English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2056-2068 DOI: 10.7536/PC200919 前一篇   后一篇

• 综述 •

Janus 粒子在环境检测领域中的应用

邹丹青1, 王琮1,*(), 肖斐1, 魏宇琛1, 耿林3, 王磊2,3,*()   

  1. 1 哈尔滨工业大学电子与信息工程学院 微波工程系 哈尔滨 150001
    2 哈尔滨工业大学化工与化学学院新能源转换与储存关键材料技术工业和信息化部重点实验室 哈尔滨 150001
    3 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
  • 收稿日期:2020-09-07 修回日期:2020-11-15 出版日期:2021-11-20 发布日期:2020-12-22
  • 通讯作者: 王琮, 王磊
  • 基金资助:
    国家自然科学基金项目(52073071); 国家自然科学基金项目(51703043); 中国博士后科学基金(2017M611367); 中国博士后科学基金(2016M600247); 中国博士后科学基金(2020T130144); 黑龙江省自然科学基金(F2018014); 黑龙江省博士后科学基金(LBH-Z17056); 黑龙江省博士后科学基金(LBH-Z16066); 浙江省实验室(2019MC0AB03)

Janus Particles Applied in Environmental Detection

Danqing Zou1, Cong Wang1(), Fei Xiao1, Yuchen Wei1, Lin Geng3, Lei Wang2,3()   

  1. 1 Department of Microwave Engineering, School of Electronics and Information Engineering, Harbin Institute of Technology,Harbin 150001, China
    2 Key Laboratory of New Energy Conversion and Storage Key Material Technology, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Harbin Institute of Technology,Harbin 150001, China
    3 School of Material Science and Engineering, Harbin Institute of Technology,Harbin 150001, China
  • Received:2020-09-07 Revised:2020-11-15 Online:2021-11-20 Published:2020-12-22
  • Contact: Cong Wang, Lei Wang
  • Supported by:
    National Natural Science Foundation of China(52073071); National Natural Science Foundation of China(51703043); China Postdoctoral Science Foundation(2017M611367); China Postdoctoral Science Foundation(2016M600247); China Postdoctoral Science Foundation(2020T130144); Natural Science Foundation of Heilongjiang(F2018014); Postdoctoral Science Foundation of Heilongjiang(LBH-Z17056); Postdoctoral Science Foundation of Heilongjiang(LBH-Z16066); Laboratory of Zhejiang(2019MC0AB03)

Janus 粒子,也称为阴阳结构粒子或两面性非对称粒子,是指表面上具有两种或两种以上不同化学组成或性质的不对称粒子。目前,Janus 粒子因其独特的结构和功能已经逐渐成为生物医药、催化、材料以及防污等领域中的新型功能材料。在环境检测领域,Janus材料亦因其特殊的光学、磁学及电学性能,为提高检测灵敏度、选择性和稳定性等提供了新的研究方向。基于此,本文主要讨论了Janus材料在环境检测方面的特点、优势和相关应用。最后,本文基于本课题组的研究经验以及工作中所面临的问题,对本领域的发展和未来的研究方向提出了展望,以期对本领域的未来发展提供指导。

Janus particles, also called Yin-Yang structured particles or bifacial asymmetric particles, refer to asymmetric particles with two or more different chemical compositions or properties. During the past decade, Janus particles have gradually become a new type of functional materials in the fields of biomedicine, catalysis, materials and anti-fouling, due to their unique structure and function. In the field of environmental detection, Janus materials also provide new research directions for improving detection sensitivity, selectivity and stability, on account of their special optical, magnetic and electrical properties. However, there is no updated review in environmental detection field yet. To summarize and provide the guidance for the future development, this article mainly discusses the properties, advantages and applications of Janus materials in the field of environmental detection. Finally, based on our group’s research experience and the problems in this field, this article puts forward an outlook on the development and future development direction of this field, in order to provide guidance for the future development of this field.

