English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 996-1004 DOI: 10.7536/PC131231 前一篇   后一篇

• 综述与评论 •

硫醇-烯/炔点击化学制备有机/无机杂化材料

杨正龙*, 徐晓黎, 赵宇馨   

  1. 同济大学材料科学与工程学院 先进土木工程材料教育部重点实验室 上海 200092
  • 收稿日期:2013-12-01 修回日期:2014-01-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 杨正龙 E-mail:yangzhenglong@tongji.edu.cn
  • 基金资助:

    国家高技术研究发展计划(863)项目(No. 2012AA030303)、中央高校基本科研业务费专项资金(同济大学)(No.0500219145)、同济大学大型仪器设备开放测试基金项目(No.2012014)和上海市科委基础研究重点项目(No.12JC1408600)资助

Synthesis of Organic/Inorganic Hybrid Materials via Thiol-Ene/Yne Click Chemistry

Yang Zhenglong*, Xu Xiaoli, Zhao Yuxin   

  1. School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2013-12-01 Revised:2014-01-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the National High Technology Research and Development Program of China (863 Program,No. 2012AA030303), the Fundamental Research Funds for the Central Universities (Tongji University) (No. 0500219145), the Large Scale Equipment and Instruments in Tongji University Open Test Fund (No. 2012014), and the Key Basic Research Project of Shanghai Science and Technology Commission (No. 12JC1408600)

有机/无机杂化材料因其独特、优异的结构和性能已经成为目前材料领域的研究热点,硫醇-烯/炔点击化学是近年发展起来的一类新型点击化学,以其反应条件温和、速率快、产率高、产物容易分离以及高度选择性等优点受到国内外研究者的广泛关注。本文综述了近年来硫醇-烯/炔点击化学制备有机/无机杂化材料的研究进展,重点介绍了利用硫醇-烯/炔点击化学制备硅类、碳类、金属及金属氧化物类有机/无机杂化材料,并归纳了这些有机/无机杂化材料在生物医用、环境保护、光电材料等方面的应用,最后展望了硫醇-烯/炔点击化学制备有机/无机杂化材料未来的发展方向。

During last several decades, organic/inorganic hybrid materials have been used widely in many fields due to their excellent structure and performance. Thiol-ene/yne click chemistry, a new type of click chemistry, is of great interest because of its mild reaction conditions, fast reaction rate, high yield, easy post-treatment and high selectivity for the obtained products. Therefore, synthesis of high-performance organic/inorganic hybrid materials via thiol-ene/yne click chemistry is one of the hot topics of novel material research. In this review, the recent research progress of organic/inorganic hybrid materials synthesized by thiol-ene/yne click chemistry is discussed. Synthesis of silicon-, carbon-, metal- and metal oxide-based organic/inorganic hybrid materials via thiol-ene/yne click chemistry is highlighted. In addition, the applications of these hybrid materials in the fields of biomedical materials, environment protection and photoelectric materials are summarized. Finally, the development trend and future prospects of organic/inorganic hybrid materials synthesized by thiol-ene/yne click chemistry are presented.

Contents
1 Introduction
2 Organic/inorganic hybrid materials synthesized by thiol-ene/yne click chemistry
2.1 Synthesis of silicon-based organic/inorganic hybrid materials
2.2 Synthesis of carbon-based organic/inorganic hybrid materials
2.3 Synthesis of metal- and metal oxide-based organic/inorganic hybrid materials
3 Application of organic/inorganic hybrid materials synthesized by thiol-ene/yne click chemistry
3.1 Biomedical materials
3.2 Environmental protection
3.3 Photoelectric materials
3.4 Other application
4 Conclusions and outlook

中图分类号: 

()

