English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 63-69 DOI: 10.7536/PC180407 前一篇   后一篇

• 综述 •

微纳米马达在药物递送中的应用

苏沛锋, 吴鸿鑫, 陈永明, 彭飞*()   

  1. 中山大学材料科学与工程学院 聚合物复合材料及功能材料教育部重点实验室 广州 510275
  • 收稿日期:2018-04-04 修回日期:2018-12-07 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 彭飞
  • 基金资助:
    中山大学“百人计划”引进人才项目(29000-18831106); 广东省引进创新创业团队项目资助(2013S086)

Micro/Nanomotors as Drug Delivery Agent

Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng*()   

  1. School of Materials Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2018-04-04 Revised:2018-12-07 Online:2019-01-15 Published:2018-12-07
  • Contact: Fei Peng
  • About author:
    ** Corresponding author e-mail:
    † These authors contributed equally to this work
  • Supported by:
    This work was supported by the Sun Yat-sen University Hundred Talents Plan(29000-18831106); The Guangdong Innovative and Entrepreneurial Research Team Program(2013S086)

受到自然界中高效生物马达的启发,研究人员提出了人工微纳米马达的概念,即人工微纳米动力装置。目前,通过结合化学与其他交叉学科的先进技术,研究人员已制备出具有不同结构、驱动方式以及控制方式的人工微纳米马达。这些微纳米马达在传感、环境治理、生物医用等方面展现出广阔的应用前景。其中,药物递送是生物医用领域的重要方向。在这一方面,利用微纳米马达可以实现药物的有效递送,给癌症等疾病的治疗带来新的可能。本文将针对用于药物递送的微纳米马达的驱动机理、基本结构、运动控制这几个方面进行综述,首先介绍了马达的运动机理,其驱动机理可分为自场驱动和外场驱动;其次,分别介绍了可用于药物递送的微纳米马达的结构,主要包括聚合物囊泡、空心管、纳米线等;为了实现精准有效的药物递送,微纳米马达的可控运动非常重要,本文将具体阐述微纳米马达的开-关控制、方向控制和速度控制。最后,分析了药物递送微纳米马达的研究现状,并对本领域的未来方向进行了展望。

Inspired by the highly efficient biological motors in nature, researchers proposed the concept of micro/nanomotors, or micro/nanoscale autonomously moving devices. Combining the technology of chemistry, physics and multidisciplines, various micro/nanomotors of different structures, motion mechanisms and control methods are fabricated. These micro/nanomotors demonstrate great promises in multiple fields including sensing, environment remediation, biomedicine, etc. One of the most important applications in biomedicine is drug delivery. The micro/nanomotors can achieve efficient drug delivery, shedding new light for conventional cancer therapy. In this review, we focus on micro/nanomotors for drug delivery and introduce their structures, mechanisms and control methods. The motion mechanisms(self field mechanism and external field mechanism) of micro/nanomotors will be covered. Motor structures(polymer vesicle, tube and nanowire) suitable for drug delivery will be introduced. For efficient targeted drug delivery, motion control is very important. The on-off control, direction control and velocity control will be discussed. Current bottlenecks are also summarized and possible future direction of the field is discussed.

