English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 459-471 DOI: 10.7536/PC141218 前一篇   后一篇

• 综述与评价 •

磷酸钙纳米结构材料的微波辅助液相合成

陈峰, 朱英杰*   

  1. 中国科学院上海硅酸盐研究所 上海 200050
  • 收稿日期:2014-12-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 朱英杰 E-mail:y.j.zhu@mail.sic.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 51472259, 51172260, 51102258)和高性能陶瓷和超微结构国家重点实验室主任青年基金资助

Microwave-Assisted Synthesis of Calcium Phosphate Nanostructured Materials in Liquid Phase

Chen Feng, Zhu Yingjie*   

  1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2014-12-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51472259, 51172260, 51102258) and the Fund for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructure.
微波加热作为一种新兴热源具有加热速率快、制备时间短、节能等优点,已经被广泛应用于合成包括磷酸钙在内的多种无机纳米材料.磷酸钙作为典型的生物材料,其制备新方法的探索、结构/尺寸/形貌调控、性能研究和应用探索是生物材料领域的一个重要研究方向.本文阐述了微波辅助合成法用于制备纳米材料的优势,并综述了微波辅助液相快速合成磷酸钙纳米结构材料的进展.采用微波液相合成技术,可以制备出包括颗粒、一维、二维和三维结构在内的多种磷酸钙纳米结构材料,同时还可以通过功能性组分的掺杂/复合对磷酸钙纳米材料进行功能化.预期未来微波液相合成法在包括磷酸钙在内的多种无机纳米材料的合成领域将得到快速发展和广泛应用;另外,微波液相合成的磷酸钙纳米结构材料在药物递送和控释、蛋白吸附、金属离子吸附、生物成像及骨缺损修复等众多领域具有良好的应用前景.
Microwave heating has many advantages such as rapidness, short reaction time, high efficiency and energy saving. The microwave-assisted syntheses usually exhibit order-of-magnitude enhancements in chemical reaction rate as compared to the conventional syntheses. As a result, the microwave heating as a novel heat source allows the rapid production of inorganic nanostructured materials in liquid phase, thus advancing rapidly toward its practical applications. On the other hand, the rich varieties of liquid solvents and their smart combinations will provide a great freedom for the rapid preparation of various calcium phosphate nanostructured materials, and more importantly for the control over the chemical composition, structure, size, morphology, and self-assembly. In recent years, to investigate new strategies for the preparation, control over structure/size/morphology, properties and applications of calcium phosphate nanostructured materials have become a hot topic in the biomedical research field. Up to now, various calcium phosphate nanostructured materials have been prepared by the microwave-assisted method in liquid phase, including nanoparticles, one-, two- and three-dimensional nanostructures. In addition, calcium phosphate nanostructured materials can be further functionalized through doping or adding different functional components by the microwave-assisted method. The as-prepared calcium phosphate based nanostructured materials are promising for applications in various fields, including drug delivery, protein adsorption, metal ion adsorption, bioimaging, and so on. This review discusses the advantages of microwave-assisted synthesis of nanostructured materials, and reviews the recent progress of microwave-assisted preparation of calcium phosphate nanostructured materials in liquid phase.In addition, some future research trends and directions of microwave-assisted synthesis of calcium phosphate nanostructured materials are proposed.

Contents
1 Introduction
2 Advantages of microwave-assisted preparation of nanostructured materials
3 Microwave-assisted preparation of calcium phosphate nanostructured materials using inorganic phosphate as phosphorus source in liquid phase
3.1 Structural control over calcium phosphate
3.2 Preparation of calcium phosphate nanostructured materials using the ultrasound-microwave combined method
4 Microwave-assisted preparation of calcium phosphate nanostructured materials using organic biomolecules as phosphorus source
5 Microwave-assisted preparation of multifunctional calcium phosphate nanostructured materials in liquid phase
5.1 Doped/composite calcium phosphate nanostructured materials
5.2 Multifunctional calcium phosphate nanostructured drug carriers
6 Conclusion

中图分类号: 

