English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1693-1705 DOI: 10.7536/PC200918 前一篇   后一篇

所属专题: 金属有机框架材料

• 综述 •

金属有机化合物框架材料衍生M-N/C类氧还原电催化剂

余思妍, 郑龙, 孟鹏飞, 史修东, 廖世军*()   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2020-09-07 修回日期:2020-10-22 出版日期:2021-10-20 发布日期:2020-12-22
  • 通讯作者: 廖世军
  • 基金资助:
    国家重点研发计划项目(2017YFB0102900); 国家重点研发计划项目(2016YFB0101201); 国家自然科学基金项目(51971094); 国家自然科学基金项目(21476088); 国家自然科学基金项目(21776104); 广东省科学技术厅(2015A030312007)

M-N/C Electrocatalysts Derived from MOFs for Oxygen Reduction Reaction

Siyan Yu, Long Zheng, Pengfei Meng, Xiudong Shi, Shijun Liao()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, China
  • Received:2020-09-07 Revised:2020-10-22 Online:2021-10-20 Published:2020-12-22
  • Contact: Shijun Liao
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(51971094); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015A030312007)

过渡金属及氮共掺杂的碳基催化剂(M-N/C)由于具有几乎可以媲美铂的氧还原活性,已成为最为重要的一类非贵金属催化剂,被誉为最有可能在未来应用于燃料电池的一类非贵金属催化剂。金属有机化合物框架材料(MOFs)作为一种新型的结构规整的多孔材料,具有高孔隙度和形貌尺寸可控等特点,成为制备各种高性能掺杂碳基催化剂的良好前驱体,与过渡金属、氮和碳源的复合前驱体相比,以其为原料制得的衍生M-N/C催化剂往往表现出更优越的结构与性能,具备更好的应用前景,相关研究已成为燃料电池电催化领域的热点研究课题。本文系统地介绍了近年来国内外以MOFs为前驱体制备M-N/C催化剂的相关研究工作,包括:MOFs 衍生碳催化剂的制备技术,提升MOFs衍生碳催化剂结构及性能的研究以及这类催化剂表征技术的研究工作。总结和讨论了MOFs衍生M-N/C催化剂尚存的若干重要问题并提出了解决问题的可能举措,对这类催化剂的发展及应用进行了展望。

Benefiting from its high oxygen reduction activity comparable with platinum catalyst, the transition metal and nitrogen co-doped carbon catalyst(M-N/C) has become one of the most important non-noble metal catalysts, and it is recognized as the most promising non-noble metal catalyst, as substitute of precious platinum catalyst, in proton exchange membrane fuel cells in the future. Metal organic frameworks(MOFs), a new class of crystalline porous materials with regular porous structure, high porosity, controllable morphology and size, and tunable ligands, have been regarded as perfect precursors for preparing various high-performance doped carbon catalysts. The catalysts derived from MOF often show superior structure and performance compared with those derived from conventional precursors, making them more prospective for applying in the fuel cells. Actually, it has become one of the most attractive topics to prepare M-N/C catalysts with MOFs as precursors in recent years. In this paper, we systematically introduce the research works on MOFs derived M-N/C catalysts at home and abroad in recent years, including the preparation technologies of MOF derived M-N/C catalysts, the strategies of improving the structure and performance of MOF derived carbon catalysts, as well as the research progress on the characterization technologies of such catalysts. Finally, we indicate the problems and challenges existed in MOF derived M-N/C catalysts, propose possible strategies/measures to solve the problems. The development and application of this type of new catalysts are also prospected.