Contents

1 Introduction

2 Application of static Janus particles in the field of environmental detection

2.1 Detection based on optical properties of static Janus particles

2.2 Detection based on electrochemistry properties of static Janus particles

2.3 Detection based on other properties of static Janus particles

3 Application of Janus micro-nano motors in the field of environmental detection

3.1 Detection based on optical properties of Janus micro-nano motors

3.2 Detection based on electrochemistry properties of Janus micro-nano motors

3.3 Detection based on the motion performance of Janus micro-nano motors

4 Conclusions and outlook

()
图1 (A)嵌入式PDA脂质体的双组分藻酸盐颗粒制备示意图及传感图像[41]; (B)Janus磁微粒实现对目标物质的快速检测处理、光学显微镜下粒子图像及传感图像[42]; (C)金-介孔二氧化硅粒子制备及传感示意图[44]; (D)基于数字化处理的四环素浓度新型检测方式[45]
Fig. 1 (A) the schematic illustration of the fabrication of biphasic alginate particle having embedded PDA liposomes and sensing image[41]. Adapted from ref 41, Copyright 2012, American Chemical Society.(B) Janus magnetic particles realize rapid detection and processing of target substances, particle images and sensing images under optical microscope[42]. Adapted from ref 42, Copyright 2014, American Chemical Society.(C) Schematic diagram of preparation and sensing of gold-mesoporous silica particles[44]. Adapted from ref 44, Copyright 2019, Wiley-VCH VerlagGmbH &Co.KGaA, Weinheim.(D) New detection method of tetracycline concentration based on digital processing[45]. Adapted from ref 45, Copyright 2019, Elsevier
图2 Ag-Au纳米粒子结合MXenes纳米片实现OTA传感示意图及传感结果[48]
Fig. 2 Schematic diagram of Ag-Au nanoparticles combined with MXenes nanosheets to achieve OTA sensing and sensing results[48]. Adapted from ref 48, Copyright 2019, American Chemical Society
图3 电化学检测机制下Janus粒子实现传感功能:(A)金-介孔二氧化硅结合CNT实现葡萄糖传感过程及传感结果[50]; (B)适配体修饰聚苯乙烯实现OTA传感过程及传感结果[51]
Fig. 3 Janus particles realize sensing function based on electrochemical detection mechanism.(A) Gold-Mesoporous Silica Combined with CNT to Realize Glucose Sensing Process and Sensing Results[50]. Adapted from ref 50, Copyright 2015, Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim.(B) Aptamer modified polystyrene to achieve OTA sensing process and sensing results[51]. Adapted from ref 51, Copyright 2019, Elsevier
图4 (A)铂-荧光胺半球式涂覆二氧化硅马达粒子实现DCP传感:a)粒子制备过程、b~d)能量色散X射线光谱图像、DCP传感结果[64];(B)气泡推进式微马达粒子光学显微镜图像、多运动机制下荧光猝灭现象[65];(C)LPS传感图像、多运动机制下荧光衰减图[66];(D)胶囊结构马达粒子制备过程及荧光显微镜下图像、不同样品在不同浓度TNT溶液中荧光猝灭现象[67]
Fig. 4 (A) Pt-fluorescence amine hemispherical coated silica motor particles for DCP sensing:a) Particle preparation process, b~d) energy-dispersive X-ray spectroscopy images, DCP sensing results[64].Adapted from ref 64, Copyright 2015, Royal Society of Chemistry.(B) Image of Bubble Propelled Micro Motor Particle Optical Microscope, Fluorescence quenching in a multi-motion mechanism[65]. Adapted from ref 65, Copyright 2017, Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim.(C) LPS sensing images,Fluorescence decay diagram in multi-motion mechanism[66]. Adapted from ref 66, Copyright 2018,American Chemical Society.(D) Capsule structure motor particle preparation process and fluorescence microscopy images, Fluorescence quenching of different samples in different concentrations of TNT solutions[67].Adapted from ref 67 Copyright 2019,Beilstein Journal of Nanotechnology
图5 (A)基于金属Pt气泡推动式马达粒子:SEM图及能量色散X射线光谱图、粒子气泡产生机制[68]; (B)基于金属-Mg气泡推动式马达粒子:SEM图及能量色散X射线光谱图、DPP传感过程示意图[69]
Fig. 5 (A) Metal Pt bubble based propelled motor particles:SEM image and energy-dispersive X-ray spectroscopy image, Particle bubble generation mechanism[68]. Adapted from ref 68, Copyright 2014,Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim.(B) Metal Mg bubble based propelled motor particles:SEM image and energy-dispersive X-ray spectroscopy image, Schematic diagram of the DPP sensing process[69]. Adapted from ref 69, Copyright 2016,American Chemical Society
图6 电致发光粒子葡萄糖传感过程示意图[73]
Fig. 6 Schematic diagram of electroluminescent particle for glucose sensing[73]. Adapted from ref 73, Copyright 2014, Royal Society of Chemistry
图7 (A)Au-WO3@C Janus微型马达粒子结构:a)TEM图像、b~d)Au、W、O 对应的EDX映射图、粒子结构示意图[75]; (B)PCL-Mg马达粒子实现贵金属传感:a,b)粒子示意图及SEM图像、c,d)C与Mg的EDX映射图和气泡产生机制[76]; (C)聚合物马达微粒pH传感过程示意图[77]
Fig. 7 (A) Au-WO3@C Janus micro motor particle structure:a) TEM image, b~d) Au,W,O Corresponding EDX mapped images and schematic of particle structure[75]. Adapted from ref 75, Copyright 2017, American Chemical Society.(B) PCL-Mg motor particles for precious metal sensing:a,b) Particle diagram and SEM image, c,d) EDX mapped images of C and Mg,Bubble generation mechanism[76].Adapted from ref 76, Copyright 2019, Springer Nature.(C) Polymer motor particle pH sensing process diagram[77].Adapted from ref 77, Copyright 2013,Wiley-VCH Verlag GmbH &CoKGaA, Weinheim
[1]
Nascimento C F, Santos P M, Pereira-Filho E R, Rocha F R P. Food Chem., 2017, 221: 1232.

