MOFs), a novel class of crystalline materials with the ordered porous network frameworks, are formed by the coordination of metal ions and organic bridging ligands. Because of special and unique features such as the large surface area, tunable structure and high porosity, MOFs have attracted a lot of attention in materials, environment, biomedicine and so on. However, MOFs have some disadvantages including of being easily hydrolyzed, low stability, and low electrical conductivity. It is an ideal strategy that MOFs combined with other materials to improve their features and performances. In particular, graphene shows outstanding chemical stability, good electrical conductivity, optical properties and mechanical properties. Graphene compositing with MOFs can effectively improve the photoelectric properties, stability and recyclability of MOFs. Hence, in the current paper, preparation methods of graphene/MOFs composites, including in situ growth method, interfacial growth method and blending molding method, are reviewed. We also discuss their superior performance in the fields of gas separation and storage, water purification, chemical sensors, and catalysts. Moreover, the preparation development and potential applications of graphene/MOFs composites are proposed.
1 Introduction
2 Preparation methods of graphene/MOFs composite materials
2.1 In situ growth method
2.2 Interfacial growth method
2.3 Blending molding method
3 Applications of graphene/MOFs composite materials
3.1 Gas adsorption and storage
3.2 Water purification
3.3 Chemical sensor
3.4 Catalyst
4 Conclusions and outlook
Key words: graphene; metal-organic frameworks; composite materials; adsorption; sensor; catalyst
[1] |
Yaghi O M, Li G M, Li H L. Nature, 1995, 378: 703.
|
[2] |
Liu X F, Zhang H, Yang K L, Huang S, Yang S. Journal Guizhou University, 2015, 32: 15.
(刘晓芳, 张衡, 杨凯丽, 黄珊, 杨松. 贵州大学学报, 2015, 32: 15.).
|
[3] |
Li S Z, Huo F W. Nanoscale, 2015, 7(17): 7482.
|
[4] |
Jiang Z, Zhou P, Xu T, Fan L H, Hu S M, Chen J X, He Y B. CrystEngComm, 2020, 22(20): 3424.
|
[5] |
Jia C, Yuan X, Ma Z F. Prog. Chem., 2009, 21(9): 1954.
(贾超, 原鲜霞, 马紫峰. 化学进展, 2009, 21(9): 1954.)
|
[6] |
Xu J, Liu J, Li Z, Wang X B, Xu Y F, Chen S, Wang Z. New J. Chem., 2019, 43(10): 4092.
|
[7] |
Wang Y, He M H, Gao X, Li S D, Xiong S, Krishna R, He Y B. ACS Appl. Mater. Interfaces, 2018, 10(24): 20559.
|
[8] |
Gandara-Loe J, Ortuño-Lizarán I, Fernández-Sanchez L, AliÓ J L, Cuenca N, Vega-Estrada A, Silvestre-Albero J. ACS Appl. Mater. Interfaces, 2019, 11(2): 1924.
|
[9] |
Wang P, Li X H, Zhang P, Zhang X F, Shen Y, Zheng B, Wu J S, Li S, Fu Y, Zhang W N, Huo F W. ACS Appl. Mater. Interfaces, 2020, 12(21): 23968.
|
[10] |
Lian X, Yan B. Inorg. Chem., 2017, 56(12): 6802.
|
[11] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A. Science, 2004, 306(5696): 666.
|
[12] |
Geim A K, Novoselov K S. Nanosci. Technol., 2007, 6: 183.
|
[13] |
Song J G, Wang X Z, Chang C T. J. Nanomater., 2014, 2014: 1.
|
[14] |
Mondloch J E, Katz M J, Planas N, Semrouni D, Gagliardi L, Hupp J T, Farha O K. Chem. Commun., 2014, 50(64): 8944.
|
[15] |
Yilmaz G, Yam K M, Zhang C, Fan H J, Ho G W. Adv. Mater., 2017, 29(26): 1606814.
|
[16] |
Shimoni R, He W H, Liberman I, Hod I. J. Phys. Chem. C, 2019, 123(9): 5531.
|
[17] |
Li Y H, Qiao Y Y, Li C, He N P, Wen J, Zhao X Z, Zhang X H, Li B Y. Acta Polymerica Sinica, 2021, 21041.