Contents

1 Introduction

2 General synthesis methods of MOFs materials

3 Progress of MOFs derived carbon catalysts

3.1 Characteristics of MOFs derived carbon catalysts

3.2 General synthetic approach

3.3 Progress of preparation technology of MOFs derived carbon catalyst

4 Studies on improving structure and performance of MOFs derived carbon catalysts

4.1 Regulating the composition of MOFs

4.2 Maintaining the morphology of MOFs-derived carbon

4.3 In-situ growth of MOFs on the substrate

4.4 Pore structure control

4.5 Studies on durability improvement

5 Progress in characterization technology

6 Conclusion and outlook

()
图1 ZIF系列的单晶X射线结构[37]
Fig. 1 The single crystal X-ray structures of ZIFs[37]
图2 (a)Fe掺杂ZIF衍生的催化剂的合成示意图;(b)粒径在20~1000 nm的Fe-ZIF催化剂。(c, d)具有最佳性能的Fe掺杂ZIF催化剂(50 nm)的HAADF-STEM图像和EELS分析(如插图d所示)[69]
Fig. 2 (a)Synthesis principles of Fe-doped ZIF-derived catalysts.(b)Accurately controlled sizes of the Fe-ZIF catalysts from 20 to 1000 nm.(c, d)HAADF-STEM images of the best per-forming Fe-doped ZIF catalyst (50 nm)and EELS analysis (the inset of d)[69]
图3 (a)Fe-ISAs/CN的合成示意图;(b)TEM,(c)HAADF-STEM图像,根据元素分布,黄色为Fe,红色为C,橙色为N;(d),(e)Fe-ISAs/CN的HAADF-STEM图像和放大图像,红圈中亮点即为单个Fe原子[72]
Fig. 3 (a)Schematic illustration of the formation of Fe-ISAs/CN, (b)TEM, (c)HAADF-STEM image, corresponding element maps showing the distributionof Fe (yellow), C (red), and N (orange), (d),(e)HAADF-STEM images and enlarged images of the Fe-ISAs/CN. Single Fe atoms highlighted by red circles[72]
图4 (a)催化剂的合成示意图;(b)FePc-20@ZIF-8复合材料的TEM图像;Fe SAs-N/C-20催化剂的(c)HRTEM和(d)HAADF-STEM图像;Fe SAs-N/C-20及其参考样品的(e)Fe K-edge的XANES光谱(插图为放大谱图)和(f)傅里叶变换k3加权EXAFS光谱;(g)Fe SAs-N/C-20相应的FT-EXAFS拟合曲线[73]
Fig. 4 (a)Schematic illustration. (b)TEM image of FePc-20@ZIF-8 composite. (c)HRTEM, (d)HAADF-STEM of Fe SAs-N/C- 20 catalyst. (e)Fe K-edge XANES (inset is the magnifified image)and (f)FT k3-weighted EXAFS spectra of Fe SAs-N/C-20 and the reference samples. (g)Corre-sponding FT-EXAFS fifitting curves of Fe SAs-N/C-20[73]
图5 (a)K3[Fe(CN)6]溶液的紫外-可见吸收强度的变化和{K2Fe(CN)6}-转化为Cd-TTPBA-4的图像;(b)不同浓度(1: 2.5×10-4 mol·L-1, 2: 5×10-4 mol·L-1, 3: 7.5×10-4 mol·L-1 和 4: 10-3 mol·L-1)的交换后K3Fe(CN)6溶液的紫外-可见光谱和其在302 nm处的校准曲线;(c)Fe/N/C-1000-2的HAADF-STEM图像;(d和e)Fe/N/C-1000-2的Fe、N、C和O原子的相应的元素映射图像以及HAADF-STEM图像[74]
Fig. 5 (a)UV-Vis spectra change in K3[Fe(CN)6] solution and photographs showing the exchange of {K2Fe(CN)6}- into Cd-TTPBA-4.(b)The UV spectrum of post-exchange K3Fe(CN)6 solution at different concentrations (1: 2.5×10-4 mol·L-1, 2: 5×10-4 mol·L-1, 3: 7.5×10-4 mol·L-1, and 4: 10-3 mol·L-1)and the calibration graph of K3Fe(CN)6 solution at 302 nm.(c)The HAADF-STEM image of Fe/N/C-1000-2. (d and e)The HAADF-STEM image and the corresponding elemental mappings of Fe, N, C, and O atoms for Fe/N/C-1000-2[74]
图6 混合配体策略合成FeSA-N-C催化剂示意图[23]
Fig. 6 Schematic illustration of FeSA-N-C catalyst synthesized via a mixed-ligand strategy[23]
图7 (a)u-碳的HIM图像。插图中显示了更高的放大倍数下的HIM图像(顶部)和TEM图像(底部);(b~d)Co@C(b)、Fe@C(c)和CoFe@C(d)的SEM图像;(e~g)Co@C(e)、Fe@C(f)和CoFe@C(g)横截面的HIM图像;(h~m)Co@C(h, k)、Fe@C(i, l)和CoFe@C(j, m)的TEM图像[25]