doi: S0308-8146(16)31857-X     pmid: 27979084
[2]
Daghrir R, Drogui P. Environ. Chem. Lett., 2013, 11(3): 209.

doi: 10.1007/s10311-013-0404-8     URL    
[3]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452(7185): 301.

doi: 10.1038/nature06599     URL    
[4]
Suo L Z, Dong X Y, Gao X, Xu J F, Huang Z, Ye J, Lu X M, Zhao L S. Microchem. J., 2019, 149: 104039.
[5]
Dasbasi T, Sacmaci S, Ulgen A, Kartal S. Food Chem., 2015, 174: 591.

doi: 10.1016/j.foodchem.2014.11.049     URL    
[6]
Li M, Liu Z J, Wang S W, Calatayud D G, Zhu W H, James T D, Wang L D, Mao B Y, Xiao H N. Chem. Commun., 2018, 54(2): 184.

doi: 10.1039/C7CC08035B     URL    
[7]
Fang X W, Yang S P, Chingin K, Zhu L, Zhang X L, Zhou Z Q, Zhao Z F. Int. J. Environ. Res. Public Heal., 2016, 13(8): 814.
[8]
Aparicio I, Martín J, Santos J L, Malvar J L, Alonso E. J. Chromatogr. A, 2017, 1500: 43.

doi: S0021-9673(17)30544-7     pmid: 28416215
[9]
Chafer-Pericas C, Maquieira Á, Puchades R, Miralles J, Moreno A, Pastor-Navarro N, Espinos F. Anal. Chimica Acta, 2010, 662(2): 177.

doi: 10.1016/j.aca.2009.12.044     URL    
[10]
Tumini M, Nagel O G, Althaus R L. J. Dairy Res., 2015, 82(2): 248.

doi: 10.1017/S0022029915000138     URL    
[11]
Moats W A. J. Agric. Food Chem., 2000, 48(6): 2244.

doi: 10.1021/jf990649r     URL    
[12]
Tsikas D, Bohmer A, Mitschke A. Anal. Chem., 2010, 82(12): 5384.

doi: 10.1021/ac1008354     URL    
[13]
Kowalski P. J. Pharm. Biomed. Anal., 2008, 47(3): 487.