[1] 刘华蓉(Liu H R), 葛学武(Ge X W), 倪永红(Ni Y H), 叶强(Ye Q), 张广祥(Zhang G X), 张志成(Zhang Z C), 张曼维(Zhang M W). 化学进展(Progress in Chemistry), 2001, 13(5): 403.
[2] Masarudin M J, Yusoff K, Rahim R A, Hussein M Z. Nanotechnology, 2009, 20(4): 045602.
[3] Wu J, Mather P T. Polym. Rev., 2009, 49(1): 25.
[4] Filion T M, Xu J W, Prasad M L, Song J. Biomaterials, 2011, 32(4): 985.
[5] Di Noto V, Piga M, Lavina S, Negro E, Yoshida K, Ito R, Furukawa T. Electrochim. Acta, 2010, 55(4): 1431.
[6] Di Noto V, Piga M, Piga L, Polizzi S, Negro E. J. Power Sources, 2008, 178(2): 561.
[7] Zhang Y W, Ye Z B. Macromolecules, 2008, 41(17): 6331.
[8] Monticelli O, Cavallo D, Bocchini S, Frache A, Carniato F, Tonelotto A. J. Polym. Sci. Part A: Polym. Chem., 2011, 49(22): 4794.
[9] Carlos L D, Ferreira R A S, Bermudez V D, Ribeiro S J L. Adv. Mater., 2009, 21(5): 509.
[10] 浦鸿汀(Pu H T), 秦深(Qin S), 杨正龙(Yang Z L), 袁俊杰(Yuan J J), 万德成(Wan D C). 功能材料(Journal of Functional Materials), 2007, 38(9): 1499.
[11] Tanaka K, Inafuku K, Chujo Y. Chem. Commun., 2010, 46(24): 4378.
[12] Tran-Thi T H, Dagnelie R, Crunairez S, Nicole L. Chem. Soc. Rev., 2011, 40(2): 621.
[13] Wolfbeis O S. J. Mater. Chem., 2005, 15(27/28): 2657.
[14] Zuo X, Yu S, Xu X, Bao R, Xu J, Qu W. J. Membrane Sci., 2009, 328(1/2): 23.
[15] Vaysse C, Guerlou-Demourgues L, Duguet E, Delmas C. Inorg. Chem., 2003, 42(15): 4559.
[16] Yeh J M, Liou S J, Lai M C, Chang Y W, Huang C Y, Chen C P, Jaw J H, Tsai T Y, Yu Y H. J. Appl. Polym. Sci., 2004, 94(5): 1936.
[17] Park N G, Ryu K S, Park Y J, Kang M G, Kim D K, Kang S G, Kim K M, Chang S H. J. Power Sources, 2002, 103(2): 273.
[18] Vaysse C, Guerlou-Demourgues L, Delmas C, Duguet E. Macromolecules, 2004, 37(1): 45.
[19] Jurmanovic S, Kordic S, Steinberg M D, Steinberg I M. Thin Solid Films, 2010, 518(8): 2234.
[20] Valliant E M, Jones J R. Soft Matter, 2011, 7(11): 5083.
[21] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Edit., 2001, 40(11): 2004.
[22] Hoyle C E, Lee T Y, Roper T. J. Polym. Sci. Part A: Polym. Chem., 2004, 42(21): 5301.
[23] Fairbanks B D, Scott T F, Kloxin C J, Anseth K S, Bowman C N. Macromolecules, 2009, 42(1): 211.
[24] Bhairamadgi N S, Gangarapu S, Campos M A C, Paulusse J M J, van Rijn C J M, Zuilhof H. Langmuir, 2013, 29(14): 4535.
[25] Harant A W, Khire V S, Thibodaux M S, Bowman C N. Macromolecules, 2006, 39(4): 1461.
[26] Jia X Y, Jiang X S, Liu R, Yin J. Polymer, 2010, 51(20): 4511.
[27] Schulz C, Nowak S, Frohlich R, Ravoo B J. Small, 2012, 8(4): 569.
[28] Li G L, Wan D, Neoh K G, Kang E T. Macromolecules, 2010, 43(24): 10275.
[29] Li G L, Xu L Q, Tang X Z, Neoh K G, Kang E T. Macromolecules, 2010, 43(13): 5797.
[30] Hata E, Mitsube K, Momose K, Tomita Y. Opt. Mater. Express, 2011, 1(2): 207.
[31] Li Y, Dong X H, Guo K, Wang Z, Chen Z, Wesdemiotis C, Quirk R P, Zhang W B, Cheng S Z. ACS Macro Lett., 2012, 1(7): 834.
[32] Gao Y, Eguchi A, Kakehi K, Lee Y C. Org. Lett., 2004, 6(20): 3457.
[33] Lo Conte M, Staderini S, Chambery A, Berthet N, Dumy P, Renaudet O, Marra A, Dondoni A. Org. Biomol. Chem., 2012, 10(16): 3269.
[34] Liu D D, Yu B, Jiang X S, Yin J. Langmuir, 2013, 29(17): 5307.
[35] Iehl J, Nierengarten J F. Chem. Commun., 2010, 46(23): 4160.
[36] Iskin B, Yilmaz G, Yagci Y. Chem. Eur. J., 2012, 18(33): 10254.