Fig. 7 (a)HIM images of u-carbon. Insets show HIM image with-higher magnification (top)and TEM image (bottom). (b~d)SEM images of Co@C(b), Fe@C(c), and CoFe@C(d). (e~g)HIM images of cross section in Co@C(e), Fe@C(f), and CoFe@C(g). (h~m)TEM images of Co@C(h, k), Fe@C(i, l), and CoFe@C(j, m)[25]
图8 Co,N-HCNP电催化剂的合成示意图[92]
Fig. 8 Schematic illustration of Co, N-HCNP electrocatalyst[92]
图9 (a,b)前驱体Fe/N/S@UIO-66-NH2和催化剂Fe/N/S-PC的SEM图;(c)Fe/N/S-PC的TEM图;(d)Fe/N/S-PC的HAAD-STEM图;(e,f)Fe/N/S-PC中碳、氮、硫、铁的元素分布图[77]
Fig. 9 (a,b)SEM images of the precursor Fe/N/S@UIO-66-NH2 and the Fe/N/S-PC catalyst; (c)TEM image of Fe/N/S-PC; (d)HAAD-STEM image of Fe/N/S-PC; (e,f)carbon, nitrogen, iron, and sulfur EDS mapping of Fe/N/S-PC over the area in (c)[77]
图10 ZIF-8衍生的具有中微孔分级结构的氮掺杂碳化剂的形成示意图[103]
Fig. 10 Schematic illustration of the formation of nitrogen-doped carbon from ZIF-8 with a meso-microporous hierarchical structure[103]
图11 (a)FeN4/HOPC-c-1000的合成示意图;(b)从不同方向观察的OMS-Fe-ZIF-8模型;从不同方向观察的(c)OMS-Fe-ZIF-8和 (d)FeN4/HOPC-c-1000的SEM图像;(e)破碎的OMS-Fe-ZIF-8的SEM图像和内部结构的细节;(f)破碎的FeN4/HOPC-c-1000的SEM图像和内部结构的细节[104]
Fig. 11 (a)Schematic illustration of the synthesis of FeN4/HOPC-c-1000. (b)Models of OMS-Fe-ZIF-8 viewed from different directions. (c)SEM images of OMS-Fe-ZIF-8 and (d)FeN4/HOPC-c-1000 taken from different directions. (e)SEM images of one selected broken OMS-Fe-ZIF-8 and details of the internal structure. (f)SEM images of one selected broken FeN4/HOPC-c-1000 and details of the internal structure[104]
表1 MOF衍生M-N/C催化剂电化学性能汇总
Table 1 Summary of electrochemical performance of M-N/C Electrocatalysts Derived from MOFs
Catalysts MOFs SBET
(m2·g-1)
Catalysts loading
(mg·cm-2)
Electrolyte Eoneset
vs RHE
E1/2
vs RHE
ref
Fe@NMC-1 ZIF-8 793.3 0.204 0.1 M KOH 1.01 V 0.88 V 22
FeSA-N-C Fex-PCN-222 532 0.28 0.1 M KOH 1.00 V 0.89 V 23
3D-Fe-PNC ZIF-8@Fe-PBA 794.3 0.4 0.1 M KOH 1.02 V 0.91 V 24
CoFe@C MET-6 950 0.408 0.1 M KOH 0.98 V 0.89 V 25
Fe,N-HPCC Fe,Zn-ZIF 817 0.788 0.1 M KOH 0.972 V 0.898 V 26
1 activated at 750 ℃ Co(Im)2 264 0.6 0.1 M HClO4 0.83 V - 54
Fe/N-PCNs Zn/Fe-MOF 864 ~0.5 0.1 M KOH 0.96 V 0.86 V 65
C-FeHZ8@g-C3N4-950 ZIF-8 754 0.5 0.1 M KOH 0.97 V 0.845 V 66
Fe-ZIF(50 nm) Zn,Fe-ZIF 614 0.06 0.5 M H2SO4 - 0.85 V 69
C-AFC©ZIF-8 ZIF-8 705 0.622 0.1 M HClO4 - 0.747 V 70
Fe-N/C-155 ZIF-8 849 0.245 0.1 M KOH 1.09 V 0.85 V 71
Fe-ISAs/CN ZIF-8 - 0.408 0.1 M KOH 0.986 V 0.9 V 72
Fe SAs-N/C-20 ZIF-8 1392.91 0.612 0.1 M KOH - 0.915 V 73
Fe/N/C-1000-2 Cd-TTPBA-4 524.8 0.6 0.1 M KOH 1.0 V 0.87 V 74
Fe/N/S-PC UIO-66-NH2 853 0.5 0.1 M KOH 0.97 V 0.87 V 77
P-CNCo-20 Zn,Co-ZIF 1225 0.1 0.1 M KOH 0.93 V 0.85 V 78
Fe/Ni-MOFs/NG-20 Fe/Ni-MOFs 189.79 0.141 0.1 M KOH 1.09 V - 87
Co-Ni(1∶1)@NC-900 Co-Ni-ZIF - 0.141 0.1 M KOH 0.923 V 0.821 V 88
C-FeZIF-1.44-950 ZIF-8 1255 0.5 0.1 M KOH 0.99 V 0.864 V 91
Co,N-HCNP ZIF-8@ZIF-67 632.5 0.788 0.1 M KOH 0.926 V 0.855 V 92
Co,N-PCL[4] ZIF-L@ZIF-67 319 0.2 0.1 M KOH - 0.846 V 93
NEMC/G ZIF-8 655 0.25 0.1 M KOH - 0.82 V 103
Co@NC-MOF-2-900 ZnxCo1-x(C3H4N2) MOF 371 0.065 0.1 M KOH 0.93 V 0.82 V 105
Co-N-C-1000 Co-doped ZIF 841 0.408 0.1 M KOH - 0.856 V 106
Cr/N/C-950 ZIF-8 884.9 0.6 0.1 M HClO4 - 0.773 V 107
Ir-SAC ZIF-8 1490 0.4 0.1 M HClO4 0.97 V 0.864 V 108
20Mn-NC-second ZIF-8 715 ~4 0.5 M H2SO4 - 0.80 V 109
[1]
Boudghene Stambouli A, Traversa E. Renew. Sustain. Energy Rev., 2002, 6(3): 295.