doi: 10.1016/j.jpba.2008.01.036     pmid: 18325708
[14]
Jin W, Maduraiveeran G. Trends Environ. Anal. Chem., 2017, 14: 28.

doi: 10.1016/j.teac.2017.05.001     URL    
[15]
Wang C, Yu C X. Rev. Anal. Chem, 2013, 32(1): 1.

doi: 10.1515/revac-2012-0023     URL    
[16]
Jackson J B, Halas N J. PNAS, 2004, 101(52): 17930.

pmid: 15608058
[17]
Liu G L, Lee L P. Appl. Phys. Lett., 2005, 87(7): 3.
[18]
Chen X Y, Ma R T, Ha W, Shi Y P. Sens. Actuat. B: Chem., 2018, 274: 668.

doi: 10.1016/j.snb.2018.08.008     URL    
[19]
Zhou W R, Sun W, Yang P H. Progress in Chemistry, 2018, 30(11): 1601.
(周婉蓉, 孙巍, 杨平辉. 化学进展, 2018, 30(11): 1601.)

doi: 10.7536/PC180316    
[20]
Zhang L P. Shandong Chemical Industry, 2018, 47(08): 56.
(张立平. 山东化工, 2018, 47(08): 56.)
[21]
Le T C, Zhai J L, Chiu W H, Tran P A, Tran N. Int. J. Nanomed., 2019, 14: 6749.

doi: 10.2147/IJN     URL    
[22]
Dehghani E, Barzgari-Mazgar T, Salami-Kalajahi M, Kahaie-Khosrowshahi A. Mater. Chem. Phys., 2020, 249: 123000.
[23]
Li T, Wang Y L, Guo F F, Shi D L. Prog. Chem., 2013, 25(12): 2053.
(李恬, 王祎龙, 郭方方, 时东陆. 化学进展, 2013, 25(12): 2053.)
[24]
Shang B, Wang Y B, Peng B, Deng Z W. Appl. Surf. Sci., 2020, 509: 145360.
[25]
Chowdhury E, Grapperhaus C A, O’Toole M G. J. Nanoparticle Res., 2020, 22(6): 12.

doi: 10.1007/s11051-019-4729-5     URL    
[26]
Baran Ł, BorÓwko M, R?ysko W. J. Phys. Chem. C, 2020, 124(32): 17556.

doi: 10.1021/acs.jpcc.0c03214     URL    
[27]
Wang L, Liu Y J, He J, Hourwitz M J, Yang Y L, Fourkas J T, Han X J, Nie Z H. Small, 2015, 11(31): 3762.

doi: 10.1002/smll.201500527     pmid: 25925707
[28]
Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Chem. Soc. Rev., 2012, 41(11): 4356.

doi: 10.1039/c2cs35032g     URL    
[29]
Walther A, Müller A H E. Chem. Rev., 2013, 113(7): 5194.

doi: 10.1021/cr300089t     URL    
[30]
Deng S M, Xing Y, Zhou Y. Journal of Shanxi University(Natural Science Edition)), 2017, 40(03): 577.
(双少敏, 邢洋, 周影. 山西大学学报(自然科学版), 2017, 40(03): 577.)
[31]
Wang Y H. Chem. Bioeng., 2012, 29(10): 14.
(王宇航. 化学与生物工程, 2012, 29(10): 14.)
[32]
Xue W, Wu J H, Du Z P. China Surfactant Detergent & Cosmetics, 2019, 49(09): 614.
(薛伟, 武江红, 杜志平. 日用化学工业, 2019, 49(09): 614.)
[33]
Chen Y H, Wang C Y, Li Y, Tong Z. Prog. Chem., 2009, 21(4): 615.(in Chinese)
(陈云华, 王朝阳, 李煜, 童真. 化学进展, 2009, 21(4): 615.)
[34]
Marschelke C, Fery A, Synytska A. Colloid Polym. Sci., 2020, 298(7): 841.

doi: 10.1007/s00396-020-04601-y     URL    
[35]
Chen L, Zhang M J, Zhang S Y, Shi L, Yang Y M, Liu Z, Ju X J, Xie R, Wang W, Chu L Y. ACS Appl. Mater. Interfaces, 2020, 12(31): 35120.

