English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 656-664 DOI: 10.7536/PC190929 前一篇   后一篇

• 综述 •

ZIF-8纳米颗粒的粒径调控及生物医学应用

胡强强1, 郭和泽1, 窦红静1,**()   

  1. 上海交通大学金属基复合材料国家重点实验室 材料科学与工程学院 上海 200240
  • 收稿日期:2019-09-23 修回日期:2019-11-26 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 窦红静
  • 基金资助:
    国家自然科学基金项目(21871180); 上海市“科技创新行动计划”基础研究领域项目(18JC1413500); 上海高校特聘教授(东方学者)计划(SHDP201802); 上海市教委“曙光计划”(12SG12)

Size Control and Biomedical Applications of ZIF-8 Nanoparticles

Qiangqiang Hu1, Heze Guo1, Hongjing Dou1,**()   

  1. School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-09-23 Revised:2019-11-26 Online:2020-05-15 Published:2020-02-20
  • Contact: Hongjing Dou
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21871180); Shanghai Science and Technology Innovation Action Plan Basic Research Area Project(18JC1413500); Shanghai University Distinguished Professor(Oriental Scholar) Program(SHDP201802); Shanghai Municipal Education Commission “Dawning Plan”(12SG12)

沸石咪唑酯骨架材料(Zeolitic Imidazolate Framework-8, ZIF-8)是由锌离子与2-甲基咪唑配位自组装成的多孔结晶材料,其比表面积大、孔隙率高、合成便捷、尺寸可控,在功能物质的包封与输运中具有突出的优势。与此同时,这类材料更具备优异的生物相容性,且其结构在生理条件下具有良好的稳定性,而在酸性条件下解体,对于与恶性肿瘤等多种疾病相关的弱酸性环境具有响应性,是控制药物运输与释放的理想载体,因而在生物医学上有很大的应用潜力。事实上,ZIF-8不但能高效负载阿霉素、5-氟尿嘧啶等小分子化疗药物,而且可以充当抗体、核酸等生物大分子的保护层。ZIF-8的粒径等性能对于相应的生物医学应用非常关键,而如何实现ZIF-8功能性的精准调控将是实现其生物医学应用的重要挑战,基于此,本文就ZIF-8的制备机理、性能调控及其生物医学应用进行综述和展望。

Zeolitic imidazolate framework-8(ZIF-8) is a class of porous crystalline materials formed by the self-assembly of zinc ions and 2-methylimidazole. It shows potential advantages in encapsulation and transportation of functional materials owing to its high porosity, large specific surface,convenient synthesis and controllable size. More importantly, ZIF-8 is an ideal carrier for drug delivery and release due to its excellent biocompatibility, stability under physiological conditions and responsiveness to the weak acidic environment associated with malignant tumors and other diseases. In fact, the small molecular drugs(doxorubicin, 5-fluorouracil) and biological macromolecules(antibody, nuclein) have all been loaded into ZIF-8 for chemotherapy, photothermal therapy, photodynamic therapy and biosensing. The particle size of ZIF-8 is very important for biomedical applications, and accurate functional regulation of ZIF-8 is agreat challenge for its biomedical application. Herein, we review the synthesis methods, size-control and biomedicalapplications of ZIF-8.

