English
新闻公告
More
化学进展 2019, Vol. 31 Issue (7): 1056-1066 DOI: 10.7536/PC181212 前一篇   

• •

柔性抗结冰表面的制备及其性能

周翠平1, 刘启明2, 赵绚1, 李春生1, 李辉1,**(), 张书香1,**()   

  1. 1.济南大学化学化工学院 山东省氟化学化工材料重点实验室 济南 250022
    2.山东省建设发展研究院 济南 250001
  • 收稿日期:2019-12-18 出版日期:2019-07-15 发布日期:2019-04-26
  • 通讯作者: 李辉, 张书香
  • 基金资助:
    山东省自然基金项目及重大基础研究项目(ZR2016EMM04); 山东省自然基金项目及重大基础研究项目(ZR2017ZC0529); 国家自然科学基金项目(51103061)

The Preparation and Anti-Icing Properties of Flexible Surfaces

Cuiping Zhou1, Qiming Liu2, Xuan Zhao1, Chunsheng Li1, Hui Li1,**(), Shuxiang Zhang1,**()   

  1. 1.School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
    2.Shandong Institute of Construction and Development, Jinan 250001, China
  • Received:2019-12-18 Online:2019-07-15 Published:2019-04-26
  • Contact: Hui Li, Shuxiang Zhang
  • About author:
    ** E-mail: (Hui Li);
    (Shuxiang Zhang)
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2016EMM04); Natural Science Foundation of Shandong Province(ZR2017ZC0529); Natural Science Foundation of China(51103061)

冰的附着和累积是常见自然现象,但给人类社会带来诸多不便甚至发生重大事故。抗结冰表面是当前研究的热点课题之一,其表面特性是影响结冰最为关键的因素。但是结冰条件的复杂性及结冰类型的多样性致使抗结冰材料的研究面临很大挑战,存在的稳定性差、应用条件局限性等诸多问题尚未解决,不能满足实际应用的需求。本文根据表面分子的柔性或滑移性对抗结冰性能的影响,提出了柔性抗结冰表面的概念,总结了柔性抗结冰表面的种类(本征柔性表面、缓释柔性表面、润滑柔性表面)及其抗结冰机理和近年来取得的一些重要研究成果,并对柔性抗结冰表面存在的问题进行了分析,以期为抗结冰材料的研究提供新的研究思路和方法。

The attachment and accumulation of ice, a common natural phenomenon, brings many inconvenience and even serious disaster to human society. The anti-icing surface is a hot topic in current research, and the surface structure and properties of materials are the key factors that influence the icing. But up to date, there still exist some problems, such as poor stability and limitation of application conditions, to be further comprehensively and systematically studied due to the complexity of icing conditions and the diversity of icing types. In the review, based on the relationships between the anti-icing properties and the molecule’s flexibility or slippage of the material surface, the concept of the flexible anti-icing surface is proposed and the types and mechanisms of flexible anti-icing surfaces, including intrinsic surface, sustained release surface and lubrication surface are summarized. Furthermore,the research progress and prospects of various flexible anti-icing surfaces are emphatically described and the existing problems of these surfaces are particularly analyzed. The challenges and the prospective tendency of flexible anti-icing surfaces are also given according the current research.