doi: 10.1021/acsami.0c11283     URL    
[36]
Zhou Y Y, Shen F, Zhang S D, Zhao Q Q, Xu Z, Chen H L. ACS Appl. Mater. Interfaces, 2020, 12(26): 29876.
[37]
He X, Liu Q X, Xu Z H. J. Colloid Interface Sci., 2020, 568: 207.

doi: 10.1016/j.jcis.2020.02.019     URL    
[38]
Yoon B, Lee S, Kim J M. Chem. Soc. Rev., 2009, 38(7): 1958.

doi: 10.1039/b819539k     URL    
[39]
Lee K, Povlich L K, Kim J. Anal., 2010, 135(9): 2179.

doi: 10.1039/c0an00239a     URL    
[40]
Sun X M, Chen T, Huang S Q, Li L, Peng H S. Chem. Soc. Rev., 2010, 39(11): 4244.

doi: 10.1039/c001151g     URL    
[41]
Lee J, Kim J. Chem. Mater., 2012, 24(14): 2817.

doi: 10.1021/cm3015012     URL    
[42]
Kang D H, Jung H S, Ahn N, Yang S M, Seo S, Suh K Y, Chang P S, Jeon N L, Kim J, Kim K. ACS Appl. Mater. Interfaces, 2014, 6(13): 10631.

doi: 10.1021/am502319m     URL    
[43]
Chang Z M, Wang Z, Shao D, Yue J, Lu M M, Li L, Ge M F, Yang D, Li M Q, Yan H Z, Xu Q B, Dong W F. Sens. Actuat. B: Chem., 2018, 260: 1004.

doi: 10.1016/j.snb.2018.01.123     URL    
[44]
Llopis-Lorente A, Villalonga R, Marcos M D, Martínez-Máñez R, SancenÓn F. Chem. Eur. J., 2019, 25(14): 3575.

doi: 10.1002/chem.v25.14     URL    
[45]
Xu J, Chen R J, Jia L, Shen X K, Zhao T Q, Su L, Guo S L, Ma T L, Zhang B B, Guo Q, Ge Z J, Zhu T F. Appl. Surf. Sci., 2019, 484: 1.

doi: 10.1016/j.apsusc.2019.04.101     URL    
[46]
Xiong Y M, Li M M, Liu H Q, Xuan Z H, Yang J, Liu D B. Nanoscale, 2017, 9(5): 1811.

doi: 10.1039/C6NR07879F     URL    
[47]
Liu D B, Wang Z T, Jin A, Huang X L, Sun X L, Wang F, Yan Q, Ge S X, Xia N S, Niu G, Liu G, Hight Walker A R, Chen X Y. Angew. Chem. Int. Ed., 2013, 52(52): 14065.

doi: 10.1002/anie.201307952     URL    
[48]
Zheng F J, Ke W, Shi L X, Liu H, Zhao Y. Anal. Chem., 2019, 91(18): 11812.

doi: 10.1021/acs.analchem.9b02469     URL    
[49]
Sánchez A, Díez P, Martínez-Ruíz P, Villalonga R, PingarrÓn J M. Electrochem. Commun., 2013, 30: 51.

doi: 10.1016/j.elecom.2013.02.008     URL    
[50]
Boujakhrout A, Sánchez E, Díez P, Sánchez A, Martínez-Ruiz P, Parrado C, PingarrÓn J M, Villalonga R. ChemElectroChem, 2015, 2(11): 1735.

doi: 10.1002/celc.201500244     URL    
[51]
Yang Y J, Zhou Y, Xing Y, Zhang G M, Zhang Y, Zhang C H, Lei P, Dong C, Deng X, He Y J, Shuang S M. Talanta, 2019, 199: 310.

doi: S0039-9140(19)30150-X     pmid: 30952263
[52]
Wang D W, Li Z W, Zhou J, Fang H, He X, Jena P, Zeng J B, Wang W N. Nano Micro Lett., 2017, 10(1): 1.
[53]
Wang L, Hortelao A, Huang X, Sanchez S. Angew. Chem. Int. Ed., 2019, 58: 7992.