doi: 10.1016/S1364-0321(01)00015-6     URL    
[2]
Li Y G, Dai H J. Chem. Soc. Rev., 2014, 43(15): 5257.

doi: 10.1039/C4CS00015C     URL    
[3]
Morozan A, Jousselme B, Palacin S. Energy Environ. Sci., 2011, 4(4): 1238.
[4]
Debe M K. Nature, 2012, 486(7401): 43.
[5]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.

doi: 10.1038/nmat3191     URL    
[6]
Chen Z W, Higgins D, Yu A P, Zhang L, Zhang J J. Energy Environ. Sci., 2011, 4(9): 3167.

doi: 10.1039/c0ee00558d     URL    
[7]
Zheng Y, Jiao Y, Jaroniec M, Jin Y G, Qiao S Z. Small, 2012, 8(23): 3550.

doi: 10.1002/smll.201200861     pmid: 22893586
[8]
Lee J S, Tai Kim S, Cao R G, Choi N S, Liu M L, Lee K T, Cho J. Adv. Energy Mater., 2011, 1(1): 34.

doi: 10.1002/aenm.201000010     URL    
[9]
Cheng F Y, Chen J. Chem. Soc. Rev., 2012, 41(6): 2172.

doi: 10.1039/c1cs15228a     URL    
[10]
Rahman M A, Wang X J, Wen C E. J. Electrochem. Soc., 2013, 160(10): A1759.

doi: 10.1149/2.062310jes     URL    
[11]
Cao R G, Lee J S, Liu M L, Cho J. Adv. Energy Mater., 2012, 2(7): 816.
[12]
Niu W H, Li L G, Liu X J, Wang N, Liu J, Zhou W J, Tang Z H, Chen S W. J. Am. Chem. Soc., 2015, 137(16): 5555.

doi: 10.1021/jacs.5b02027     URL    
[13]
Chung H T, Cullen D A, Higgins D, Sneed B T, Holby E F, More K L, Zelenay P. Science, 2017, 357(6350): 479.

doi: 10.1126/science.aan2255     pmid: 28774924
[14]
Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323(5915): 760.

doi: 10.1126/science.1168049     URL    
[15]
Zhou M, Wang H L, Guo S J. Chem. Soc. Rev., 2016, 45(5): 1273.
[16]
Shen M X, Wei C T, Ai K L, Lu L H. Nano Res., 2017, 10(5): 1449.

doi: 10.1007/s12274-016-1400-7     URL    
[17]
Sarapuu A, Kibena-Põldsepp E, Borghei M, Tammeveski K. J. Mater. Chem. A, 2018, 6(3): 776.

doi: 10.1039/C7TA08690C     URL    
[18]
Zheng Y P, Yang D S, Kweun J M, Li C Z, Tan K, Kong F T, Liang C P, Chabal Y J, Kim Y Y, Cho M, Yu J S, Cho K. Nano Energy, 2016, 30: 443.

doi: 10.1016/j.nanoen.2016.10.037     URL    
[19]
Gu W L, Hu L Y, Li J, Wang E K. Electroanalysis, 2018, 30(7): 1217.

doi: 10.1002/elan.v30.7     URL    
[20]
Bezerra C W B, Zhang L, Lee K, Liu H S, Marques A L B, Marques E P, Wang H J, Zhang J J. Electrochimica Acta, 2008, 53(15): 4937.

doi: 10.1016/j.electacta.2008.02.012     URL    
[21]
Wang X X, Swihart M T, Wu G. Nat. Catal., 2019, 2(7): 578.
[22]
Chen X D, Wang N, Shen K, Xie Y K, Tan Y P, Li Y W. ACS Appl. Mater. Interfaces, 2019, 11(29): 25976.
[23]
Jiao L, Wan G, Zhang R, Zhou H, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2018, 57(28): 8525.

doi: 10.1002/anie.v57.28     URL    
[24]
Najam T, Shah S S A, Ding W, Wei Z D. J. Phys. Chem. C, 2019, 123(27): 16796.

doi: 10.1021/acs.jpcc.9b03730     URL    
[25]
Zhao R, Liang Z B, Gao S, Yang C, Zhu B J, Zhao J L, Qu C, Zou R Q, Xu Q. Angew. Chem., 2019, 131(7): 2177.

doi: 10.1002/ange.v131.7     URL    
[26]
Guo Z Y, Zhang Z P, Li Z L, Dou M L, Wang F. Nano Energy, 2019, 57: 108.

doi: 10.1016/j.nanoen.2018.12.009     URL    
[27]
Brüller S, Liang H W, Kramm U I, Krumpfer J W, Feng X L, Müllen K. J. Mater. Chem. A, 2015, 3(47): 23799.
[28]
Chen Y C, Gokhale R, Serov A, Artyushkova K, Atanassov P. Nano Energy, 2017, 38: 201.

doi: 10.1016/j.nanoen.2017.05.059     URL    
[29]
Han A J, Chen W X, Zhang S L, Zhang M L, Han Y H, Zhang J, Ji S F, Zheng L R, Wang Y, Gu L, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(15): 1706508.
[30]
Lee S, Kwak D H, Han S B, Hwang E T, Kim M C, Lee J Y, Lee Y W, Park K W. Electrochimica Acta, 2016, 191: 805.

doi: 10.1016/j.electacta.2016.01.135     URL    
[31]
Qing X, Shi J J, Ma C Y, Fan M Y, Bai Z Y, Chen Z W, Qiao J L, Zhang J J. J. Power Sources, 2014, 266: 88.