()
图1 不同方法制备的含有POSS结构单元的有机硅共聚物:(a)硅氢加成法,(b)RAFT,(c)点击化学[27, 28]
Fig. 1 Preparation of organosilicon copolymers containing POSS structural units by different methods:(a) hydrosilylation,(b) RAFT,(c) click chemistry[27, 28]
图2 (a)多元醇注入P(PEGMA-co-GMA)表面的抗结冰示意图。(b)两亲性共聚物P(PEGMA-co-GMA)的化学结构[40]
Fig. 2 (a) Schematic illustration of anti-icing and deicing properties of a polyols-infused slippery surface.(b) Chemical strcture of amphiphilic copolymer P(PEGMA-co-GMA)[40]
图3 有机硅缓释柔性表面的制备方法[41]
Fig. 3 Method for preparing silicone sustained release flexible surface[41]
图4 (a)刺激响应性分泌防冻剂的防冰涂层示意图;(b)示意图表明防冻液体通过孔隙分泌以响应与表面接触的冰或霜,导致冰或霜融化。随后,熔体通过空气运动被移除或部分被吸回到真皮中[42]
Fig. 4 (a) Schematic of the stimuli-responsive antifreeze secreting anti-icing coating;(b) schematic showing that the antifreeze liquid is secreted through the pores in response to contact with ice or frost forming on the surface, which results in melting of the ice or frost. Subsequently, the melt is removed via air motion or partially wicked back into the dermis[42]
图5 电沉积法制备纳米结构PPy涂层示意图[21]
Fig. 5 Schematic diagram of preparation of nanostructure PPy coating by electrodeposition[21]
图6 结冰前后润滑油的扫面电镜图[54]
Fig. 6 SEM images of lubricating oil before and after Rykalzewski freezing[54]
图7 仿蚯蚓聚合物柔性表面的制备以及其自润滑行为的调控机制示意图[56,57,58]
Fig. 7 Schematic diagram of the preparation of a earthworm-inspired polymer surface and its self-lubricating behavior[56,57,58]
图8 聚丙烯酸亲水自润滑表面的制备[62]
Fig. 8 Preparation of poly(acrylic acid)(PAA) hydrophilic self-lubricating surface[62]
图9 PAA-DA聚合物合成及其亲水润滑表面形成示意图[63]
Fig. 9 Synthesis of the PAA-DA conjugate and schematic representation of the mussel-inspired construction of the anti-icing coating with an aqueous lubricating layer[63]
图10 HBFP(Ⅲ)-PEG和LC-HBFP-PEG交联网络的制备[65,69,70]
Fig. 10 Preparation of HBFP(Ⅲ)-PEG and LC-HBFP-PEG crosslinked networks[65,69,70]
图11 POSS-PDMAEMA-b-PSBMA和P(SBMA-co-FMA-co-AMA)的制备[71, 72]
Fig. 11 Synthesis of POSS-PDMAEMA-b-PSBMA and P(SBMA-co-FMA-co-AMA)[71, 72]
图12 来自昆虫(Mpd)的抗冻蛋白质的图解并选择性地将MpdAFP束缚在PDA和GOPTS表面上[75]
Fig. 12 Illustration of antifreeze protein from an insect(M. p. dzungarica) and selectively tethered MpdAFP on the PDA and GOPTS surfaces[75]
[1]
Ware C S, Smith-Palmer T, Peppou-Chapman S, Scarratt L, Humphries E M, Balzer D, Neto C . ACS Appl. Mater. Interfaces, 2018,10:4173.
[2]
Das A, Farnham T A, Subramanyam S B, Varanasi K K . ACS Appl. Mater. Interfaces, 2017,9:21496.
[3]
Ma Z, Chen P, Cheng W, Yan K, Pan L, Shi Y, Yu G . Nano Lett., 2018,18:4570.
[4]
Goh S C, Luan Y, Wang X, Du H, Chau C, Schellhorn H E, Brash J L, Chen H, Fang Q . J. Mater. Chem. B, 2018,6:940.
[5]
Menini R, Farzaneh M . J.Adhes. Sci. Technol., 2011,25:971.
[6]
Lv J, Song Y, Jiang L, Wang J . ACS Nano, 2014,8:3152.
[7]
Huang L, Liu Z, Liu Y, Wang J . Exp. Therm. Fluid Sci., 2009,33:1049.
[8]
李辉(Li H), 赵蕴慧(Zhao Y H), 袁晓燕(Yuan X Y) . 化学进展 (Progress in Chemistry), 2012,24:2087.
[9]
Onda T, Shibuichi S, Satoh N, Tsujii K . Langmuir, 1996,12:2125.
[10]
Samaha M A, Gad-El-Hak M . Polymers, 2014,6:1266.
[11]
郑海坤(Zheng H K), 常士楠(Chang S N), 赵媛媛(Zhao Y Y) . 化学进展 (Progress in Chemistry), 2017,29:102.
[12]
Chen J, Liu J, He M, Li K, Cui D, Zhang Q, Zeng X, Zhang Y, Wang J, Song Y . Appl. Phys. Lett., 2012,101:111603.
[13]
Jellinek H H G, Kittaka S, Lee M, Yokota R . Coll. Polym. Sci., 1978,256:544.
[14]
Andersson L, Golander C, Persson S . J.Adhes. Sci. Technol., 1994,8:117.
[15]
Murase H, Fujibayashi T . Prog. Org. Coat., 1997,31:97.
[16]
Adam J M, Gareth H M, Robert E C . ACS Nano, 2010,4:7048.
[17]
Kreder M J, Alvarenga J, Kim P, Aizenberg J . Nat. Rev. Mater, 2016,1:15003.
[18]
Murase H, Nakishi K, Kogure H, Fubayashi T, Tamura K, Haruta N . J.Appl. Polym. Sci., 1994,54:2051.
[19]
Bhamidipati M V . US 7514017, 2009.
[20]
Wong T S, Kang S H, Tang S, Smythe E J, Hatton B D, Grinthal A, Aizenberg J . Nature, 2011,477:443.
[21]
Kim P, Wong T, Alvarenga J, Kreder M J, Wilmer E A, Aizenberg J . ACS Nano, 2012,6:6569.
[22]
Hejazi V, Sobolev K, Nosonovsky M . Sci. Rep., 2013,3:2194.
[23]