()
[1] Komarneni S, Roy R. Mater. Lett., 1985, 3: 165.
[2] Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. Tetrahedron Lett., 1986, 27: 279.
[3] Giguere R J, Bray T L, Duncan S M, Majetich G. Tetrahedron Lett., 1986, 27: 4945.
[4] Hayes B L. Microwave Synthesis:Chemistry at the Speed of Light. Matthews NC USA:CEM Publishing, 2002.
[5] Zhu Y J, Chen F. Chem. Rev., 2014, 114: 6462.
[6] Tzaphlidou M J. Biol. Phys., 2008, 34: 39.
[7] Weiner S, Wagner H D. Annu. Rev. Mater. Sci., 1998, 28: 271.
[8] Chen F, Zhu Y J. Curr. Nanosci., 2014, 10: 465.
[9] Dallinger D, Kappe C O. Chem. Rev., 2007, 107: 2563.
[10] Tompsett G A, Conner W C, Yngvesson K S. ChemPhysChem, 2006, 7: 296.
[11] Schanche J S. Mol. Divers., 2003, 7: 293.
[12] Gabriel C, Gabriel S, Grant E H, Halstead B S J, Mingos D M P. Chem. Soc. Rev., 1998, 27: 213.
[13] Collins M J. Future Med. Chem., 2010, 2: 151.
[14] Nadagouda M N, Speth T F, Varma R S. Acc. Chem. Res., 2011, 44: 469.
[15] Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T. Chem. Eur. J., 2005, 11: 440.
[16] Zhang X Y, Liu Z. Nanoscale, 2012, 4: 707.
[17] Park S E, Chang J S, Hwang Y K, Kim D S, Jhung S H, Hwang J S. Catal. Surv. Asia, 2004, 8: 91.
[18] Baghbanzadeh M, Carbone L, Cozzoli P D, Kappe C O. Angew. Chem. Int. Edit., 2011, 50: 11312.
[19] Bogdal D, Prociak A, Michalowski S. Curr. Org. Chem., 2011, 15: 178.
[20] Lerner E, Sarig S, Azoury R. J. Mater. Sci. Mater. Med., 1991, 2: 138.
[21] Vaidhyanathan B, Rao K J. Bull. Mat. Sci., 1996, 19: 1163.
[22] Kundu P K, Waghode T S, Bahadur D, Datta D. Med. Biol. Eng. Comput., 1998, 36: 654.
[23] Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R. Adv. Mater., 1998, 10: 49.
[24] Yang Z W, Jiang Y S, Wang Y J, Ma L Y, Li F F. Mater. Lett., 2004, 58: 3586.
[25] Chen S, Ji J O, Zhou Z G, Gong L, Chen J D, Xu Y. Rare Metal Mat. Eng., 2008, 37: 94.
[26] Nazir R, Iqbal N, Khan A S, Akram A, Asif A, Chaudhry A A, Rehman I U, Hussain R. Ceram. Int., 2012, 38: 457.
[27] Venkateswarlu K, Bose A C, Rameshbabu N. Physica B, 2010, 405: 4256.
[28] Kalita S J, Verma S. Mater. Sci. Eng. C Mater. Biol. Appl., 2010, 30: 295.
[29] Smolen D, Chudoba T, Gierlotka S, Kedzierska A, Lojkowski W, Sobczak K, Swieszkowski W, Kurzydlowski K J. J. Nanomater., 2012, 2012: 841971.
[30] Katsuki H, Furuta S, Komarneni S. J. Am. Ceram. Soc., 1999, 82: 2257.
[31] Zhang D Y, Luo H M, Zheng L W, Wang K J, Li H X, Wang Y, Feng H X. J. Hazard. Mater., 2012, 241: 418.
[32] Arami H, Mohajerani M, Mazloumi M, Khalifehzadeh R, Lak A, Sadrnezhaad S K. J. Alloy. Compd., 2009, 469: 391.
[33] Kumar A R, Kalainathan S, Saral A M. Cryst. Res. Technol., 2010, 45: 776.
[34] Lak A, Mazloumi M, Mohajerani M S, Zanganeh S, Shayegh M R, Kajbafvala A, Arami H, Sadrnezhaad S K. J. Am. Ceram. Soc., 2008, 91: 3580.
[35] Kumar G S, Girija E K. Ceram. Int., 2013, 39: 8293.