(李禹红, 乔瑶雨, 李超, 何乃普, 闻静, 赵晓竹, 张学辉, 黎白钰. 高分子学报, 2021, 21041.).
|
[18] |
Li C, Qiao Y Y, Li Y H, Wen J, He N P, Li B Y. Progress in Chemistry, 2021, 33 (11): 1964.
(李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. 化学进展, 2021, 33 (11): 1964.)
|
[19] |
Zheng Y, Zheng S, Xue H G, Pang H. Adv. Funct. Mater., 2018, 28(47): 1804950.
|
[20] |
Park J S, Goo N I, Kim D E. Langmuir, 2014, 30(42): 12587.
|
[21] |
Yang Y Z, Li Z, Huang Y F, Gong J X, Qiao C S, Zhang J F. Progress in Chemistry, 2021, 33(5): 726.
(杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. 化学进展, 2021, 33(5): 726.)
|
[22] |
Sun Y F, Ma M, Tang B, Li S, Jiang L, Sun X H, Que M L, Tao C B, Wu Z T. J. Alloys Compd., 2019, 808: 151721.
|
[23] |
Zhang Y, Zhang L X. J. Nanjing Tech Univ. Nat. Sci. Ed., 2018, 40(6): 124.
(张迎亚, 张利雄. 南京工业大学学报(自然科学版), 2018, 40(6): 124.)
|
[24] |
Shekhah O. Materials, 2010, 3(2): 1302.
|
[25] |
Zhou Y J, Mao Z M, Wang W, Yang Z K, Liu X. ACS Appl. Mater. Interfaces, 2016, 8(42): 28904.
|
[26] |
Wang Z H, Yu G, Xia J F, Zhang F, Liu Q Y. Microchimica Acta, 2018, 185(5): 1.
|
[27] |
Liu L, Yan Y, Cai Z H, Lin S X, Hu X B. Adv. Mater. Interfaces, 2018, 5(8): 1701548.
|
[28] |
Jiang M, Li H Z, Zhou L J, Xing R F, Zhang J M. ACS Appl. Mater. Interfaces, 2018, 10(1): 827.
|
[29] |
Patel D G D, Walton I M, Cox J M, Gleason C J, Butzer D R, Benedict J B. Chem. Commun., 2014, 50(20): 2653.
|
[30] |
Radwan D R, Matloob A, Mikhail S, Mikhail L, Guirguis D. J. Hazard. Mater., 2019, 373: 447.
|
[31] |
Wang Q X, Yang Y Z, Gao F, Ni J C, Zhang Y H, Lin Z Y. ACS Appl. Mater. Interfaces, 2016, 8(47): 32477.
|
[32] |
Li L, Liu Y N, Sun K, He Y Q, Liu L. Mater. Lett., 2017, 197: 196.
|
[33] |
Qiu X, Wang X, Li Y W. Chem. Commun., 2015, 51(18): 3874.
|
[34] |
He Y Q, Wu F, Sun X Y, Li R Q, Guo Y Q, Li C B, Zhang L, Xing F B, Wang W, Gao J P. ACS Appl. Mater. Interfaces, 2013, 5(11): 4843.
|
[35] |
Bian Z J, Xu J, Zhang S P, Zhu X M, Liu H L, Hu J. Langmuir, 2015, 31(26): 7410.
|
[36] |
Zhang F Y, Liu L F, Tan X N, Sang X, Zhang J L, Liu C, Zhang B X, Han B X, Yang G Y. Soft Matter, 2017, 13(40): 7365.
|
[37] |
Zhao S Q. Master Dissertation of Hunan University, 2018.