Hoover K L, Watson C R, Putnam J W, Dolan R C, Bonarrigo B B, Kurz P L, Weisse M A . US 20070254170, 2007.
[24]
Chuppina S V, Glass Phys . Chem., 2007,33:502.
[25]
Li X, Zhao Y, Li H, Yuan X . Appl. Surf. Sci., 2014,316:222.
[26]
Li H, Li X, Luo C, Zhao X, Yuan X . Thin Solid Films, 2014,573:67.
[27]
Li Y, Luo C, Li X, Zhang K, Zhao Y, Zhu K, Yuan X . Appl. Surf. Sci., 2016,360:113.
[28]
Zhang K, Li X, Zhao Y, Zhu K, Li Y, Tao C, Yuan X . Prog. Org. Coat., 2016,93:87.
[29]
向青云(Xiang Q Y), 熊婷(Xiong T), 车国勇(Che G Y), 傅轩(Fu X), 漆刚(Qi G), 王有治(Wang Y Z) . 有机硅材料 (Silicone Material), 2017,31:197.
[30]
Arianpour F, Farzaneh M, Kulinich S . Appl. Surf. Sci., 2013,265:546.
[31]
Emelyanenko A, Boinovich L, Bezdomnikov A, Chulkova E, Emelyanenko K . ACS Appl. Mater. Interfaces, 2017,9:24210.
[32]
Zhu K, Li X, Su J, Li H, Zhao Y, Yuan X . Polym. Eng. Sci., 2018,973.
[33]
Zhu K, Qi H, Wang S, Zhou J, Zhao Y, Su J, Yuan X . J. Macromol. Sci. B, 2012,51:1976.
[34]
Simpson J T, Hunter S R, Aytug T . Rep. Prog. Phys., 2015,78:086501.
[35]
Nakajima A, Miyamoto T, Sakai M . Appl. Surf. Sci., 2014,292:990.
[36]
Golovin K, Kobaku S P R, Lee D H, DiLoreto E T, Mabry J M, Tuteja A . Sci. Adv., 2016,2:1501496.
[37]
Dou R, Chen J, Zhang Y, Wang X, Cui D, Song Y, Jiang L, Wang J . ACS Appl. Mater. Interfaces, 2014,6:6998.
[38]
Golovin K, Tuteja A . Sci. Adv., 2017,3:e1701617.
[39]
Ayres J, Simendinger W, Balik C . J.Coat. Technol. Res., 2007,4:463.
[40]
Zhang G, Zhang Q, Cheng T, Zhan X, Chen F . Langmuir, 2018,34:4052.
[41]
Yeong Y, Wang C, Wynne K, Gupta M . ACS Appl. Mater. Interfaces, 2016,8:32050.
[42]
Sun X, Damle V, Liu S, Rykaczewski K . Adv. Mater. Interfaces, 2015,23:1400479.
[43]
Eberle P, Tiwari M K, Maitra T, Poulikakos D . Nanoscale, 2014,6:4874.
[44]
Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos D . Langmuir, 2011,27:3059.
[45]
韦存茜(Wei C Q), 严杰(Yan J),唐浩(Tang H), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q) . 化学进展 (Progress in Chemistry), 2016,28:9.
[46]
Rykaczewski K, Paxson A, Staymates M, Walker M, Sun X, Anand S, Srinivasan S, McKinley G, Chinn J, Scott J, Varanasi K . Sci. Rep., 2014,4:4158.
[47]
Xiao L, Li J, Mieszkin S, di Fino A, Clare A, Callow M, Callow J, Grunze M, Rosenhahn A, Levkin P . ACS Appl. Mater. Interfaces, 2013,5:10074.
[48]
Miranda D, Urata C, Masheder B, Dunderdale G, Yagihashi M, Hozumi A . APl. Mater., 2014,2:56108.
[49]
Wang S, Liu K, Yao X, Jiang L . Chem. Rev., 2015,115:8230.
[50]
Wang N, Xiong D, Lu Y, Pan S, Wang K, Deng Y, Shi Y . J. Phys. Chem. C, 2016,120:11054.
[51]
Wang N, Xiong D, Pan S, Wang K, Shi Y, Deng Y . New J. Chem., 2017,41:1846.
[52]
Wang Y, Zhang H, Liu X, Zhou Z . J. Mater. Chem. A, 2016,4:2524.
[53]
Liu Q, Yang Y, Huang M, Zhou Y, Liu Y, Liang X D . Appl. Surf. Sci., 2015,346:68.
[54]
Rykaczewski K, Anand S, Subramanyam S B . Langmuir, 2013,29:5230.
[55]
Smith J, Dhiman R, Anand S . Soft Matter, 2013,9:1772.
[56]
Cui J, Daniel D, Grinthal A, Lin K, Aizenberg J . Nat. Mater., 2015,14:790.
[57]
Zhao H, Xu J, Jing G, Prieto-López L, Deng X, Cui J . Angew. Chem. Int. Ed., 2016,55:10681.
[58]
Zhao X, Sun Q, Deng X, Cui J . Adv. Mater., 2019,19:1802141.
[59]
Yeong Y, Milionis A, Loth E, Sokhey J . Cold Reg. Sci. Technol., 2018,148:29.
[60]
Golecki I, Jaccard C . J. Phys. C: Solid State Phys., 1978,11:4229.
[61]
Rosenberg R . Phys. Today, 2005,58:50.
[62]
Chen J, Dou R, Cui D, Zhang Q, Zhang Y, Xu F, Zhou X, Wang J, Song Y, Jiang L . ACS Appl. Mater. Interfaces, 2013,5:4026.
[63]
Chen J, Li K, Wu S, Liu J, Liu K, Fan Q . ACS Omega, 2017,2:2047.
[64]
Powell K, Cheng C, Wooley K . Macromolecules, 2007,40:4509.
[65]
Imbesi P, Finlay J, Aldred N, Eller M, Felder S, Pollack K, Lonnecker A, Raymond J, Mackay M, Schweikert E, Clare A, Callow J, Callow M, Wooley K . Polym. Chem., 2012,3:3121.
[66]
Chen S, Li L, Zhao C, Zheng J . Polymer, 2010,51:5283.
[67]
Bartels J, Cheng C, Powell K, Xu J, Wooley K . Macromol. Chem. Phys., 2007,208:1676.
[68]
Nutt D, Smith J . J.Am. Chem. Soc., 2008,130:13066. https://www.ncbi.nlm.nih.gov/pubmed/18774821