Contents

1 Introduction

2 Synthesis of ZIF-8 nanoparticles

2.1 Solvothermal process

2.2 Microwave-assist

2.3 Microfluidic

3 Size control of ZIF-8

3.1 Formation mechanism

3.2 Size control

4 Biomedical applications

4.1 Application in tumor treatment

4.2 Application in bioimagings

4.3 Protective coating for biomacromolecule

5 Conclusion and outlook

()
图1 溶剂热法合成纳米金属有机框架[41]
Fig. 1 Surfactant-free synthesis by simply mixing precursors in appropriate solvents either at room temperature or at elevatedtemperature[41]. Copyright 2015, American Chemical Society
图2 纳米晶的尺寸对增强材料比表面积的重要性示意图[5]
Fig. 2 Schematic illustration of the importance of nanosized PCP crystals with the enhanced contribution of crystal interfaces[5]. Copyright 2010, American Chemical Society
图3 扩散理论下ZIF-8的结晶模型[19]
Fig. 3 Theoretical basis of the reaction-diffusion framework(RDF). (A) Diffusion profiles of HmIm(outer) and Zn2+/Co2+(inner) are depicted at a given time. Evolution of the reaction zone is also shown and exhibits a decrease of its amplitude and broadening of its width. Xf denotes thelocation of the peak which also corresponds to the location of the precipitation front.(B) Nucleation of pure ZIF-8 leading to nanosperoids takesplace within the reaction zone[19]. Copyright 2018, American Chemical Society
图4 三乙胺浓度对ZIF-8形成影响的示意图[27]
Fig. 4 A schematic illustration showing the influence of TEA concentration on ZIF-8 formation[27]. Copyright 2014, The Royal Society of Chemistry
图5 一步法构建纳米金属有机框架载药体系[29]
Fig. 5 The pH-induced one-pot synthesis of MOFs with encapsulated target molecules[29]. Copyright 2015, American Chemical Society
图6 CuS@ZIF-8在光照下解体的机理探究[37]
Fig. 6 Possible mechanism for the dissociation of CuS@ZIF-8 NPs underthe laser irradiation (a). Cell viability of MCF-7 cells after 24 h incubation inthe presence of different concentrations of DOX or DOX loaded CuS@ZIF-8NPs(b). Cell viability of MCF-7 cells treated with PBS solution as a control,CuS@ZIF-8(25 mg·mL-1), DOX(1 mg·mL-1) or DOX loaded CuS@ZIF-8 NPs(1 mg·mL-1 of DOX, 4% DOX/NPs, w/w) for 12 h and then exposed to the NIR laser for 1, 2, 4, and 6 min(c). Photothermal images of mice, saline(control, group Ⅰ), DOX(group Ⅱ) and DOX loaded CuS@ZIF-8(group Ⅲ) under NIR laser irradiation for 3 min(d)[37]. Copyright 2016, The Royal Society of Chemistry
图7 Fe3O4@PAA/AuNCs/ZIF-8用于三重显影及化疗的示意图[55]
Fig. 7 Schematic illustration of Fe3O4@PAA/AuNCs/ZIF-8 composite NPs for simultaneous tri-modal cancer imagingand chemotherapy[55]. Copyright 2015, The Royal Society of Chemistry
图8 ZIF-8仿生矿化复合材料形成示意图[60]
Fig. 8 Characterization of biomimetically mineralized biocomposite. (a) SEM image showing the crystals obtained using BSA as a growth agentfor biomimetic mineralization(scale bar, 1 μm).(b) Photograph and(c) confocal laser scanning microscopy image of the biomomimetically mineralized ZIF-8 composite obtained using BSA labelled with FITC. This biocomposite(ZIF-8/FITC-BSA) was prepared at 37 ℃, washed and exposed to ultraviolet light of wavelength 365 and 495 nm, respectively(scale bar, 10 μm).(d) PXRD of the MOF-BSA biocomposite.(e) FTIR spectra of BSA(red), ZIF-8/BSA(orange), standard ZIF-8 post incubated with BSA after washing(blue), and standard ZIF-8(black).(f) SAXS data of the ZIF-8/BSA biocompositeand a schematic showing the relative size of BSA to the mesopore.(g) Schematic proposing the biomimetically mineralized growthof ZIF-8. Each BSA molecule attracts 31 2-methylimidazole(HmIm) ligands and 22 Zn2+ ions, facilitating the nucleation of ZIF-8 crystals[60]. Copyright 2015, Springer Nature
[1]
Echaide-G C, Clément C, Cacho-Bailo C, Téllez C, Coronas J. J. Mater. Chem. A, 2018,6:5485. http://xlink.rsc.org/?DOI=C8TA01232F

doi: 10.1039/C8TA01232F     URL    
[2]
Safaei M, Foroughi M M, Ebrahimpoor N, ShohrehJ,Omidi A, Khatami M. Trends in Analytical Chemistry, 2019,118:401. https://linkinghub.elsevier.com/retrieve/pii/S0165993619301840

