English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1414-1425 DOI: 10.7536/PC200766 前一篇   后一篇

• 综述 •

浙江地区抗生素残留的环境分布特征及来源分析

雷雨洋1,2, 李方方2,3, 欧阳洁2,3, 李敏杰3,*(), 郭良宏2,3,*()   

  1. 1 中国计量大学生命科学学院 杭州 310018
    2 中国计量大学环境与健康科学研究院 杭州 310018
    3 中国计量大学质量与安全工程学院 杭州 310018
  • 收稿日期:2020-07-28 修回日期:2020-09-02 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 李敏杰, 郭良宏
  • 基金资助:
    国家自然科学基金项目(21878302)

Environmental Distribution Characteristics and Source Analysis of Antibiotics in Zhejiang Area

Yuyang Lei1,2, Fangfang Li2,3, Jie Ouyang2,3, Minjie Li3(), Lianghong Guo2,3()   

  1. 1 College of Life Sciences, China Jiliang University,Hangzhou 310018, China
    2 Institute of Environmental and Health Science,Hangzhou 310018, China
    3 College of Quality and Safety Engineering, China Jiliang University,Hangzhou 310018, China
  • Received:2020-07-28 Revised:2020-09-02 Online:2021-08-20 Published:2020-12-28
  • Contact: Minjie Li, Lianghong Guo
  • Supported by:
    National Natural Science Foundation of China(21878302)

近年来在天然水体、土壤、动植物及其排泄物中都检测到了抗生素的存在,抗生素在环境中的残留已经引起广泛关注。本文调研和梳理了2011~2019年间针对浙江地区各种环境介质中抗生素残留状况的相关研究工作,对浙江地区废水、地表水、地下水、土壤和养殖畜禽粪便等环境介质中抗生素残留的主要种类、污染水平和分布特征进行了分析总结,并对抗生素残留的可能来源进行了分析。结果显示,浙江地区环境中抗生素残留的主要种类为四环素类、磺胺类、氟喹诺酮和氯霉素类。杭州、金华、嘉兴等地的畜禽养殖废水中检测出较高浓度抗生素,最高至994 μg·L-1;畜禽粪便中达到了66.62 mg·kg-1,为浙江地区环境中抗生素污染的主要来源之一。制药废水中的抗生素浓度更是达到了5.7 mg·L-1,这些废水虽然经过污水处理厂处理,但在部分处理过的废水中仍能检出抗生素,浓度最高达88 μg·L-1,并被直接排入天然水体。水产养殖区域中残留的抗生素也会不经处理直接进入地表水中,导致地表水污染,浙江地表水中抗生素浓度最高为508.7 ng·L-1,但是大部分流域小于100 ng·L-1。迄今为止,尚未在千岛湖、丽水石塘水库、衢州江山碗窑水库和东西苕溪等饮用水水源地中检测到抗生素,但舟山地区饮用水源中抗生素浓度达到了55 ng·L-1。虽然地表水中抗生素残留水平相对较低,由于这些水体用于水产养殖、畜禽饮水及农田灌溉,使得环境中的抗生素流入畜禽及农作物中,最终可能导致食品污染。因此,未来工作中需要对浙江各地区进行抗生素环境残留的全面、持续调查,结合浙江地区地域特征及经济发展特色,加强环境中抗生素迁移转化规律的研究,并及时开展抗生素环境污染对生态系统和人体健康效应的研究。