doi: 10.1021/ja8034027     URL     pmid: 18774821
[69]
Zigmond J, Pollack K, Smedley S, Raymond J, Link L, Pavıa-Sanders A, Hickner M, Wooley K . J.Polym. Sci. Polym. Chem., 2016,54:238.
[70]
Zigmond J, Pavía-Sanders A, Russell J, Wooley K . Chem. Mater., 2016,28:5471.
[71]
Li C, Li X, Tao C, Ren L, Zhao Y, Bai S, Yuan X . ACS Appl. Mater. Interfaces, 2017,9:22959.
[72]
Tao C, Bai S, Li X, Li C, Ren L, Zhao Y, Yuan X . Prog. Org. Coat., 2018,115:56.
[73]
Liang B, Zhang G, Zhong Z, Huang Y, Su Z . Langmuir, 2019,35:1294.
[74]
He Z, Liu K, Wang J . Acc. Chem. Res., 2018,51:1082.
[75]
Liu K, Wang C, Ma J, Shi G, Yao X, Fang H, Song Y, Wang J . PNAS Early Edition, 2016,113:14739.
[76]
Kirillova A, Ionov L, Roisman I, Synytska A . Chem. Mater, 2016,28:6995.
[1] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[2] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[3] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[4] 韦存茜, 严杰, 唐浩, 张庆华, 詹晓力, 陈丰秋. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1): 9-17.
[5] 陈峰, 朱英杰. 磷酸钙纳米结构材料的微波辅助液相合成[J]. 化学进展, 2015, 27(5): 459-471.
[6] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[7] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层: 从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.
[8] 马智, 王金叶, 高祥, 丁彤, 秦永宁. 埃洛石纳米管的应用研究现状[J]. 化学进展, 2012, 24(0203): 275-283.
[9] 何文, 丁元菊, 鲁在君, 杨其峰. 两亲嵌段共聚物胶束用作医用材料[J]. 化学进展, 2011, 23(5): 930-940.
[10] 丁玲 何天稀 熊云 吴家峰 陈立功 陈国需. 离子液体作为新型润滑材料的研究进展*[J]. 化学进展, 2010, 22(0203): 298-308.
[11] 万德成 王光成 杨根金 杨正龙 浦鸿汀. 共价胶束:核内官能团的性质与作用*[J]. 化学进展, 2010, 22(0203): 465-471.
[12] 薛群基 张俊彦. 润滑材料摩擦化学*[J]. 化学进展, 2009, 21(11): 2445-2457.
[13] 温昕,安胜军,侯志飞,焦展. 载银缓释型抗菌敷料[J]. 化学进展, 2009, 21(0708): 1644-1654.
[14] 吴玉松,董炎明,邱星屏. 液晶润滑的研究进展*[J]. 化学进展, 2001, 13(05): 343-.
[15] 薛群基,刘维民. 摩擦化学的主要研究领域及其发展趋势[J]. 化学进展, 1997, 9(03): 311-.
阅读次数
全文


摘要

柔性抗结冰表面的制备及其性能