doi: 10.1016/j.trac.2019.06.007     URL    
[3]
Hoopa M, Waldea C F, Riccòc R, Mushtaqa F, Terzopouloua A, Chena X Z, deMellob A J, Doonand C J, Falcaroc P, Nelsona B J, Puigmartí-Luisb J, PanéaaInstitute S. Applied Materials Today, 2018,11:13. https://linkinghub.elsevier.com/retrieve/pii/S2352940717303839

doi: 10.1016/j.apmt.2017.12.014     URL    
[4]
Tanaka S, KidaK,Okita M, Ito Y, Miyake Y. Chem. Lett, 2012,41:1337. http://www.journal.csj.jp/doi/10.1246/cl.2012.1337

doi: 10.1246/cl.2012.1337     URL    
[5]
Diring S, Furukawa S, Takashima Y, Tsuruoka T, Kitagawa S. Chem. Mater., 2010,22:4531. https://pubs.acs.org/doi/10.1021/cm101778g

doi: 10.1021/cm101778g     URL    
[6]
Chowdhuri A R, Das B, Kumar A, Tripathy S, Roy S, Kumar-Sahu S. Nanotecchnology, 2017,28:095102.
[7]
Chen Y, Tang S. J. Solid. State. Chem., 2019,276:68. https://linkinghub.elsevier.com/retrieve/pii/S0022459619302117

doi: 10.1016/j.jssc.2019.04.034     URL    
[8]
Rubio-Martinez M, Avci-Camur C, Thornton A W, Imaz I, Maspoch D, Hill M R. Chem. Soc. Rev., 2017,46:3453. http://xlink.rsc.org/?DOI=C7CS00109F

doi: 10.1039/C7CS00109F     URL    
[9]
Echaide-Górriz C, Clément C, Cacho-Bailo F, Téllez C, Coronas J. J. Mater. Chem. A, 2018,6:5485. http://xlink.rsc.org/?DOI=C8TA01232F

doi: 10.1039/C8TA01232F     URL    
[10]
Lee Y R, Jang M S, Cho H Y, Kwon H J, Kim S, Ahn W S. Chemical Engineering Journal, 2015,271:276. https://linkinghub.elsevier.com/retrieve/pii/S1385894715003034

doi: 10.1016/j.cej.2015.02.094     URL    
[11]
Cravillon J, Münzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Chem. Mater., 2009,21:1410. https://pubs.acs.org/doi/10.1021/cm900166h

doi: 10.1021/cm900166h     URL    
[12]
Pan Y P, Liu Y Y, Zeng G F, Zhao L, Lai Z P. Chem. Commun., 2011,47:2071. http://xlink.rsc.org/?DOI=c0cc05002d

doi: 10.1039/c0cc05002d     URL    
[13]
Khan N A, Jhung S H. Coord. Chem. Rev., 2015,285:11. https://linkinghub.elsevier.com/retrieve/pii/S0010854514002811

doi: 10.1016/j.ccr.2014.10.008     URL    
[14]
Butova V V, Budnik A P, Bulanova E A, Soldatov A V. Mendeleev Commun., 2016,26:43. https://linkinghub.elsevier.com/retrieve/pii/S0959943616000183

doi: 10.1016/j.mencom.2016.01.017     URL    
[15]
Awadallah-F A, Hillman F, Al-Muhtaseb S A, Jeong H K. Dalton Trans., 2019,48:4685. http://xlink.rsc.org/?DOI=C9DT00222G

doi: 10.1039/C9DT00222G     URL    
[16]
Wang X G, Cheng Q, Yu Y, Zhang X Z. Angew. Chem. Int. Ed., 2018,57:7836. http://doi.wiley.com/10.1002/anie.v57.26

doi: 10.1002/anie.v57.26     URL    
[17]
Yamamoto D, Maki T, Watanabe S, Tanaka H, Miyahara M T, Mae K. Chemical Engineering Journal, 2013,227:145. http://dx.doi.org/10.1016/j.cej.2012.08.065