In recent years, antibiotics have been detected in natural water bodies, soil, animals and plants and their excreta and have attracted widespread attention. This review summarizes and analyzes the studies published between 2011 and 2019 on the investigations of antibiotic residues in various environmental media in Zhejiang area. The results show that tetracyclines, sulfonamides, fluoroquinolones and chloramphenicols are the dominant antibiotics in the aquatic environment of Zhejiang. The concentration of antibiotics reaches 994 μg·L-1 in the wastewater of farming livestock and poultry in Hangzhou, Jinhua, and Jiaxing, and it is as high as 66.62 mg·kg-1 in the livestock and poultry manure, suggesting that the livestock and poultry breeding industry is one of the major sources of antibiotic pollution in the environment in Zhejiang. Furthermore, the concentration of antibiotics in the pharmaceutical wastewater reaches 5.7 mg·L-1. It is noted that antibiotics are still detected in the effluents of wastewater treatment plants, and their concentrations could reach 88 μg·L-1. The treated wastewaters are directly discharged into natural water. Residual antibiotics in the aquaculture areas could also enter the surface water directly without treatment. The concentration of antibiotics in the surface water of Zhejiang is 508.7ng·L-1, but for most of the basin, the concentration is less than 100 ng·L-1. Until now no antibiotics have been detected in the drinking water sources in Zhejiang such as Qiandao Lake, Lishui Shitang Reservoir, Quzhou Jiangshan Wanyao Reservoir and Tiaoxi River. However, in Zhoushan, the concentration of antibiotics in drinking water sources has reached 55 ng·L-1. Although the levels of the antibiotic residues in the surface water are relatively low, their impacts should not be underestimated. These water bodies serve as water sources for aquaculture, livestock and poultry, and farmland irrigation, therefore the antibiotics residues could get back into livestock, poultry and crops, and potentially cause food contamination. It is thus recommended that future research could focus on continuous and comprehensive monitoring of antibiotic residues in the environment in Zhejiang, the fate and transformation of antibiotics due to the unique environmental factors and industrial structures of the region, and their potential adverse effect on ecological systems and human health.

Contents

1 Introduction

2 Environmental distribution of antibiotic residues in Zhejiang

2.1 Contamination of antibiotics in water

2.2 Distribution of antibiotics in the feces of farmed livestock and poultry

2.3 Distribution of antibiotics in soil and sediment

3 Antibiotic residues in food

4 Conclusion and outlook

()
表1 主要兽用抗生素一览
Table 1 Overview of major veterinary antibiotics
图1 主要兽用抗生素结构及辛醇水分配系数
Fig. 1 Structure and octanol-water partition coefficient(Kow) of major veterinary antibiotics
图2 浙江地区2011~2019年间环境中抗生素检测采样点分布图
Fig. 2 Environmental distribution map of antibiotic sampling sites in Zhejiang area between 2011 and 2019
表2 浙江地区废水中抗生素的污染水平
Table 2 The concentration of antibiotics in wastewater in Zhejiang
表3 浙江地区地表水中抗生素的污染水平
Table 3 The concentration of antibiotics in surface water in Zhejiang
表4 浙江地区养殖畜禽粪便中抗生素的污染水平
Table 4 The concentration of antibiotics in the livestock and poultry manure in Zhejiang
表5 浙江地区土壤和沉积物中抗生素的污染水平
Table 5 The concentration of antibiotics in soil and sediment in Zhejiang
表6 浙江地区动物性食品中抗生素残留状况
Table 6 Antibiotics residues in animal food in Zhejiang
[1]
Sarmah A K, Meyer M T, Boxall A B A. Chemosphere, 2006, 65(5): 725.

pmid: 16677683
[2]
Phillips P J, Smith S G, Kolpin D W, Zaugg S D, Buxton H T, Furlong E T, Esposito K, Stinson B. Environ. Sci. Technol., 2010, 44(13): 4910.

doi: 10.1021/es100356f     pmid: 20521847
[3]
Tolls J. Environ. Sci. Technol., 2001, 35(17): 3397.

pmid: 11563639
[4]
Binh V N, Dang N, Nguyen T K A, Le X Y, Phong K. Thai. Chemosphere, 2018, 197:438.

doi: 10.1016/j.chemosphere.2018.01.061     URL    
[5]
Hirsch R, Ternes T, Haberer K, Kratz K L. Sci. Total. Environ., 1999, 225(1/2): 109.