()
图1 微纳米马达的驱动机理总结图
Fig.1 The motion mechanism of micro/nanomotors
图2 (a)PEG44-b-PS141纳米囊泡马达系统示意图[9];(b)包裹有多种生物酶的囊泡状纳米马达示意图[30];(c)纳米管状马达不同的运动轨道示意图[31];(d)具有超高比表面积的多孔金纳米线马达[32]
Fig.2 (a)Schematic representation of a light-guided nanomotor system using PEG44-b-PS141/naphthalocyanine(NC) and Pt nanoparticles(Pt-NPs)[9]. Copyright 2018, American Chemical Society; (b) Schematic representation of the assembly of the nanomotor with multiple enzymes entrapped inside the structure[30]. Copyright 2016, American Chemical Society; (c) Schematic of different nanotubes’ trajectories[31]. Copyright 2012, American Chemical Society; (d) Nanowire motors based on nanoporous gold segment[32]. Copyright 2014, John Wiley and Sons
图3 (a)Ag/Ni纳米线马达在磁场控制下向癌细胞递送药物过程示意图[36];(b)在电场作用下,Ni/Al/EGaIn马达运动方向可控[7]
Fig.3 (a)The drug delivery of Ag/Ni nanomotors towards cancer cells under magnetic field[36]. Copyright 2012, John Wiley and Sons; (b)The direction control of Ni/Al/EGaIn motor with an electrical field[7]. Copyright 2016, Royal Society of Chemistry
[1]
Orozco J, Garcia-Gradilla V, D’Agostino M, Gao W, Cortés A, Wang J . ACS Nano, 2013,7:818.
[2]
Zhang W . J. Nanopart. Res., 2003,5:323.
[3]
Ariga K, Ishihara S, Abe H, Li M, Hill J P . J. Mater. Chem., 2012,22:2369.
[4]
Orozco J, Cortés A, Cheng G, Sattayasamitsathit S, Gao W, Feng X, Shen Y, Wang J . J. Am. Chem. Soc., 2013,135:5336.
[5]
Liu C, Huang J, Song Y, Xu T, Zhang X . Sci. Sin. Chim., 2017,47:29.
[6]
Wilson D A, Nolte R J M, van Hest J C M . Nat. Chem., 2012,4:268.
[7]
Zhang J, Guo R, Liu J . J. Mater. Chem. B, 2016,4:5349.
[8]
Wu Z, Wu Y, He W, Lin X, Sun J, He Q . Angew. Chem. Int. Ed., 2013,52:7000.
[9]
Choi H, Lee G, Kim K S, Hahn S K . ACS Appl.Mater.Interfaces, 2018,10:2338.
[10]
Kuralay F, Sattayasamitsathit S, Gao W, Uygun A, Katzenberg A, Wang J . J. Am. Chem. Soc., 2012,134:15217.
[11]
Li Y, Mou F Z, Chen C R, You M, Yin Y X, Xu L L, Guan J G . RSC Adv., 2016,6:10697.
[12]
Wu Z G, Li J X, de Avila B E, Li T, Gao W, He Q, Zhang L, Wang J . Adv. Funct. Mater., 2015,25:7497.
[13]
Pavlick R A, Sengupta S, McFadden T, Zhang H, Sen A . Angew. Chem. Int. Ed., 2011,50:9374.
[14]
Wang W, Duan W T, Sen A, Mallouk T E . Proc. Natl. Acad. Sci. U. S.A., 2013,110:17744.
[15]
Zhao G J, Pumera M . Chem. Asia. J., 2012,7:1994.
[16]
Bassik N, Abebe B T, Gracias D H . Langmuir, 2008,24:12158.
[17]
Sharma R, Chang S T, Velev O D . Langmuir, 2012,28:10128.
[18]
Toyota T, Maru N, Hanczyc M M, Ikegami T, Sugawara T . J. Am. Chem. Soc., 2009,131:5012.
[19]
Wu Z G, Si T Y, Gao W, Lin X K, Wang J, He Q . Small, 2016,12:577.
[20]
Dong R, Zhang Q, Gao W, Pei A, Ren B . ACS Nano, 2016,10:839.
[21]
Yoshizumi Y, Honegger T, Berton K, Suzuki H, Peyrade D . Small, 2015,11:5630.
[22]
Wu Y J, Lin X K, Wu Z G, Möhwald H, He Q. . ACS Appl Mater.Interfaces, 2014,6:10476.
[23]
Zhao G J, Pumera M . Langmuir, 2013,29:7411.
[24]
Xu T L, Soto F, Gao W, Garcia-Gradilla V, Li J X, Zhang X J, Wang J . J. Am. Chem. Soc., 2014,136:8552.
[25]
Wang W, Duan W T, Zhang Z X, Sun M, Sen A, Mallouk T E . Chem. Commun., 2015,51:1020.
[26]
Xiong D A, An Y L, Li Z, Ma R J, Liu Y, Wu C L, Zou L, Shi L Q, Zhang J H . Macromol. Rapid. Commun., 2008,29:1895.
[27]
Peng F, Tu Y, van Hest J C M, Wilson D A . Angew. Chem., 2015,127:11828.
[28]
Tu Y, Peng F, Andre A A M, Men Y, Srinivas M, Wilson D A . ACS Nano, 2017,11:1957.
[29]
Hocine S, Cui D, Rager M N, Di Cicco A, Liu J M, Bakala J W, Brûlet A, Li M H . Langmuir, 2013,29:1356.
[30]
Abdelmohsen L K E A, Nijemeisland M, Pawar G M, Janssen G A, Nolte R J M, van Hest J C M, Wilson D A . ACS Nano, 2016,10:2652.
[31]
Solovev A A, Xi W, Gracias D H, Harazim S M, Deneke C, Sanchez S, Schmidt O G . ACS Nano, 2012,6:1751.
[32]
Garcia-Gradilla V, Sattayasamitsathit S, Soto F, Kuralay F, Yardımcı C, Wiitala D, Galarnyk M, Wang J . Small, 2014,10:4154.
[33]
Ahmed S, Wang W, Mair L O, Fraleigh R D, Li S, Castro L A, Hoyos M, Huang T J, Mallouk T E . Langmuir, 2013,29:16113.
[34]
Sundararajan S, Lammert P E, Zudans A W, Crespi V H, Sen A . Nano Lett., 2008,8:1271.
[35]
Chen C, Mou F, Xu L, Wang S, Guan J, Feng Z, Wang Q, Kong L, Li W, Wang J, Zhang Q . Adv.Mater, 2017,29:1603374.
[36]
Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton E E, Zhang L, Lauga E, Wang J . Small, 2012,8:460.
[37]
Balasubramanian S, Kagan D, Manesh K M, Calvo-Marzal P, Flechsig G U, Wang J . Small, 2009,5:1569.
[1] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[2] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[3] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[4] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[5] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[6] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[7] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
[8] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[9] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[10] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[11] 李子程, 李攻科*, 胡玉玲*. 刺激响应聚合物在生物医药中的应用[J]. 化学进展, 2017, 29(12): 1480-1487.
[12] 王欢, 商珞然, 顾笑晓, 戎非, 赵远锦. 编码微载体的制备及其生物医学应用[J]. 化学进展, 2017, 29(10): 1159-1172.
阅读次数
全文


摘要

微纳米马达在药物递送中的应用