doi: 10.1016/j.cej.2012.08.065     URL    
[18]
Van-Vleet M J, Weng T T, Li X Y, Schmidt J R. Chem. Rev. 2018,118:3681. https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00582

doi: 10.1021/acs.chemrev.7b00582     URL    
[19]
Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M. J. Am. Chem. Soc., 2018,140:1812. https://pubs.acs.org/doi/10.1021/jacs.7b11589

doi: 10.1021/jacs.7b11589     URL    
[20]
Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michaelides A. Chem. Rev., 2016,116:7078. https://pubs.acs.org/doi/10.1021/acs.chemrev.5b00744

doi: 10.1021/acs.chemrev.5b00744     URL    
[21]
Karthika S, Radhakrishnan T K, Kalaichelvi P A. Cryst. Growth Des., 2016,16:6663. https://pubs.acs.org/doi/10.1021/acs.cgd.6b00794

doi: 10.1021/acs.cgd.6b00794     URL    
[22]
Flügel E A, Ranft A, Haase F, Lotsch B V. J. Mater. Chem., 2012,22:10119. http://xlink.rsc.org/?DOI=c2jm15675j

doi: 10.1039/c2jm15675j     URL    
[23]
Rimer, J D, Tsapatsis, M J. MRS Bull., 2016,41:393. https://www.cambridge.org/core/product/identifier/S0883769416000890/type/journal_article

doi: 10.1557/mrs.2016.89     URL    
[24]
Beha J J, Lima J K, Ngb E P, Onia B S. Mater. Chem. Phys., 2018,216:393. https://linkinghub.elsevier.com/retrieve/pii/S0254058418305212

doi: 10.1016/j.matchemphys.2018.06.022     URL    
[25]
Zhang Y Y, Jia Y, Li M, Hou L A. Sci. Rep., 2018,8:8597. https://doi.org/10.1038/s41598-018-26926-z

doi: 10.1038/s41598-018-26926-z     URL    
[26]
Pan Y C, Heryadi D D, Zhou F, Zhao L, Lestari G, Sub H, Lai Z P. CrystEngComm., 2011,13:6937. http://dx.doi.org/10.1039/c1ce05780d

doi: 10.1039/c1ce05780d     URL    
[27]
Nordin N A H M, Ismail A F, Mustafa A, Goh P S, Rana D, Matsuura T. RSC Adv., 2014,4:33292. http://xlink.rsc.org/?DOI=C4RA03593C

doi: 10.1039/C4RA03593C     URL    
[28]
Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Chem. Mater., 2011,23:2130. https://pubs.acs.org/doi/10.1021/cm103571y

doi: 10.1021/cm103571y     URL    
[29]
Zheng H Q, Zhang Y N, Liu L F, Wan W, Guo P, Nystroöm A M, Zou X D. J. Am. Chem. Soc., 2016,138:962. https://pubs.acs.org/doi/10.1021/jacs.5b11720

doi: 10.1021/jacs.5b11720     URL    
[30]
Sun C Y, Qin C, Wang X L, Yang G S, Shao K Z, Lan Y Q, Su Z M, Huang P, Wang C G, Wang EB. Dalton Trans., 2012,41:6906. http://xlink.rsc.org/?DOI=c2dt30357d

doi: 10.1039/c2dt30357d     URL    
[31]
Zhang H Y, Li Q, Liu R L, Zhang X K, Li Z H, Luan Y X. Adv. Funct. Mater., 2018,28:1802830. http://doi.wiley.com/10.1002/adfm.v28.35

doi: 10.1002/adfm.v28.35     URL    
[32]
Wang H H, Li T, Li J W, Tong W J, Gao C Y. Colloids and Surfaces A, 2019,568:224. https://linkinghub.elsevier.com/retrieve/pii/S0927775719301128

doi: 10.1016/j.colsurfa.2019.02.025     URL    
[33]
Zou Q, Huang J N, Zhang X J. Small, 2018,14:1803101. http://doi.wiley.com/10.1002/smll.v14.45