doi: 10.1016/S0048-9697(98)00337-4     URL    
[6]
Tamtam F, Mercier F, Le Bot B, Eurin J, Tuc Dinh Q, ClÉment M, Chevreuil M. Sci. Total. Environ., 2008, 393(1): 84.

doi: 10.1016/j.scitotenv.2007.12.009     URL    
[7]
Li Z, Yu Z Y, Cui C Z, Ai F T, Yin D Q. J. Hazard. Mater., 2020, 382: 121061.
[8]
Ramesh M, Thilagavathi T, Rathika R, Poopal R K. Aquaculture, 2018, 491: 10.

doi: 10.1016/j.aquaculture.2018.02.046     URL    
[9]
Hruba H, Abdelsalam E E E, Anisimov N, Bandouchova H, Havelkova B, Heger T, Kanova M, Kovacova V, Nemcova M, Piacek V, Sedlackova J, Vitula F, Pikula J. BMC Vet. Res., 2019, 15(1): 1.

doi: 10.1186/s12917-018-1758-8     URL    
[10]
Zhang Q, Cheng J P, Xin Q. Ecotoxicology, 2015, 24(4): 707.

doi: 10.1007/s10646-015-1417-9     URL    
[11]
Gallo A, Landi R, Rubino V di Cerbo A, Giovazzino A, Palatucci A T, Centenaro S, Guidetti G, Canello S, Cortese L, Ruggiero G, Alessandrini A, Terrazzano G. PeerJ, 2017, 5: e3236.

doi: 10.7717/peerj.3236     URL    
[12]
Chen G H, Zhao Z J, Dun W J, Fang L S. J. Shaoxing U. Nat. Sci., 2019, 39(1): 64.
(陈国和, 赵章金, 顿雯静, 方琳姗. 绍兴文理学院学报(自然科学), 2019, 39(1): 64.)
[13]
Niu T X, Zhou Y F, Wu G L, Yu X Q. J. Anhui Agric.Sci. 2015, 43(33): 336.
(牛天新, 周毅飞, 吴根良, 俞祥群. 安徽农业科学, 2015, 43(33): 336.)
[14]
ZJ Water. ZSZ〔2020〕NO.5.
(浙江省水利厅. 浙水资〔2020〕5号.)
[15]
Guo X Y, Yan Z, Zhang Y, Kong X J, Kong D Y, Shan Z J, Wang N. Environ. Sci. Pollut. Res., 2017, 24(9): 8769.

doi: 10.1007/s11356-017-8587-3     URL    
[16]
Chen H, Li X J, Zhu S C. Environ. Sci. Pollut. Res., 2012, 19(6): 2381.

doi: 10.1007/s11356-012-0750-2     URL    
[17]
Wei D, Wan M, Liu R, Wang G R, Zhang X D, Wen X G, Zhao Y, Chen L. J. Environ. Sci., 2014, 35(7): 2650.
(卫丹, 万梅, 刘锐, 王根荣, 张汛达, 文晓刚, 赵远, 陈吕军. 环境科学, 2014, 35(7): 2650.)
[18]
Song X Y, Liu R, Shou Y, Dong B G, Chen L J. Environ. Eng., 2017, 35(3): 47.
(宋小燕, 刘锐, 税勇, 董宝刚, 陈吕军. 环境工程, 2017, 35(3): 47.)
[19]
Wang J M, Wu H Z, Qian M R, Ma J W, Zhang H, Yang H. Asian J. Chem., 2018, 30(5): 1109.

doi: 10.14233/ajchem     URL    
[20]
Wu L Q, Qian M R, Lu L Z, Tao Z R, Li G Q, Feng S L, Chen Z M, Li R, Fang L Z. Acta Agric. Zhejiangensis, 2012, 24(4): 699.
(吴俐勤, 钱鸣蓉, 卢立志, 陶争荣, 李国勤, 冯尚连, 陈志民, 李锐, 方丽珍. 浙江农业学报, 2012, 24(4): 699.)
[21]
Li J N, Cheng W X, Xu L K, Jiao Y N, Baig S A, Chen H. Environ. Sci. Pollut. Res., 2016, 23(7): 6826.