doi: 10.1016/j.jpowsour.2014.04.136     URL    
[32]
Kim D W, Li O L, Saito N. Phys. Chem. Chem. Phys., 2014, 16(28): 14905.

doi: 10.1039/c4cp01406e     URL    
[33]
Ma J H, Shi M H, Yao Z Z, Mi H Y, Hoang T K A. J. Solid State Chem., 2019, 276: 139.

doi: 10.1016/j.jssc.2019.04.033     URL    
[34]
Hu L B, Yu F, Wang F, Yang S C, Peng B H, Chen L, Wang G, Hou J, Dai B, Tian Z Q. Chin. Chem. Lett., 2020, 31(5): 1207.

doi: 10.1016/j.cclet.2019.06.041     URL    
[35]
Liang H W, Wei W, Wu Z S, Feng X L, Müllen K. J. Am. Chem. Soc., 2013, 135(43): 16002.

doi: 10.1021/ja407552k     URL    
[36]
Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444     URL    
[37]
Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. PNAS, 2006, 103(27): 10186.

doi: 10.1073/pnas.0602439103     URL    
[38]
Lee Y R, Kim J, Ahn W S. Korean J. Chem. Eng., 2013, 30(9): 1667.

doi: 10.1007/s11814-013-0140-6     URL    
[39]
Zheng N, Richard M. J. Am. Chem. Soc., 2006, 128:12394.

pmid: 16984171
[40]
Jin K, Huang X Y, Pang L, Li J, Appel A, Wherland S. Chem. Commun., 2002,(23): 2872.
[41]
Son W J, Kim J, Kim J, Ahn W S. Chem. Commun., 2008,(47): 6336.
[42]
Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, PastrÉ J. J. Mater. Chem., 2006, 16(7): 626.

doi: 10.1039/B511962F     URL    
[43]
Tian T, Zeng Z X, Vulpe D, Casco M E, Divitini G, Midgley P A, Silvestre-Albero J, Tan J C, Moghadam P Z, Fairen-Jimenez D. Nat. Mater., 2018, 17(2): 174.

doi: 10.1038/nmat5050     pmid: 29251723
[44]
Sa Y J, Seo D J, Woo J, Lim J T, Cheon J Y, Yang S Y, Lee J M, Kang D, Shin T J, Shin H S, Jeong H Y, Kim C S, Kim M G, Kim T Y, Joo S H. J. Am. Chem. Soc., 2016, 138(45): 15046.
[45]
Li J K, Ghoshal S, Liang W T, Sougrati M T, Jaouen F, Halevi B, McKinney S, McCool G, Ma C R, Yuan X X, Ma Z F, Mukerjee S, Jia Q Y. Energy Environ. Sci., 2016, 9(7): 2418.

doi: 10.1039/C6EE01160H     URL    
[46]
Ramaswamy N, Tylus U, Jia Q Y, Mukerjee S. J. Am. Chem. Soc., 2013, 135(41): 15443.

doi: 10.1021/ja405149m     pmid: 24032690
[47]
Kramm U I, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoff P. J. Electrochem. Soc., 2011, 158(1): B69.

doi: 10.1149/1.3499621     URL    
[48]
Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332(6028): 443.

doi: 10.1126/science.1200832     URL    
[49]
Tran T N, Song M Y, Singh K P, Yang D S, Yu J S. J. Mater. Chem. A, 2016, 4(22): 8645.

doi: 10.1039/C6TA01543C     URL    
[50]
Magali F, Jeremy K, Deborah M. J. Phys. Chem. C, 2012, 116:16001.

doi: 10.1021/jp302396g     URL    
[51]
Chenitz R, Kramm U I, Lefèvre M, Glibin V, Zhang G X, Sun S H, Dodelet J P. Energy Environ. Sci., 2018, 11(2): 365.

doi: 10.1039/C7EE02302B     URL    
[52]
Carlota D, Miguel P, Sergio R, Francisco P A. Int. J. Hydrogen. Energ., 2019, 166:F3311.
[53]
Singhal R, Kalra V. ChemPhysChem, 2017, 18(2): 223.

doi: 10.1002/cphc.201600771     pmid: 27813238
[54]
Ma S Q, Goenaga G A, Call A V, Liu D J. Chem. Eur. J., 2011, 17(7): 2063.

doi: 10.1002/chem.201003080     URL    
[55]
Xiao L, Yang J M, Huang G Y, Zhao Y, Zhu H B. Inorg. Chem. Commun., 2020, 118: 107982.

doi: 10.1016/j.inoche.2020.107982     URL    
[56]
Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 324(5923): 71.

doi: 10.1126/science.1170051     pmid: 19342583
[57]
Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Angew. Chem., 2013, 125(1): 389.

doi: 10.1002/ange.201204958     URL    
[58]
Wen Z, Ci S, Hou Y, Chen J. Angew. Chem. Int. Edit., 2014, 126:6614.
[59]
Su P P, Xiao H, Zhao J, Yao Y, Shao Z G, Li C, Yang Q H. Chem. Sci., 2013, 4(7): 2941.