(赵帅奇. 湖南大学硕士论文, 2018.).
|
[38] |
Wei N, Zheng X D, Li Q, Gong C X, Ou H X, Li Z Y. J. Colloid Interface Sci., 2020, 565: 337.
|
[39] |
Li Y Z, Wang G D, Ma L N, Hou L, Wang Y, Zhu Z H. ACS Appl. Mater. Interfaces, 2021, 13(3): 4102.
|
[40] |
Liu J, Wei Y J, Li P Z, Zhao Y L, Zou R Q. J. Phys. Chem. C, 2017, 121(24): 13249.
|
[41] |
Szczęśniak B, Choma J, Jaroniec M. J. Colloid Interface Sci., 2018, 514: 801.
|
[42] |
Kumar R, Raut D, Ramamurty U, Rao C N R. Angew. Chem., 2016, 128(27): 7988.
|
[43] |
Petit C, Mendoza B, Bandosz T J. ChemPhysChem, 2010, 11(17): 3678.
|
[44] |
Huang Z H, Liu G Q, Kang F Y. ACS Appl. Mater. Interfaces, 2012, 4(9): 4942.
|
[45] |
Assen A H, Yassine O, Shekhah O, Eddaoudi M, Salama K N. ACS Sens., 2017, 2(9): 1294.
|
[46] |
Petit C, Bandosz T J. J. Mater. Chem., 2009, 19(36): 6521.
|
[47] |
Petit C, Mendoza B, Bandosz T J. Langmuir, 2010, 26(19): 15302.
|
[48] |
Li J S, Sha J Q, Du B, Tang B. Chem. Commun., 2017, 53(93): 12576.
|
[49] |
Liu S, Sun L X, Xu F, Zhang J, Jiao C L, Li F, Li Z B, Wang S, Wang Z Q, Jiang X, Zhou H Y, Yang L N, Schick C. Energy Environ. Sci., 2013, 6(3): 818.
|
[50] |
Dastbaz A, Karimi-Sabet J, Moosavian M A. Int. J. Hydrog. Energy, 2019, 44(48): 26444.
|
[51] |
Flügel E A, Ranft A, Haase F, Lotsch B V. J. Mater. Chem., 2012, 22(20): 10119.
|
[52] |
Abdi J, Vossoughi M, Mahmoodi N M, Alemzadeh I. Chem. Eng. J., 2017, 326: 1145.
|
[53] |
Jabbari V, Veleta J M, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D. Chem. Eng. J., 2016, 304: 774.
|
[54] |
Liu H M, Fan H, Dang S H, Li M D, Gu A, Yu H. Chromatographia, 2020, 83(9): 1065.
|
[55] |
Yang Q F, Wang J, Zhang W T, Liu F B, Yue X Y, Liu Y N, Yang M, Li Z H, Wang J L. Chem. Eng. J., 2016, 313: 19.
|
[56] |
Zhang S L, Du Z, Li G K. Talanta, 2013, 115: 32.
|
[57] |
Yang P P, Liu Q, Liu J Y, Zhang H S, Li Z S, Li R M, Liu L H, Wang J. J. Mater. Chem. A, 2017, 5(34): 17933.
|
[58] |
Mao J J, Ge M Z, Huang J Y, Lai Y K, Lin C J, Zhang K Q, Meng K, Tang Y X. J. Mater. Chem. A, 2017, 5(23): 11873.
|
[59] |
Rao Z, Feng K, Tang B B, Wu P Y. ACS Appl. Mater. Interfaces, 2017, 9(3): 2594.
|
[60] |
Rahimi E, Mohaghegh N. Environ. Sci. Pollut. Res., 2017, 24(28): 22353.
|
[61] |
Sun H Z, Tang B B, Wu P Y. ACS Appl. Mater. Interfaces, 2017, 9(31): 26077.
|
[62] |
Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112(2): 1105.
|
[63] |
Yang L J, Tang B B, Wu P Y. J. Mater. Chem. A, 2015, 3(31): 15838.
|
[64] |
Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. Trac Trends Anal. Chem., 2010, 29(9): 954.
|
[65] |
Sun B Q, Tao T Y, Liu L, Ding R, Mao Y Y. J. Phys. Chem. C, 2021, 125(22): 12433.
|
[66] |
Travlou N A, Singh K, Rodríguez-CastellÓn E, Bandosz T J. J. Mater. Chem. A, 2015, 3(21): 11417.