[37] Yang Z L, Pu H T, Yuan J J, Wan D C, Liu Y S. Chem. Phys. Lett., 2008, 465(1/3): 73.
[38] Temel G, Uygun M, Arsu N. Polym. Bull., 2013, 70(12): 3563.
[39] Prichard T D, Singh S S, Chawla N, Vogt B D. Polymer, 2013, 54(3): 1130.
[40] Yang Z L, Shi X J, Yuan J J, Pu H T, Liu Y S. Appl. Surf. Sci., 2010, 257(1): 138.
[41] Salavagione H J, Gomez M A, Martinez G. Macromolecules, 2009, 42(17): 6331.
[42] Luo J, Jiang S S, Liu R, Zhang Y J, Liu X Y. Electrochim. Acta, 2013, 96: 103.
[43] Castelaín M, Martínez G, Ellis G, Salavagione H J. Chem. Commun., 2013, 49(79): 8967.
[44] Castelaín M, Martínez G, Marco C, Ellis G, Salavagione H J. Macromolecules, 2013, 46(22): 8980.
[45] Van Berkel K Y, Hawker C J. J.Polym. Sci. Part A: Polym. Chem., 2010, 48(7): 1594.
[46] Li G L, Xu L Q, Neoh K G, Kang E T. Macromolecules, 2011, 44(7): 2365.
[47] Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T. Chem. Mater., 2010, 22(12): 3768.
[48] Rutledge R D, Warner C L, Pittman J W, Addleman R S, Engelhard M, Chouyyok W, Warner M G. Langmuir, 2010, 26(14): 12285.
[49] Faccini F, Fric H, Schubert U, Wendel E, Tsetsgee O, Muller K, Bertagnolli H, Venzo A, Gross S. J. Mater. Chem., 2007, 17(31): 3297.
[50] Sangermano M, Gross S, Priola A, Rizza G, Sada C. Macromol. Chem. Phys., 2007, 208(23): 2560.
[51] Chen Y, Wu M, Wang K, Chen B, Yao S, Zou H, Nie L. J. Chromatogr. A, 2011, 1218(44): 7982.
[52] Wu J T, Huang C H, Liang W C, Wu Y L, Yu J S, Chen H Y. Macromol. Rapid. Comm., 2012, 33(10): 922.
[53] Oberleitner B, Dellinger A, Deforet M, Galtayries A, Castanet A S, Semetey V. Chem. Commun., 2013, 49(16): 1615.
[54] Escorihuela J, Banuls M J, Puchades R, Maquieira A. Chem. Commun., 2012, 48(15): 2116.
[55] Mai T B, Tran T N, Islam M R, Park J M, Lim K T. J. Mater. Sci., 2013, 48(19): 1.
[56] He H B, Li B, Dong J P, Lei Y Y, Wang T L, Yu Q W, Feng Y Q, Sun Y B. ACS Appl. Mater. Interfaces, 2013, 5(16): 8058.
[57] Luo A F, Jiang X S, Lin H, Yin J. J. Mater. Chem., 2011, 21(34): 12753.
[58] Matsukawa K, Fukuda T, Watase S, Goda H. J. Photopolym. Sci. Technol., 2010, 23(1): 115.
[59] Chen Y Z, Wang K Y, Yang H H, Liu Y X, Yao S Z, Chen B, Nie L H, Xu G M. J. Chromatogr. A, 2012, 1233: 91.
[60] Yang H H, Chen Y Z, Liu Y X, Nie L H, Yao S Z. Electrophoresis, 2013, 34(4): 510.

[1] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[2] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[3] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[4] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[5] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[6] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[7] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[8] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[9] 王灯旭, 曹金风, 韩栋栋, 李文思, 冯圣玉. 有机硅合成新方法[J]. 化学进展, 2019, 31(1): 110-120.
[10] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[11] 史丹丹, 张西沙, 张德清. 含有七元碳环的有机共轭分子在光电材料中的应用[J]. 化学进展, 2018, 30(5): 658-672.
[12] 杜瑾, 廖睿, 张幸林, 孙会彬, 黄维. 电致荧光变色材料的主要分类及变色机理[J]. 化学进展, 2018, 30(2/3): 286-294.
[13] 刘森阳, 彭了, 袁金颖, 朱晓夏. 基于胆汁酸的刺激响应聚合物[J]. 化学进展, 2016, 28(8): 1121-1130.
[14] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[15] 代林林, 李伟, 曹军, 李坚, 刘守新. 纳米晶纤维素手性向列型液晶相结构的形成、调控及应用[J]. 化学进展, 2015, 27(7): 861-869.