doi: 10.1039/c3sc51052b     URL    
[60]
Lee J S, Park G S, Kim S T, Liu M L, Cho J. Angew. Chem. Int. Ed., 2013, 52(3): 1026.

doi: 10.1002/anie.201207193     URL    
[61]
Choi J Y, Hsu R S, Chen Z W. J. Phys. Chem. C, 2010, 114(17): 8048.
[62]
Zhong R Q, Zhi C X, Wu Y X, Liang Z B, Tabassum H, Zhang H, Qiu T J, Gao S, Shi J M, Zou R Q. Chin. Chem. Lett., 2020, 31(6): 1588.

doi: 10.1016/j.cclet.2019.12.004     URL    
[63]
Bashyam R, Zelenay P. Nature, 2006, 443(7107): 63.

doi: 10.1038/nature05118     URL    
[64]
Tang F, Lei H T, Wang S J, Wang H X, Jin Z X. Nanoscale, 2017, 9(44): 17364.

doi: 10.1039/C7NR06844A     URL    
[65]
Zheng L, Yu S, Lu X, Fan W, Liao S. ACS Appl. Mater. Inter., 2020, 12:13878.

doi: 10.1021/acsami.9b22577     URL    
[66]
Deng Y J, Chi B, Tian X L, Cui Z M, Liu E S, Jia Q Y, Fan W J, Wang G H, Dang D, Li M S, Zang K T, Luo J, Hu Y F, Liao S J, Sun X L, Mukerjee S. J. Mater. Chem. A, 2019, 7(9): 5020.
[67]
Tran T N, Shin C H, Lee B J, Samdani J S, Park J D, Kang T H, Yu J S. Catal. Sci. Technol., 2018, 8(20): 5368.

doi: 10.1039/C8CY01140K     URL    
[68]
Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet J P. Nat. Commun., 2011, 2(1): 1.
[69]
Zhang H G, Hwang S, Wang M Y, Feng Z X, Karakalos S, Luo L L, Qiao Z, Xie X H, Wang C M, Su D, Shao Y Y, Wu G. J. Am. Chem. Soc., 2017, 139(40): 14143.
[70]
Ye Y F, Cai F, Li H B, Wu H H, Wang G X, Li Y S, Miao S, Xie S H, Si R, Wang J, Bao X H. Nano Energy, 2017, 38: 281.

doi: 10.1016/j.nanoen.2017.05.042     URL    
[71]
Ye G Y, He Q, Liu S Q, Zhao K M, Su Y K, Zhu W W, Huang R J, He Z. J. Mater. Chem. A, 2019, 7(27): 16508.

doi: 10.1039/C9TA04954A     URL    
[72]
Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen R, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2017, 56(24): 6937.

doi: 10.1002/anie.201702473     URL    
[73]
Jiang R, Li L, Sheng T, Hu G F, Chen Y G, Wang L Y. J. Am. Chem. Soc., 2018, 140(37): 11594.

doi: 10.1021/jacs.8b07294     pmid: 30168714
[74]
Huang J W, Chen Y B, Liu X, Huang Y C, Ding Y L, Xu Y, Yao H C, Zhu H B, Yang H. Chem. Commun., 2019, 55(48): 6930.

doi: 10.1039/C9CC02390A     URL    
[75]
Yang N, Li L, Li J, Ding W, Wei Z D. Chem. Sci., 2018, 9(26): 5795.

doi: 10.1039/c8sc01801d     pmid: 30079190
[76]
Zhang P F, Chen C, Zhang X H, Jiang Z G, Huang J L, Chen J H. Electrochimica Acta, 2019, 298: 570.

doi: 10.1016/j.electacta.2018.12.119     URL    
[77]
Zheng L, Dong Y Y, Chi B, Cui Z M, Deng Y J, Shi X D, Du L, Liao S J. Small, 2019, 15(4): 1803520.

doi: 10.1002/smll.201803520     pmid: 30561824
[78]
Chen Y Z, Wang C M, Wu Z Y, Xiong Y J, Xu Q, Yu S H, Jiang H L. Adv. Mater., 2015, 27(34): 5010.

doi: 10.1002/adma.201502315     URL    
[79]
Chen L L, Zhang Y L, Dong L L, Yang W X, Liu X J, Long L, Liu C Y, Dong S J, Jia J B. J. Mater. Chem. A, 2020, 8(8): 4369.
[80]
Lu Z Y, Wang B, Hu Y F, Liu W, Zhao Y F, Yang R O, Li Z P, Luo J, Chi B, Jiang Z, Li M S, Mu S C, Liao S J, Zhang J J, Sun X L. Angew. Chem., 2019, 131(9): 2648.

doi: 10.1002/ange.v131.9     URL    
[81]
Wang J, Liu W, Luo G, Li Z J, Zhao C, Zhang H R, Zhu M Z, Xu Q, Wang X Q, Zhao C M, Qu Y T, Yang Z K, Yao T, Li Y F, Lin Y, Wu Y E, Li Y D. Energy Environ. Sci., 2018, 11(12): 3375.