doi: 10.1002/anie.v58.24     URL    
[54]
Zhang Q L, Dong R F, Chang X Y, Ren B Y, Tong Z. ACS Appl. Mater. Interfaces, 2015, 7(44): 24585.

doi: 10.1021/acsami.5b06448     URL    
[55]
Wang L, MarcielloM, Gay M, Rodriguez P, Morato Y, Huang X, Osuna S, Sanchez S. Angew. Chem. Int. Ed., 2020,DOI: 10.1002/anie.202008339.

doi: 10.1002/anie.202008339    
[56]
Mou F Z, Chen C R, Ma H R, Yin Y X, Wu Q Z, Guan J G. Angew. Chem. Int. Ed., 2013, 52(28): 7208.

doi: 10.1002/anie.201300913     URL    
[57]
Gao W, Feng X M, Pei A, Gu Y, Li J X, Wang J. Nanoscale, 2013, 5(11): 4696.

doi: 10.1039/c3nr01458d     URL    
[58]
Gao W, Pei A, Wang J. ACS Nano, 2012, 6(9): 8432.

doi: 10.1021/nn303309z     URL    
[59]
Li J, Ji F, Ng D H L, Liu J, Bing X M, Wang P. Chem. Eng. J., 2019, 369: 611.

doi: 10.1016/j.cej.2019.03.101     URL    
[60]
Guix M, Meyer A K, Koch B, Schmidt O G. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8     URL    
[61]
Schattling P, Thingholm B, Stadler B. Chem. Mater., 2015, 27(21): 7412.

doi: 10.1021/acs.chemmater.5b03303     URL    
[62]
Ge Y, Liu M, Liu L M, Sun Y Y, Zhang H, Dong B. Nano Micro Lett., 2016, 8(2): 157.

doi: 10.1007/s40820-015-0071-3     URL    
[63]
Gao W, D'Agostino M, Garcia-Gradilla V, Orozco J, Wang J. Small, 2013, 9(3): 467.

doi: 10.1002/smll.201201864     URL    
[64]
Singh V V, Kaufmann K, Orozco J, Li J X, Galarnyk M, Arya G, Wang J. Chem. Commun., 2015, 51(56): 11190.

doi: 10.1039/C5CC04120A     URL    
[65]
Jurado-Sanchez B, Pacheco M, Rojo J, Escarpa A. Angew. Chem. Int. Ed., 2017, 56(24): 6957.

doi: 10.1002/anie.201701396     URL    
[66]
Pacheco M, Jurado-Sanchez B, Escarpa A. Anal. Chem., 2018, 90(4): 2912.

doi: 10.1021/acs.analchem.7b05209     pmid: 29376315
[67]
Yuan Y, Gao C Y, Wang D L, Zhou C, Zhu B H, He Q. Beilstein J. Nanotechnol., 2019, 10: 1324.

doi: 10.3762/bjnano.10.131     URL    
[68]
Jurado-Sanchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh V V, Orozco J, Galarnyk M, Wang J. Small, 2015, 11(4): 499.

doi: 10.1002/smll.201402215     pmid: 25207503
[69]
Rojas D, Jurado-Sanchez B, Escarpa A. Anal. Chem., 2016, 88(7): 4153.

doi: 10.1021/acs.analchem.6b00574     pmid: 26938969
[70]
Cinti S, Valdes-Ramirez G, Gao W, Li J X, Palleschi G, Wang J. Chem. Commun., 2015, 51(41): 8668.

doi: 10.1039/C5CC02222C     URL    
[71]
Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N. Angew. Chem. Int. Ed., 2012, 51(45): 11284.

doi: 10.1002/anie.201206227     URL    
[72]
Bouffier L, Zigah D, Adam C, Sentic M, Fattah Z, Manojlovic D, Kuhn A, Sojic N. ChemElectroChem, 2014, 1(1): 95.

doi: 10.1002/celc.201300042     URL    
[73]
Sentic M, Arbault S, Goudeau B, Manojlovic D, Kuhn A, Bouffier L, Sojic N. Chem. Commun., 2014, 50(71): 10202.