[36] Kumar G S, Thamizhavel A, Girija E K. Mater. Lett., 2012, 76: 198.
[37] Sarig S, Kahana F. J. Cryst. Growth, 2002, 237: 55.
[38] Yoon S Y, Park Y M, Park S S, Stevens R, Park H C. Mater. Chem. Phys., 2005, 91: 48.
[39] Yang Z W, Jiang Y S, Wang A P, Li F F. J. Inorg. Mater., 2004, 19: 839.
[40] Park Y M, Ryu S C, Yoon S Y, Stevens R, Park H C. Mater. Chem. Phys., 2008, 109: 440.
[41] Krishna D S R, Siddharthan A, Seshadri S K, Kumar T S S. J. Mater. Sci. Mater. Med., 2007, 18: 1735.
[42] Han J K, Song H Y, Saito F, Lee B T. Mater. Chem. Phys., 2006, 99: 235.
[43] Nazir R, Khan A S, Ahmed A, Ur-Rehman A, Chaudhry A A, Rehman I U, Wong F S L. Ceram. Int., 2013, 39: 4339.
[44] Siddharthan A, Seshadri S K, Kumar T S S. J. Mater. Sci. Mater. Med., 2004, 15: 1279.
[45] Ran J G, Ran X, Gou L, Su B H, Huang C F, Li Y. Rare Metal Mat. Eng., 2007, 36: 162.
[46] Sha L, Liu Y Y, Zhang Q, Hu M, Jiang Y S. Mater. Chem. Phys., 2011, 129: 1138.
[47] Lee Y T, Youn M H, Paul R K, Lee K H, Song H Y. Mater. Chem. Phys., 2007, 104: 249.
[48] Jalota S, Bhaduri S B, Tas A C. J. Biomed. Mater. Res. Part A, 2006, 78A: 481.
[49] Murugan R, Ramakrishna S. Mater. Lett., 2004, 58: 230.
[50] Zhou H, Bhaduri S. J. Biomed. Mater. Res. Part B, 2012, 100B: 1142.
[51] Ma M G, Zhu Y J, Chang J. J. Phys. Chem. B, 2006, 110: 14226.
[52] Liao J G, Liu Q. Rare Metal Mat. Eng., 2014, 43: 1779.
[53] Vani R, Raja S B, Sridevi T S, Savithri K, Devaraj S N, Girija E K, Thamizhavel A, Kalkura S N. Nanotechnology, 2011, 22: 285701.
[54] Zhao X Y, Zhu Y J, Chen F, Lu B Q, Wu J. CrystEngComm, 2013, 15: 206.
[55] Amer W, Abdelouahdi K, Ramananarivo H R, Zahouily M, Fihri A, Djessas K, Zahouily K, Varma R S, Solhy A. CrystEngComm, 2014, 16: 543.
[56] Amer W, Abdelouandi K, Ramananarivo H R, Zahouily M, Fihri A, Coppel Y, Varma R S, Solhy A. Mater. Lett., 2013, 107: 189.
[57] Mishra V K, Srivastava S K, Asthana B P, Kumar D. J. Am. Ceram. Soc., 2012, 95: 2709.
[58] Kanchana P, Sekar C. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 42: 601.
[59] Liu J B, Li K W, Wang H, Zhu M K, Xu H Y, Yan H. Nanotechnology, 2005, 16: 82.
[60] Wang K W, Zhu Y J, Chen X Y, Zhai W Y, Wang Q, Chen F, Chang J A, Duan Y R. Chem. Asian J., 2010, 5: 2477.
[61] Wang K W, Zhu Y J, Chen F, Cheng G F, Huang Y H. Mater. Lett., 2011, 65: 2361.
[62] Wang Y Z, Fu Y. Mater. Lett., 2011, 65: 3388.
[63] Reardon P J T, Handoko A D, Li L, Huang J, Tang J W. J. Mater. Chem. B, 2013, 1: 6170.
[64] Chen F, Sun T W, Qi C, Wu J, Cui D X, Zhu Y J. J. Inorg. Mater., 2014, 29: 776.
[65] Gopi D, Indira J, Nithiya S, Kavitha L, Mudali U K, Kanimozhi K. Bull. Mater. Sci., 2013, 36: 799.
[66] Benzigar M R, Mane G P, Talapaneni S N, Varghese S, Anand C, Aldeyab S S, Balasubramanian V V, Vinu A. Chem. Lett., 2012, 41: 458.
[67] Banba Y, Umeda T, Kuroe H, Toyama T, Musha Y, Itatani K. J. Ceram. Soc. Jpn., 2013, 121: 901.