doi: 10.1007/s11356-015-5916-2     URL    
[22]
Tong C L, Zhuo X J, Guo Y. J. Agric. Food Chem., 2011, 59(13): 7303.

doi: 10.1021/jf2013937     URL    
[23]
Zhang Q Q, Ying G G, Pan C G, Liu Y S, Zhao J L. Environ. Sci. Technol., 2015, 49(11): 6772.

doi: 10.1021/acs.est.5b00729     URL    
[24]
Li P P, Zhang X J, Mei G M, Yan Z Y, Yu L, Long J, Guo Y M. J. Zhejiang U. Sci. Ed., 2015, 42(3): 334.
(李佩佩, 张小军, 梅光明, 严忠雍, 喻亮, 龙举, 郭远明. 浙江大学学报(理学版), 2015, 42(3): 334.)
[25]
Yuan J L, Ni M, Liu M, Zheng Y, Gu Z M. Mar. Pollut. Bull., 2019, 138: 376.

doi: 10.1016/j.marpolbul.2018.11.037     URL    
[26]
He X, Li S Y, Wang Y, Zheng Z Y, Zhang H Q, Jin R Y, Wang D N, Wang L W, Dai Z Y. J. Fisher. Chin., 2016, 40(4): 652.
(何欣, 李诗言, 王扬, 郑重莺, 张海琪, 金仁耀, 王鼎南, 王林雯, 戴志远. 水产学报, 2016, 40(4): 652.)
[27]
Zong Y N, Shao M L, Liang M Q, Tang J F, Wang R J. J. Agro-Environ. Sci., 2018, 37(5): 965.
(纵亚男, 邵美玲, 梁梦琦, 唐剑锋, 王瑞杰. 农业环境科学学报, 2018, 37(5): 965.)
[28]
Wang R J, Qiu Q L L, Li G X, Zong Y N, Tang J F, Xu Y Y, J. Lake Sci., 2018, 30(06): 1616.
(王瑞杰, 裘钱玲琳, 李国祥, 纵亚男, 唐剑锋, 徐耀阳. 湖泊科学, 2018, 30(06): 1616.)
[29]
Liu X H, Lu S Y, Guo W, Xi B D, Wang W L. Sci. Total. Environ., 2018, 627: 1195.

doi: 10.1016/j.scitotenv.2018.01.271     URL    
[30]
Xie Z X, Lu G H, Yan Z H, Liu J C, Wang P F, Wang Y H. Environ. Pollut., 2017, 222: 356.

doi: 10.1016/j.envpol.2016.12.026     URL    
[31]
Xu J, Zhang Y, Zhou C B, Guo C S, Wang D M, Du P, Luo Y, Wan J, Meng W. Sci. Total. Environ., 2014, 497/498: 267.

doi: 10.1016/j.scitotenv.2014.07.114     URL    
[32]
Jiang L, Hu X L, Yin D Q, Zhang H C, Yu Z Y. Chemosphere, 2011, 82(6): 822.

doi: 10.1016/j.chemosphere.2010.11.028     pmid: 21131021
[33]
Li W H, Shi Y L, Gao L H, Liu J M, Cai Y Q. Chemosphere, 2012, 89(11): 1307.

doi: 10.1016/j.chemosphere.2012.05.079     URL    
[34]
Yang Y Y, Cao X H, Lin H, Wang J. Microb. Ecol., 2016, 72(4): 791.

doi: 10.1007/s00248-016-0814-9     URL    
[35]
Ding H J, Wu Y X, Zhang W H, Zhong J Y, Lou Q, Yang P, Fang Y Y. Chemosphere, 2017, 184: 137.