doi: 10.1002/smll.v14.45     URL    
[34]
Zhao P H, Jin Z K, Chen Q, Yang T, Chen D Y, Meng Y, Lu X F, Gu Z, He Q J. Nat. Commun., 2018,9:1. http://www.nature.com/articles/s41467-017-02088-w

doi: 10.1038/s41467-017-02088-w     URL    
[35]
Wang W Q, Wang L, Li Y, Liu S, Xie Z G, Jing X B. Adv. Mater., 2016,28:9320. http://doi.wiley.com/10.1002/adma.201602997

doi: 10.1002/adma.201602997     URL    
[36]
Silva J S F, Silva J Y R, Sá G F, Araújo S S, Gomes-Filho M A, Ronconi C M, Santos CM, Júnior S. A. ACS Omega, 2018,3:12147.
[37]
Wang Z F, Tang X J, Wang X X, Yang D D, Yang C, Lou Y B, Chen J X, He N Y. Chem. Commun., 2016,52:12210. http://xlink.rsc.org/?DOI=C6CC06616J

doi: 10.1039/C6CC06616J     URL    
[38]
Li Y T, Jin J, Wang D W, Lv J W, Hou K, Liu Y L, Chen C Y, Tang Z Y. Nano Res., 2018,11(6):3294. https://doi.org/10.1007/s12274-017-1874-y

doi: 10.1007/s12274-017-1874-y     URL    
[39]
Yang J P, Shen D K, Zhou L, Li W, Li X M, Yao C, Wang R, El-Toni A M, Zhang F, Zhao D Y. Chem. Mater., 2013,25:3030. https://pubs.acs.org/doi/10.1021/cm401115b

doi: 10.1021/cm401115b     URL    
[40]
Zheng X H, Wang L, Pei Q, He S S, Liu S, Xie Z G. Chem. Mater., 2017,29:2374. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b00228

doi: 10.1021/acs.chemmater.7b00228     URL    
[41]
He C B, Liu D M, Lin W B. Chem. Rev., 2015,115:11079. https://pubs.acs.org/doi/10.1021/acs.chemrev.5b00125

doi: 10.1021/acs.chemrev.5b00125     URL    
[42]
Zhen S J, Yi X B, Zhao Z J, Lou X D, Xia F, Tang B Z. Biomaterials, 2019,218:119330. https://linkinghub.elsevier.com/retrieve/pii/S0142961219304296

doi: 10.1016/j.biomaterials.2019.119330     URL    
[43]
Lismont M, Dreesen L, Wuttke S J. Adv. Funct. Mater., 2017,27(14):1606314. http://doi.wiley.com/10.1002/adfm.v27.14

doi: 10.1002/adfm.v27.14     URL    
[44]
Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, Chen M J. Biomaterials, 2016,97:1. https://linkinghub.elsevier.com/retrieve/pii/S0142961216301454

doi: 10.1016/j.biomaterials.2016.04.034     URL    
[45]
Kanofsky J R. Photochem. Photobiol., 2011,87:14. http://dx.doi.org/10.1111/j.1751-1097.2010.00855.x

doi: 10.1111/j.1751-1097.2010.00855.x     URL    
[46]
Xu D D, You Y Q, Zeng F Y, Wang Y, Liang C Y, Feng H H, Ma X. ACS Appl. Mater. Interfaces, 2018,10:15517. https://pubs.acs.org/doi/10.1021/acsami.8b03831

doi: 10.1021/acsami.8b03831     URL    
[47]
Ma Y C, Zhu Y H, Tang X F, Hang L F, Jiang W, Li M, Khan M I, You Y Z, Wang Y C. Biomater. Sci., 2019,7:2740. http://xlink.rsc.org/?DOI=C9BM00333A

doi: 10.1039/C9BM00333A     URL    
[48]
Zhang Y, Liu N, Su S, Jiang R, Li H. J NanosciNanotechno., 2020,20:2072.
[49]
Zhao G Z, Wu H H, Feng R L, Wang D D, Xu P P, Wang H B, Guo Z, Chen Q W. ACS Omega, 2018,3:9790. https://pubs.acs.org/doi/10.1021/acsomega.8b00923