[68] Guo Y P, Yao Y B, Ning C Q, Chu L F, Guo Y J. Mater. Lett., 2011, 65: 1007.
[69] Pushpakanth S, Srinivasan B, Sreedhar B, Sastry T P. Mater. Chem. Phys., 2008, 107: 492.
[70] Jia N, Li S M, Ma M G, Sun R C. Mater. Lett., 2012, 68: 44.
[71] Islam M, Mishra P C, Patel R. J. Hazard. Mater., 2011, 189: 755.
[72] Ma M G, Zhu J F, Jia N, Li S M, Sun R C, Cao S W, Chen F. Carbohydr. Res., 2010, 345: 1046.
[73] Jia N, Li S M, Zhu J F, Ma M G, Xu F, Wang B, Sun R C. Mater. Lett., 2010, 64: 2223.
[74] Tang Q L, Wang K W, Zhu Y J, Chen F. Mater. Lett., 2009, 63: 1332.
[75] Guha A, Nayar S, Thatoi H N. Bioinspir. Biomim., 2010, 5: 024001.
[76] Hasret E, Ipekoglu M, Altintas S, Ipekoglu N A. Environ. Sci. Pollut. Res., 2012, 19: 2766.
[77] Elkady M F, Mahmoud M M, Abd-El-Rahman H M. J. Non-Cryst. Solids, 2011, 357: 1118.
[78] Huang Y, Zhou G, Zheng L S, Liu H F, Niu X F, Fan Y B. Nanoscale, 2012, 4: 2484.
[79] Chen F, Huang P, Qi C, Lu B Q, Zhao X Y, Li C, Wu J, Cui D X, Zhu Y J. J. Mater. Chem. B, 2014, 2: 7132.
[80] Putro J N, Handoyo N, Kristiani V, Soenjaya S A, Ki O L, Soetaredjo F E, Ju Y H, Ismadji S. Ceram. Int., 2014, 40: 11453.
[81] Zou Z Y, Lin K L, Chen L, Chang J. Ultrason. Sonochem., 2012, 19: 1174.
[82] Liang T, Qian J C, Yuan Y, Liu C S. J. Mater. Sci., 2013, 48: 5334.
[83] Poinern G E J, Ghosh M K, Ng Y J, Issa T B, Anand S, Singh P. J. Hazard. Mater., 2011, 185: 29.
[84] Zou Z Y, Liu X G, Chen L, Lin K L, Chang J. J. Mater. Chem., 2012, 22: 22637.
[85] Qi C, Zhu Y J, Zhao X Y, Lu B Q, Tang Q L, Zhao J, Chen F. Chem. Eur. J., 2013, 19: 981.
[86] Qi C, Zhu Y J, Chen F. ACS Appl. Mater. Interfaces, 2014, 6: 4310.
[87] Zhao J, Zhu Y J, Zheng J Q, Chen F, Wu J. Microporous Mesoporous Mater., 2013, 180: 79.
[88] Zhao X Y, Zhu Y J, Qi C, Chen F, Lu B Q, Zhao J, Wu J. Chem. Asian J., 2013, 8: 1313.
[89] Qi C, Zhu Y J, Chen F. Chem. Asian J., 2013, 8: 88.
[90] Qi C, Zhu Y J, Lu B Q, Zhao X Y, Zhao J, Chen F, Wu J. Chem. Eur. J., 2013, 19: 5332.
[91] Zhao J, Zhu Y J, Cheng G F, Ruan Y J, Sun T W, Chen F, Wu J, Zhao X Y, Ding G J. Mater. Lett., 2014, 124: 208.
[92] Qi C, Tang Q L, Zhu Y J, Zhao X Y, Chen F. Mater. Lett., 2012, 85: 71.
[93] Jin Y D. Acc. Chem. Res., 2014, 47: 138.
[94] McCarthy J R, Weissleder R. Adv. Drug Deliv. Rev., 2008, 60: 1241.
[95] Park K, Lee S, Kang E, Kim K, Choi K, Kwon I C. Adv. Funct. Mater., 2009, 19: 1553.
[96] Kanchana P, Lavanya N, Sekar C. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 35: 85.
[97] Chandra V S, Baskar G, Suganthi R V, Elayaraja K, Joshy M I A, Beaula W S, Mythili R, Venkatraman G, Kalkura S N. ACS Appl. Mater. Interfaces, 2012, 4: 1200.
[98] Chen F, Li C, Zhu Y J, Zhao X Y, Lu B Q, Wu J. Biomater. Sci., 2013, 1: 1074.
[99] Iqbal N, Kadir M R A, Malek N, Bin Mahmood N H, Murali M R, Kamarul T. Mater. Res. Bull., 2013, 48: 3172.