doi: 10.1039/C4CC04105D     URL    
[74]
Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh K M, Flechsig G U, Wang J. J. Am. Chem. Soc., 2009, 131(34): 12082.

doi: 10.1021/ja905142q     URL    
[75]
Zhang Q L, Dong R F, Wu Y F, Gao W, He Z H, Ren B Y. ACS Appl. Mater. Interfaces, 2017, 9(5): 4674.

doi: 10.1021/acsami.6b12081     URL    
[76]
Zhang D M, Wang D, Li J A, Xu X Y, Zhang H, Duan R M, Song B, Zhang D F, Dong B. J. Mater. Sci., 2019, 54(9): 7322.

doi: 10.1007/s10853-019-03390-2     URL    
[77]
Dey K K, Bhandari S, Bandyopadhyay D, Basu S, Chattopadhyay A. Small, 2013, 9(11): 1916.

doi: 10.1002/smll.v9.11     URL    
[78]
Dong R F, Li J X, Rozen I, Ezhilan B, Xu T L, Christianson C, Gao W, Saintillan D, Ren B Y, Wang J. Sci. Rep., 2015, 5(1): 1.
[79]
Ma X, Jannasch A, Albrecht U R, Hahn K, Miguel-LÓpez A, Schäffer E, Sánchez S. Nano Lett., 2015, 15(10): 7043.

doi: 10.1021/acs.nanolett.5b03100     URL    
[80]
Liu C H, Huang J R, Song Y C, Xu T L, Zhang X J. Scientia Sinica(Chimica), 2017, 47(01): 29.
(刘聪慧, 黄金荣, 宋永超, 许太林, 张学记. 中国科学:化学, 2017, 47(01): 29.)
[81]
Wang L, Song S D, Hest J, Abdelmohsen L K E A, Huang X, Sanchez S. Small, 2020, 16(27): 1907680.
[82]
Su P F, Wu H X, Chen Y M, Peng F. Prog. Chem., 2019, 31(1): 63.
(苏沛锋, 吴鸿鑫, 陈永明, 彭飞. 化学进展, 2019, 31(1): 63.)

doi: 10.7536/PC180407    
[83]
Maric T, Nasir M Z M, Rosli N F, Budanovic M, Webster R D, Cho N J, Pumera M. Adv. Funct. Mater., 2020, 30(19): 2000112.
[84]
Lin X Y, Zhu H, Zhao Z, You C Y, Kong Y, Zhao Y T, Liu J R, Chen H, Shi X J, Makarov D, Mei Y F. Adv. Mater. Technol., 2020, 5(8): 2000279.
[1] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[2] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[3] 张元霞, 鲍艳, 马建中. 两亲性Janus粒子的合成及其在Pickering乳液中的应用[J]. 化学进展, 2021, 33(2): 254-262.
[4] 苏沛锋, 吴鸿鑫, 陈永明, 彭飞. 微纳米马达在药物递送中的应用[J]. 化学进展, 2019, 31(1): 63-69.
[5] 周婉蓉, 孙巍*, 杨平辉. Janus粒子的制备及功能化应用[J]. 化学进展, 2018, 30(11): 1601-1614.
[6] 杨正龙, 徐晓黎, 赵宇馨. 硫醇-烯/炔点击化学制备有机/无机杂化材料[J]. 化学进展, 2014, 26(06): 996-1004.
[7] 郭风, 朱桂茹, 高从堦. 有机-无机杂化介孔二氧化硅在环境保护中的应用[J]. 化学进展, 2011, 23(6): 1237-1250.
[8] 易成林, 杨逸群, 江金强, 刘晓亚, 江明. 颗粒乳化剂的研究及应用[J]. 化学进展, 2011, 23(01): 65-79.
[9] 陈云华,王朝阳,李煜,童真. Janus粒子制备研究*[J]. 化学进展, 2009, 21(04): 615-621.
[10] 明伟华,府寿宽. 对应于绿色环境保护的涂料发展动向[J]. 化学进展, 1998, 10(02): 194-.