doi: 10.1039/C8EE02656D     URL    
[82]
Wang J, Huang Z Q, Liu W, Chang C R, Tang H L, Li Z J, Chen W X, Jia C J, Yao T, Wei S Q, Wu Y E, Li Y D. J. Am. Chem. Soc., 2017, 139(48): 17281.

doi: 10.1021/jacs.7b10385     URL    
[83]
Duan X D, Ren S S, Pan N, Zhang M D, Zheng H G. J. Mater. Chem. A, 2020, 8(18): 9355.

doi: 10.1039/D0TA02825H     URL    
[84]
Guo X Y, Gu J X, Lin S R, Zhang S L, Chen Z F, Huang S P. J. Am. Chem. Soc., 2020, 142(12): 5709.

doi: 10.1021/jacs.9b13349     URL    
[85]
Zhang N, Zhou T P, Ge J K, Lin Y, Du Z Y, Zhong C A, Wang W J, Jiao Q Y, Yuan R L, Tian Y C, Chu W S, Wu C Z, Xie Y. Matter, 2020, 3(2): 509.
[86]
Qiao Y, Ni Y Y, Kong F T, Li R J, Zhang C Q, Kong A G, Shan Y K. Chem. Asian J., 2019, 14(15): 2676.

doi: 10.1002/asia.v14.15     URL    
[87]
Qin X L, Huang Y, Wang K, Xu T T, Wang Y L, Wang M Y, Zhao M, Gao Q. Ind. Eng. Chem. Res., 2019, 58(24): 10224.

doi: 10.1021/acs.iecr.9b01412     URL    
[88]
Long J L, Li R, Gou X L. Catal. Commun., 2017, 95: 31.

doi: 10.1016/j.catcom.2017.02.026     URL    
[89]
Dong Z, Liu G L, Zhou S C, Zhang Y Y, Zhang W L, Fan A X, Zhang X, Dai X P. ChemCatChem, 2018, 10(23): 5475.

doi: 10.1002/cctc.v10.23     URL    
[90]
Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130(16): 5390.

doi: 10.1021/ja7106146     pmid: 18376833
[91]
Deng Y J, Chi B, Li J, Wang G H, Zheng L, Shi X D, Cui Z M, Du L, Liao S J, Zang K T, Luo J, Hu Y F, Sun X L. Adv. Energy Mater., 2019, 9(13): 1802856.

doi: 10.1002/aenm.v9.13     URL    
[92]
Hu Z W, Zhang Z P, Li Z L, Dou M L, Wang F. ACS Appl. Mater. Interfaces, 2017, 9(19): 16109.

doi: 10.1021/acsami.7b00736     URL    
[93]
Park H, Oh S, Lee S, Choi S, Oh M. Appl. Catal. B: Environ., 2019, 246: 322.

doi: 10.1016/j.apcatb.2019.01.083     URL    
[94]
Chai L L, Zhang L J, Wang X, Hu Z Y, Xu Y W, Li T T, Hu Y, Qian J J, Huang S M. Carbon, 2020, 158: 719.
[95]
Wei J, Hu Y X, Wu Z X, Liang Y, Leong S, Kong B, Zhang X Y, Zhao D Y, Simon G P, Wang H T. J. Mater. Chem. A, 2015, 3(32): 16867.

doi: 10.1039/C5TA04330A     URL    
[96]
Zhang C, Wang Y C, An B, Huang R, Wang C, Zhou Z, Lin W. Adv. Mater., 2017, 29: 1604556.1.
[97]
Kone I, Xie A, Tang Y, Chen Y, Liu J, Chen Y M, Sun Y Z, Yang X J, Wan P Y. ACS Appl. Mater. Interfaces, 2017, 9(24): 20963.

doi: 10.1021/acsami.7b02306     URL    
[98]
Sun T T, Li Y L, Cui T T, Xu L B, Wang Y G, Chen W X, Zhang P P, Zheng T, Fu X Z, Zhang S L, Zhang Z D, Wang D S, Li Y D. Nano Lett., 2020, 20(8): 6206.

doi: 10.1021/acs.nanolett.0c02677     URL    
[99]
Gao L Q, Xiao M L, Jin Z, Liu C P, Ge J J, Xing W. J. Energy Chem., 2019, 35: 17.

doi: 10.1016/j.jechem.2018.09.019     URL    
[100]
Tian P F, Zang J B, Song S W, Zhou S Y, Gao H W, Xu H Q, Tian X Q, Wang Y H. J. Power Sources, 2020, 448: 227443.
[101]
Meng Z H, Cai S C, Wang R, Tang H L, Song S Q, Tsiakaras P. Appl. Catal. B: Environ., 2019, 244: 120.

doi: 10.1016/j.apcatb.2018.11.037     URL    
[102]
Feng L, Yuan S, Zhang L L, Tan K, Li J L, Kirchon A, Liu L M, Zhang P, Han Y, Chabal Y J, Zhou H C. J. Am. Chem. Soc., 2018, 140(6): 2363.

doi: 10.1021/jacs.7b12916     URL    
[103]
Lai Q X, Zhao Y X, Liang Y Y, He J P, Chen J H. Adv. Funct. Mater., 2016, 26(45): 8334.