[100] Iqbal N, Kadir M R A, Malek N, Mahmood N H, Murali M R, Kamarul T. Mater. Lett., 2012, 89: 118.
[101] Rameshbabu N, Kumar T S S, Prabhakar T G, Sastry V S, Murty K, Rao K P. J. Biomed. Mater. Res. Part A, 2007, 80A: 581.
[102] Rameshbabu N, Kumar T S S, Rao K P. Bull. Mat. Sci., 2006, 29: 611.
[103] Ravi N D, Balu R, Kumar T S S. J. Am. Ceram. Soc., 2012, 95: 2700.
[104] Iqbal N, Kadir M R A, Mahmood N H, Salim N, Froemming G R A, Balaji H R, Kamarul T. Ceram. Int., 2014, 40: 4507.
[105] Arul K T, Ramya J R, Bhalerao G M, Kalkura S N. Ceram. Int., 2014, 40: 13771.
[106] Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L. Colloid Surf. A Physicochem. Eng. Asp., 2014, 451: 172.
[107] Nabiyouni M, Zhou H, Luchini T J F, Bhaduri S B. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 37: 363.
[108] Olson T Y, Orme C A, Han T Y J, Worsley M A, Rose K A, Satcher J H, Kuntz J D. CrystEngComm, 2012, 14: 6384.
[109] Mishra V K, Bhattacharjee B N, Parkash O, Kumar D, Rai S B. J. Alloy. Compd., 2014, 614: 283.
[110] Padmanabhan S K, Haq E U, Licciulli A. Curr. Appl. Phys., 2014, 14: 87.
[111] Weissleder R. Nat. Biotechnol., 2001, 19: 316.
[112] Yan J L, Estevez M C, Smith J E, Wang K M, He X X, Wang L, Tan W H. Nano Today, 2007, 2: 44.
[113] Bunzli J C G. Chem. Rev., 2010, 110: 2729.
[114] Han Y C, Wang X Y, Li S P. Curr. Nanosci., 2010, 6: 178.
[115] Chen F, Huang P, Zhu Y J, Wu J, Cui D X. Biomaterials, 2012, 33: 6447.
[116] Wagner D E, Eisenmann K M, Nestor-Kalinoski A L, Bhaduri S B. Acta Biomater., 2013, 9: 8422.
[117] Andre R S, Paris E C, Gurgel M F C, Rosa I L V, Paiva-Santos C O, Li M S, Varela J A, Longo E. J. Alloy. Compd., 2012, 531: 50.
[118] Yang C, Yang P P, Wang W X, Gai S L, Wang J, Zhang M L, Lin J. Solid State Sci., 2009, 11: 1923.
[119] Escudero A, Calvo M E, Rivera-Fernandez S, de la Fuente J M, Ocana M. Langmuir, 2013, 29: 1985.
[120] Chen F, Huang P, Zhu Y J, Wu J, Zhang C L, Cui D X. Biomaterials, 2011, 32: 9031.
[121] Li Z X, Barnes J C, Bosoy A, Stoddart J F, Zink J I. Chem. Soc. Rev., 2012, 41: 2590.
[122] Ding G, Zhu Y, Qi C, Lu B Q, Wu J, Chen F. J. Colloid Interface Sci., 2014, 443: 72.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[5] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[6] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[7] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[8] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[9] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[10] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[11] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[12] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[13] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[14] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[15] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.