|
[67] |
Lee J H, Kang S, Jaworski J, Kwon K Y, Seo M L, Lee J Y, Jung J H. Chem. Eur. J., 2012, 18(3): 765.
|
[68] |
Wang Y, Zhang Y, Hou C, Liu M Z. RSC Adv., 2015, 5(119): 98260.
|
[69] |
Tung T T, Tran M T, Feller J F, Castro M, van Ngo T, Hassan K, Nine M J, Losic D. Carbon, 2020, 159: 333.
|
[70] |
Ding D G, Xue Q Z, Lu W B, Xiong Y, Zhang J Q, Pan X L, Tao B S. Sens. Actuat. B: Chem., 2018, 259: 289.
|
[71] |
Zhang Y X, Xu J Y, Xia J F, Zhang F F, Wang Z H. ACS Appl. Mater. Interfaces, 2018, 10(45): 39151.
|
[72] |
Wang Y, Hou C, Zhang Y, He F, Liu M Z, Li X L. J. Mater. Chem. B, 2016, 4(21): 3695.
|
[73] |
Xu G L, Gang F L, Dong T S, Fu Y, Du Z Y. Chinese Journal of Organic Chemistry, 2016, 36: 1513.
(徐光利, 刚芳莉, 董涛生, 傅颖, 杜正银. 有机化学, 2016, 36: 1513.).
|
[74] |
Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Coord. Chem. Rev., 2019, 378: 262.
|
[75] |
Solomon M B, Church T L, D’Alessandro D M. CrystEngComm, 2017, 19(29): 4049.
|
[76] |
Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S. Catal. Today, 2010, 151(1/2): 39.
|
[77] |
Wu Y, Luo H J, Zhang L. Environ. Sci. Pollut. Res., 2015, 22(21): 17238.
|
[78] |
Yang Y F, Wang W J, Li H, Jin X G, Wang H F, Zhang L, Zhang Y. Mater. Lett., 2017, 197: 17.
|
[79] |
Zhao X H, Liu X, Zhang Z Y, Liu X, Zhang W. RSC Adv., 2016, 6(94): 92011.
|
[80] |
Yang C, You X, Cheng J H, Zheng H D, Chen Y C. Appl. Catal. B: Environ., 2017, 200: 673.
|
[81] |
Wei D, Tang W, Gan Y D, Xu X Q. Catal. Sci. Technol., 2020, 10(16): 5666.
|
[82] |
Uddin N, Zhang H Y, Du Y P, Jia G H, Wang S B, Yin Z Y. Adv. Mater., 2020, 32(9): 1905739.
|
[83] |
Zhuang S, Lei L, Nunna B, Lee E S. ECS Trans., 2016, 72(8): 149.
|
[84] |
Jahan M, Bao Q L, Loh K P. J. Am. Chem. Soc., 2012, 134(15): 6707.
|
[85] |
Sohrabi S, Dehghanpour S, Ghalkhani M. ChemCatChem, 2016, 8(14): 2356.
|
[86] |
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.
|
[87] |
Chen C, Wang J Z, Li P, Tian Q F, Xiao Z W, Li S J, Cai N, Xue Y N, Chen W M, Yu F Q. ChemCatChem, 2021, 13(1): 346.
|
[88] |
Khiarak B N, Hasanzadeh M, Mojaddami M, Shahriyar Far H, Simchi A. Chem. Commun., 2020, 56(21): 3135.
|
[89] |
Chen Z L, Qing H L, Zhou K, Sun D L, Wu R B. Prog. Mater. Sci., 2020, 108: 100618.
|
[90] |
Li J S, Sha J Q, Du B, Tang B. Chem. Commun., 2017, 53(93): 12576.
|
[91] |
He J, Wang J Q, Chen Y J, Zhang J P, Duan D L, Wang Y, Yan Z Y. Chem. Commun., 2014, 50(53): 7063.
|
[92] |
Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P. Appl. Catal. B: Environ., 2017, 210: 45.
|
/
〈 |
|
〉 |