doi: 10.1002/adfm.v26.45     URL    
[104]
Qiao M F, Wang Y, Wang Q, Hu G Z, Mamat X, Zhang S S, Wang S Y. Angew. Chem. Int. Ed., 2020, 59(7): 2688.

doi: 10.1002/anie.v59.7     URL    
[105]
Peera S G, Balamurugan J, Kim N H, Lee J H. Small, 2018, 14(19): 1800441.
[106]
Sun W, Du L, Tan Q, Zhou J G, Hu Y F, Du C Y, Gao Y Z, Yin G P. ACS Appl. Mater. Interfaces, 2019, 11(44): 41258.

doi: 10.1021/acsami.9b11830     URL    
[107]
Luo E G, Zhang H, Wang X, Gao L Q, Gong L Y, Zhao T, Jin Z, Ge J J, Jiang Z, Liu C P, Xing W. Angew. Chem. Int. Ed., 2019, 58(36): 12469.

doi: 10.1002/anie.v58.36     URL    
[108]
Xiao M L, Zhu J B, Li G R, Li N, Li S, Cano Z P, Ma L, Cui P X, Xu P, Jiang G P, Jin H L, Wang S, Wu T P, Lu J, Yu A P, Su D, Chen Z W. Angew. Chem., 2019, 131(28): 9750.

doi: 10.1002/ange.v131.28     URL    
[109]
Li J Z, Chen M J, Cullen D A, Hwang S, Wang M Y, Li B Y, Liu K X, Karakalos S, Lucero M, Zhang H G, Lei C, Xu H, Sterbinsky G E, Feng Z X, Su D, More K L, Wang G F, Wang Z B, Wu G. Nat. Catal., 2018, 1(12): 935.

doi: 10.1038/s41929-018-0164-8     URL    
[110]
Jiang W J, Gu L, Li L, Zhang Y, Zhang X, Zhang L J, Wang J Q, Hu J S, Wei Z D, Wan L J. J. Am. Chem. Soc., 2016, 138(10): 3570.

doi: 10.1021/jacs.6b00757     URL    
[111]
Lai Q X, Zheng L R, Liang Y Y, He J P, Zhao J X, Chen J H. ACS Catal., 2017, 7(3): 1655.

doi: 10.1021/acscatal.6b02966     URL    
[112]
Ye W, Chen S M, Lin Y, Yang L, Chen S J, Zheng X S, Qi Z M, Wang C M, Long R, Chen M, Zhu J F, Gao P, Song L, Jiang J, Xiong Y J. Chem, 2019, 5(11): 2865.
[113]
Li J Z, Zhang H G, Samarakoon W, Shan W T, Cullen D A, Karakalos S, Chen M J, Gu D M, More K L, Wang G F, Feng Z X, Wang Z B, Wu G. Angew. Chem. Int. Ed., 2019, 58(52): 18971.

doi: 10.1002/anie.v58.52     URL    
[114]
Liu W G, Zhang L L, Liu X, Liu X Y, Yang X F, Miao S, Wang W T, Wang A Q, Zhang T. J. Am. Chem. Soc., 2017, 139(31): 10790.

doi: 10.1021/jacs.7b05130     URL    
[115]
Li J, Jiao L, Wegener E, Richard L L, Liu E, Zitolo A, Sougrati M T, Mukerjee S, Zhao Z, Huang Y, Yang F, Zhong S, Xu H, Kropf A J, Jaouen F, Myers D, Jia Q. J. Am. Chem Soc., 2019, 142:1417.

doi: 10.1021/jacs.9b11197     URL    
[1] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[2] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[3] 黄路露, 孙凯玲, 刘明瑞, 李静, 廖世军. 非水系锂空气电池碳基正极材料[J]. 化学进展, 2019, 31(10): 1406-1416.
[4] 苗鹤, 薛业建, 周旭峰, 刘兆平. 石墨烯基氧还原催化剂在金属空气电池中的应用[J]. 化学进展, 2015, 27(7): 935-944.
[5] 钟轶良, 莫再勇, 杨莉君, 廖世军*. 改性石墨烯用作燃料电池阴极催化剂[J]. 化学进展, 2013, 25(05): 717-725.
[6] 李鹏, 孙彦平* . 非水系二次锂-氧电池正极[J]. 化学进展, 2012, 24(12): 2457-2471.
[7] 张栋, 张存中*, 穆道斌, 吴伯荣, 吴锋 . 锂空气电池研究述评[J]. 化学进展, 2012, 24(12): 2472-2482.
[8] 文越华 程杰 徐艳 刘学虎 曹高萍 杨裕生. 掺氮纳米碳及与非Pt金属复合的电催化剂研究*[J]. 化学进展, 2010, 22(08): 1550-1555.
[9] 原鲜霞 夏小芸 曾鑫 张慧娟 马紫峰. 低温燃料电池氧电极催化剂*[J]. 化学进展, 2010, 22(01): 19-31.
[10] 赵东江 尹鸽平 魏杰. 聚合物膜燃料电池阴极非Pt催化剂[J]. 化学进展, 2009, 21(12): 2753-2759.