doi: 10.1016/j.chemosphere.2017.05.148     URL    
[36]
Park M, Reckhow D, Lavine M, Rosenfeldt E, Stanford B, Park M H. Water Environ. Res., 2014, 86(11): 2233.

doi: 10.2175/106143014X14062131178592     URL    
[37]
Murata A, Takada H, Mutoh K, Hosoda H, Harada A, Nakada N. Sci. Total. Environ., 2011, 409(24): 5305.

doi: 10.1016/j.scitotenv.2011.09.014     URL    
[38]
Carvalho I T, Santos L. Environ. Int., 2016, 94: 736.

doi: S0160-4120(16)30243-4     pmid: 27425630
[39]
Zheng Z Y, Wu H X, Li F, Du W. J. Zhejiang Agric. Sci., 2017, 58(12): 2268.
(郑重莺, 吴洪喜, 黎飞, 杜伟. 浙江农业科学, 2017, 58(12): 2268.)
[40]
Li Y, Jiang T T, Jing L F, Ni L X, Zhu L, Zhou C, Chen Z. Water Resour. Prot., 2014, 30(3): 31.
(李勇, 蒋婷婷, 景龙飞, 倪利晓, 朱亮, 周超, 陈政. 水资源保护, 2014, 30(3): 31.)
[41]
Wang L, Chen G C, Song Q H, Wang Q B, Li Z B, Zhang J F. Acta Agric. Shanghai, 2014, 30(2): 85.
(王丽, 陈光才, 宋秋华, 汪庆兵, 李泽波, 张建锋. 上海农业学报, 2014, 30(2): 85.)
[42]
Wang H, Chu Y X, Fang C R. Bull. Environ. Contam. Toxicol., 2017, 98(4): 472.

doi: 10.1007/s00128-017-2052-3     URL    
[43]
Shen D S, Tao X Q, Shentu J L, Wang M Z. Adv. Mater. Res., 2014, 1010/1012: 301.
[44]
Qian M R, Wu H Z, Wang J M, Zhang H, Zhang Z L, Zhang Y Z, Lin H, Ma J W. Sci. Total. Environ., 2016, 559: 174.

doi: 10.1016/j.scitotenv.2016.03.123     URL    
[45]
Ni Z Y, Shi Y J, Xie G X, Zhang M K. Acta Agric. Zhejiangensis, 2017, 29(12): 2091.
(倪中应, 石一珺, 谢国雄, 章明奎. 浙江农业学报, 2017, 29(12): 2091.)
[46]
Zhao F K, Chen L D, Yang L, Fang L, Sun L, Li S J. Environ. Sci., 2017, 38(12): 5237.

doi: 10.13227/j.hjkx.201705243     pmid: 29964587
(赵方凯, 陈利顶, 杨磊, 方力, 孙龙, 李守娟. 环境科学, 2017, 38(12): 5237.)

pmid: 29964587
[47]
Li Y, Sun Y, Li F. Chin. J. Health Lab. Technol., 2018, 28(23): 2830.
(李颖, 孙珏, 李峰. 中国卫生检验杂志, 2018, 28(23): 2830.)
[48]
Huang X H, Liu S Y, Jin Q, Xue M. Prev. med., 2019, 31(7): 735.
(黄希汇, 刘少颖, 金铨, 薛鸣. 预防医学, 2019, 31(7): 735.)
[49]
Liu S Y, Huang X H, Hu K J, Jin Q. Chin. J. Heal. Lab. Technol., 2018, 28(18): 2280.
(刘少颖, 黄希汇, 胡柯君, 金铨. 中国卫生检验杂志, 2018, 28(18): 2280.)
[50]
Hua X C, Yang F P, Shao X, Yu H X, Jin Y Z. Qual. Saf. Agro Prod., 2013(5): 36.
(华孝成, 杨飞萍, 邵歆, 虞贺新, 金叶舟. 农产品质量与安全, 2013(5): 36.)
[51]
Zhao Y G, Zhou L X, Pan S D, Zhan P P, Chen X H, Jin M C. J. Chromatogr. A, 2014, 1345: 17.

