English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 139-155 DOI: 10.7536/PC170919 前一篇   后一篇

• 综述 •

氨基甲酸酯在C—H键活化中的应用

阙楚强, 陈宁*, 许家喜*   

  1. 北京化工大学理学院有机化学系 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2017-09-15 修回日期:2017-11-09 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 陈宁,chenning@mail.buct.edu.cn;许家喜,jxxu@mail.buct.edu.cn, E-mail:chenning@mail.buct.edu.cn;jxxu@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21702014,21572017,21772010)和国家重大基础研究(973)项目(No.2013CB328905)资助

Application of Carbamates in the C—H Bond Activation

Chuqiang Que, Ning Chen*, Jiaxi Xu*   

  1. State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2017-09-15 Revised:2017-11-09 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21702014, 21572017, 21772010) and the National Key Basic Research Program(973) of China(No.2013CB328905).
氨基甲酸酯广泛存在于天然产物、药物和农药分子中,同时也是一种常见的C—H键活化导向官能团。在过渡金属催化下,氨基甲酸酯可导向底物分子氨基邻位的C—H键活化,经六元环金属中间体,再与其他偶联试剂偶联实现新的官能团化。本文系统总结了其在C—H键活化反应中的应用,具体包括:(1)N-芳基氨基甲酸酯、氨基甲酸芳酯和氨基甲酸烯醇酯可在过渡金属Pd、Rh、Ru和Ir等催化下发生芳基邻位sp2 C—H键活化与官能团化反应,得到卤化、芳基化、环化和烯基化产物;(2)氨基甲酸烯醇酯可在Rh催化下发生烯基β-位sp2 C—H键活化与官能团化反应,得到烯基化和烯丙基化产物;(3)氨基邻位具有活性氢的N-烷基氨基甲酸酯可在Pd、Cu、Fe甚至无过渡金属催化下发生sp3 C—H键活化与官能团化反应,得到酰氧化、烷基化和芳基化产物。在芳香sp2 C—H键活化中,取代基的电子效应和空间位阻效应均对产物产率和选择性有重要影响。大多数情况下,给电子与空间位阻较小的取代基有利于反应的顺利进行。此外,当底物为N-烷氧羰基保护的苄胺、四氢异喹啉或1,2-二氢喹啉时,因氨基邻位独特的高活性,可在Cu、Fe甚至无金属催化剂或光催化下催化氨基邻位sp3 C—H键活化反应,还可以实现不对称诱导,获得非常高的对映选择性。希望本文总结的内容能促进氨基甲酸酯在C—H键活化反应中的进一步应用。
Carbamates widely exist in natural products, drugs and pesticides, and have also been utilized as directing groups in the C-H bond activation. Generally, in the presence of transition metals, the carbamate group can selectively direct the ortho C-H bond activation of substrates to realize the coupling approaches with various coupling reagents through metal-bearing six-membered ring intermediates. The application of carbamates in the C-H bond activation reactions has been systematically summarized, including:(1) sp2 C-H bond activation and functionalization of N-aryl carbamates, and aryl carbamates under the catalysis of Pd, Rh, Ru, or Ir to afford the corresponding halogenation, arylation, cyclization, and alkenylation products;(2) sp2 C-H bond activation and functionalization of alkenyl carbamates in the presence of Rh to afford the corresponding alkenylation and allylation products;(3) sp3 C-H bond activation and functionalization of N-dialkyl carbamates in the presence of Pd, Cu, Fe or even the transition-metal-free conditions to afford the acetoxylation, alkylation or arylation products. During the aromatic sp2 C-H bond activation approaches, both electronic and steric effects control the reaction yields and regioselectivities. In most cases, substrates bearing electron donating and less steric hindrance groups show better reactivity. Moreover, owing to the high activity of vicinal position of amines, the C-H functionalization of benzylamine, tetrahydroisoquinolines or 1,2-dihydroquinoline, bearing N-alkoxycarbonyl, can be carried out under the catalysis of copper, iron, or even the transition-metal-free conditions, some of which can also show high enantioselectivity through the asymmetric induction. The review can provide some guidance to promote the further development and application of carbamates in C-H bond activation reactions.
Contents
1 Introduction
2 Ortho-directed sp2 C-H bond activation reactions of N-aryl carbamates
2.1 Pd-catalyzed reactions
2.2 Rh-catalyzed reactions
2.3 Ru-catalyzed reactions
2.4 Ir-catalyzed reactions
3 Ortho-directed sp2 C-H bond activation reactions of aryl carbamates
3.1 Pd-catalyzed reactions
3.2 Rh-catalyzed reactions
3.3 Ru-catalyzed reactions
3.4 Ir-catalyzed reactions
4 Ortho-directed sp2 C-H bond activation reactions of N-alkenyl carbamates and alkenyl carbamates
5 Directing sp3 C-H bond activation reactions of N-dialkyl carbamates
6 Non-directing sp3 C-H bond activation reactions of N-dialkyl carbamates
7 Conclusion

中图分类号: 