doi: 10.1021/acsomega.8b00923     URL    
[50]
Guo C, Xu S Y, Arshad A, Wang L Y. Chem. Commun., 2018,54:9853. http://xlink.rsc.org/?DOI=C8CC06129G

doi: 10.1039/C8CC06129G     URL    
[51]
Della Rocca J, Lin W B, . Eur. J Inorg. Chem. 2010,24:3725.
[52]
He M N, Zhou J J, Chen J, Zheng F C, Wang D D, Shi R H, Guo Z, Wang H B, Chen Q W. J. Mater. Chem. B, 2015,3:9033. http://xlink.rsc.org/?DOI=C5TB01830G

doi: 10.1039/C5TB01830G     URL    
[53]
Kong B, Zhu A W, Ding C Q, Zhao X M, Li B, Yang T. Adv. Mater., 2012,24:5844. http://doi.wiley.com/10.1002/adma.201202599

doi: 10.1002/adma.201202599     URL    
[54]
He L, Wang T T, An J P, Li X M, Zhang L Y, Li L, Li G Z, Wu X T, Su Z M, Wang C G. CrystEngComm, 2014,16:3259. http://dx.doi.org/10.1039/c3ce42506a

doi: 10.1039/c3ce42506a     URL    
[55]
Bian R X, Wang T T, Zhang L Y, Li L, Wang C G. Biomater. Sci., 2015,3:1270. http://xlink.rsc.org/?DOI=C5BM00186B

doi: 10.1039/C5BM00186B     URL    
[56]
Martin D A, Muth D A, Brown T, Johnson A J, Karabatsos N, Roehrig J T. J. Clin. Microbiol., 2000,38:1823. https://JCM.asm.org/content/38/5/1823

doi: 10.1128/JCM.38.5.1823-1826.2000     URL    
[57]
Best B. P. Rejuvenation Res., 2015,18:422.
[58]
Martin N, Ma D, Herbet A, Boquet D, Winnik F M, Tribet C. Biomacromolecules, 2014,15:2952. http://dx.doi.org/10.1021/bm5005756

doi: 10.1021/bm5005756     URL    
[59]
Mitragotri S, Burke P A, Langer R J. Nat.Rev. Drug Discov., 2014,13:655.
[60]
Liang K, Ricco R, Doherty C M, Styles M J, Bell S, Kirby N, Mudie S, Haylock D, Hill A J, Doonan C J, Falcaro P. Nat. Commun., 2015,6:7240. https://doi.org/10.1038/ncomms8240

doi: 10.1038/ncomms8240     URL    
[61]
Feng Y F, Wang H R, Zhang S N, Zhao Y, Gao J, Zheng Y Y, Zhao P, Zhang Z J, Zaworotko M J, Cheng P, Ma S Q, Chen Y.Adv. Mater., 2018,18:05148.
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[3] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[4] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[5] 肖肖, 陈昌盛, 刘伟强, 张业顺. 丝胶蛋白的结构、性能及生物医学应用[J]. 化学进展, 2017, 29(5): 513-523.
[6] 刘迎亚, 范霄, 李艳艳, 渠陆陆, 覃海月, 曹英男, 李海涛. 多光谱光声层析成像及其在生物医学中的应用[J]. 化学进展, 2015, 27(10): 1459-1469.
[7] 田勇, 王加, 钟国英, 林汉森, 王秀芳*. 磁性有序介孔炭的合成及新应用[J]. 化学进展, 2012, 24(07): 1270-1276.
[8] 杨娜, 岳明波, 王一萌. 干胶法合成分子筛[J]. 化学进展, 2012, 24(0203): 253-261.
[9] 杜凯, 朱艳红, 徐辉碧, 杨祥良. 多功能磁性纳米粒的合成、修饰及生物医学应用[J]. 化学进展, 2011, 23(11): 2287-2298.
[10] 黄毅,黄金花,谢青季,姚守拙. 糖-蛋白质相互作用*[J]. 化学进展, 2008, 20(06): 942-950.
[11] 邢滨,李万万,孙康. 有机体系中II–VI族量子点的制备及其合成机理[J]. 化学进展, 2008, 20(06): 841-850.