doi: 10.1016/j.chroma.2014.04.028     URL    
[52]
Cui H H. Guang Xi J. Light Ind., 2011, 27(6): 3.
(崔海辉. 广西轻工业, 2011, 27(6): 3.)
[53]
Li R, Yuan Y W, Qian M R, Xiao Y P, Wang J M, Ji X F. J. Zhejiang Agric. Sci., 2018, 59(9): 1700.
(李锐, 袁玉伟, 钱鸣蓉, 肖英平, 汪建妹, 吉小凤. 浙江农业科学, 2018, 59(9): 1700.)
[54]
Yılmaz Ç, Özcengiz G. Biochem. Pharmacol., 2017, 133: 43.
[55]
Robles M, Toscano E, Cotta J, Isabel Lucena M, Andrade R J. Curr. Drug Saf., 2010, 5(3): 212.

doi: 10.2174/157488610791698307     URL    
[56]
Nahum G G, Uhl K, Kennedy D L. Obstet. Gynecol., 2006, 107(5): 1120.

doi: 10.1097/01.AOG.0000216197.26783.b5     URL    
[57]
Zadik D, Eidelman E. Community Dent. Oral Epidemiol., 1975, 3(2): 69.

doi: 10.1111/com.1975.3.issue-2     URL    
[58]
Hurd H S, Malladi S. Risk Anal., 2008, 28(3): 695.

doi: 10.1111/risk.2008.28.issue-3     URL    
[59]
Ben Y J, Hu M, Zhang X Y, Wu S M, Wong M H, Wang M Y, Andrews C B, Zheng C M. Water Res., 2020, 175: 115699.
[1] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[2] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[3] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[4] 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581.
[5] 丁星, 杨祥龙, 熊中亮, 陈浩, 张礼知. 铋系光催化剂去除环境污染物[J]. 化学进展, 2017, 29(9): 1115-1126.
[6] 李忠民, 郭良宏. 氟调醇的环境污染与毒理学研究[J]. 化学进展, 2016, 28(7): 993-1005.
[7] 黄燕敏, 崔建国, 甘春芳, 姚秋翠, 贾琳怡. 具有生理活性的甾体酰胺类化合物[J]. 化学进展, 2012, 24(01): 61-69.
[8] 曲广波, 史建波, 江桂斌. 效应引导的污染物分析与识别方法[J]. 化学进展, 2011, 23(11): 2389-2398.
[9] 阴永光, 刘景富, 江桂斌. 海洋环境中的天然溴代有机物[J]. 化学进展, 2011, 23(01): 254-260.
[10] 王晓伟 刘景富 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展*[J]. 化学进展, 2010, 22(10): 1983-1992.
[11] 徐武军 张国臣 郑明霞 陈健 王凯军. 臭氧氧化技术处理含抗生素废水*[J]. 化学进展, 2010, 22(05): 1002-1009.
[12] 李怀建 李强 汪午 张宏伟 李黎. 环境中3-硝基苯并蒽酮的研究* [J]. 化学进展, 2010, 22(01): 220-224.
[13] 王媛 张彭义. 全氟辛酸和全氟辛烷磺酸人体暴露途径解析及其污染控制技术*[J]. 化学进展, 2010, 22(01): 210-219.
[14] 穆云松 刘磊 张爱茜 蔺远 王连生. 手性物质的QSAR研究及环境学意义*[J]. 化学进展, 2009, 21(10): 2235-2241.
[15] 史亚利,潘媛媛,王杰明,蔡亚歧. 全氟化合物的环境问题[J]. 化学进展, 2009, 21(0203): 369-376.