()
[1] Negishi E I. Angew. Chem. Int. Ed., 2011, 50:6738.
[2] Suzuki A. Angew. Chem. Int. Ed., 2011, 50:6722.
[3] Meijere A D, Diederich F. Metal-Catalyzed Cross-Coupling Reactions. 2nd ed., Weinheim:Wiley-VCH, 2004.
[4] 胡兴邦(Hu X B), 李浩然(Li H R). 化学进展(Prog. Chem.), 2009, 21:577.
[5] Gensch T, Hopkinson M N, Glorius F, Wencel-Delord J. Chem. Soc. Rev., 2016, 45:2900.
[6] Wencel-Delord J, Dröger T, Liu F, Glorius F. Chem. Soc. Rev., 2011, 40:4740.
[7] Chen Z K, Wang B J, Zhang J T, Yu W L, Liu Z X, Zhang Y H. Org. Chem. Front., 2015, 2:1107.
[8] Ping L, Chung D S, Bouffard J, Lee S G. Chem. Soc. Rev., 2017, 46:4299.
[9] Eagle K M, Mei T S, Wasa M, Yu J Q. Acc. Chem. Res., 2012, 45:788.
[10] Leow D, Li G, Mei T S, Yu J Q. Nature, 2012, 486:518.
[11] Matthews G. The Pesticide Manual. 11th ed., Croydon:British Crop Production Council, 1998.
[12] Alizadeh B H, Sugiyama T, Oritani T, Kuwahara S. Biosci. Biotechnol. Biochem., 2002, 66:422.
[13] Snieckus V. Chem. Rev., 1990, 90:879.
[14] 沈金海(Shen J H), 程国林(Chen G L), 崔秀灵(Cui X L). 化学进展(Prog. Chem.), 2012, 24:1324.
[15] Topczewski J J, Sanford M S. Chem. Sci., 2015, 6:70.
[16] Song G Y, Wang F, Li X W. Chem. Soc. Rev., 2012, 41:3651.
[17] Colby D A, Bergman R G, Ellman J A. Chem. Rev., 2010, 110:624.
[18] Arockiam P B, Bruneau C, Dixneuf P H. Chem. Rev., 2012, 112:5879.
[19] Dong Z, Ren Z, Thompson S J, Xu Y, Dong G B. Chem. Rev., 2017, 117:9333.
[20] Han Y F, Jin G X. Chem. Soc. Rev., 2014, 43:2799.
[21] 邢其毅(Xing Q Y), 裴伟伟(Pei W W), 徐瑞秋(Xu R Q), 裴坚(Pei J). 基础有机化学(Basic Organic Chemistry). 北京:高等教育出版社(Beijing:Higher Education Press), 2005.
[22] 周励宏(Zhou L H), 陆文军(Lu W J). 化学学报(Acta Chim. Sin.), 2015, 73:1250.
[23] Uhlig N, Li C J. Chem. -Eur. J., 2014, 20:12066.
[24] Moghaddam F M, Tavakoli G, Saeednia B, Langer P, Jafari B. J. Org. Chem., 2016, 81:3868.
[25] Yang L, Fu L, Li G. Adv. Synth. Catal., 2017, 359:2235.
[26] Morita T, Satoh T, Miura M. Org. Lett., 2017, 19:1800.
[27] Cartney D M, Guiry P J. Chem. Soc. Rev., 2011, 40:5122.
[28] Haridharan R, Muralirajan K, Cheng C H. Adv. Synth. Catal., 2015, 357:366.
[29] Zhang X, Si W L, Bao M, Asao N, Yamamoto Y, Jin T N. Org. Lett., 2014, 16:4830.
[30] Zhou B, Yang Y X, Tang H Y, Du J J, Feng H J, Li Y C. Org. Lett., 2014, 16:3900.
[31] Leitch J A, Wilson P B, McMullin C L, Mahon M F, Bhonoah Y, Williams I H, Frost C G. ACS Catal., 2016, 6:5520.
[32] Kallepalli V A, Shi F, Paul S, Onyeozili E N, Maleczka R E, Smith M R. J. Org. Chem., 2009, 74:9199.
[33] Bedford R B, Mitchell C J, Webster R L. Chem. Comm., 2010, 46:3095.
[34] John A, Nicholas K M. J. Org. Chem., 2012, 77:5600.
[35] Sun X Y, Sun Y H, Zhang C, Rao Y. Chem. Comm., 2014, 50:1262.
[36] Sun X Y, Yao X, Zhang C, Rao Y. Chem. Comm., 2015, 51:10014.
[37] Bedford R B, Webster R L, Mitchell C J. Org. Biomol. Chem., 2009, 7:4853.
[38] Zhao X D, Yeung C S, Dong V M. J. Am. Chem. Soc., 2010, 132:5837.
[39] Bedford R B, Brenner P B, Durrant S J, Gallagher T, Méndez-Gálvez C, Montgomery M. J. Org. Chem., 2016, 81:3473.
[40] Yang X L, Sun Y H, Chen Z, Rao Y. Adv. Synth. Catal., 2014, 356:1625.
[41] Gong T J, Xiao B, Liu Z J, Wan J, Xu J, Luo D F, Fu Y, Liu L. Org. Lett., 2011, 13:3235.
[42] Feng C, Loh T P. Chem. Comm., 2011, 47:10458.
[43] Srimani D, Bej A, Sarkar A. J. Org. Chem., 2010, 75:4296.
[44] Schröder N, Wencel-Delord J, Glorius F. J. Am. Chem. Soc., 2012, 134:8298.
[45] Li B, Ma J F, Liang Y J, Wang N C, Xu S S, Song H B, Wang B Q. Eur. J. Org. Chem., 2013,(10):1950.
[46] Li J, Kornhaaß C, Ackermann L. Chem. Comm., 2012, 48:11343.
[47] Reddy M C, Jeganmohan M. Chem. Comm., 2013, 49:481.
[48] Liu W P, Ackermann L. Org. Lett., 2013, 15:3484.
[49] Bartels B, Helmchen G. Chem. Comm., 1999,(8):741.
[50] Mkhalid I A I, Barnard J H, Marder T B, Murphy J M, Hartwig J F. Chem. Rev., 2010, 110:890.
[51] Fuji K, Kinoshita N, Kawabata T, Tanaka K. Chem. Comm., 1999,(22):2289.
[52] Yamazaki K, Kawamorita S, Ohmiya H, Sawamura M. Org. Lett., 2010, 12:3978.
[53] Gong T J, Su W, Liu Z J, Cheng W M, Xiao B, Fu Y. Org. Lett., 2014, 16:330.
[54] Sharma S, Han S H, Oh Y, Mishra N K, Han S, Kwak J H, Lee S Y, Jung Y H, Kim I S. J. Org. Chem., 2016, 81:2243.
[55] Wang D H, Hao X S, Wu D F, Yu J Q. Org. Lett., 2006, 8:3387.
[56] Li Z P, Bohle D S, Li C J. Proc. Natl. Acad. Sci., 2006, 103:8928.
[57] Li Z P, Li C J. J. Am. Chem. Soc., 2005, 127:3672.
[58] 郭兴伟(Guo X W), 李志平(Li Z P), 李朝军(Li C J). 化学进展(Prog. Chem.), 2010, 22:1434.
[59] Ghobrial M, Harhammer K, Mihovilovic M D, Schnürch M. Chem. Comm., 2010, 46:8836.
[60] Richter H, Mancheño O G. Eur. J. Org. Chem., 2010,(23):4460.
[61] Richter H, Fröhlich R, Daniliuc C G, Mancheño O G. Angew. Chem. Int. Ed., 2012, 51:8656.
[62] Xie Z Y, Liu L, Chen W F, Zheng H B, Xu Q Q, Yuan H Q, Lou H X. Angew. Chem. Int. Ed., 2014, 53:3904.
[63] Liu X G, Sun S T, Meng Z L, Lou H X, Liu L. Org. Lett., 2015, 17:2396.
[64] Sun S T, Li C K, Floreancig P E, Lou H X, Liu L. Org. Lett., 2015, 17:1684.
[65] Xie Z Y, Zan X, Sun S T, Pan X H, Liu L. Org. Lett., 2016, 18:3944.
[66] Yan C C, Liu Y X, Wang Q M. RSC Adv., 2014, 4:60075.
[67] Yan C C, Li L L, Liu Y X, Wang Q M. Org. Lett., 2016, 18:4686.
[68] Liu Z Q, Chen L, Li J, Liu K, Zhao J Q, Xu M M, Feng L, Wan R Z, Li W, Liu L. Org. Biomol. Chem., 2017, 15:7600.
[1] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[2] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[3] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[4] 窦言东, 应莎莎, 张晨卿, 余黎阳, 郑垦, 朱勍*. 基于金属催化的直接叠氮化研究[J]. 化学进展, 2017, 29(2/3): 293-299.
[5] 熊兴泉, 范观铭, 朱荣俊, 石霖, 肖上运, 毕成. 酰胺类化合物的高效合成研究[J]. 化学进展, 2016, 28(4): 497-506.
[6] 龚浩, 杨义文, 匡春香. 基于C—H键官能团化的药物合成[J]. 化学进展, 2014, 26(04): 592-608.
[7] 戚自松, 董亚丽, 李亚明*, 段春迎* . 过渡金属催化芳香化合物三氟甲基化反应[J]. 化学进展, 2012, 24(11): 2177-2186.
[8] 姚臻 戴斌斌 刘少杰 曹堃 傅建松 谢家明. 乙烯和降冰片烯加成共聚合催化体系*[J]. 化学进展, 2010, 22(10): 2024-2032.
[9] 陈茂 翁玥 雷爱文. 过渡金属催化的1,n-烯炔类化合物的不对称环异构化反应[J]. 化学进展, 2010, 22(07): 1341-1352.
[10] 王春翔 李新成 徐粉 万伯顺. 过渡金属催化[2 + 2 + 2]环加成反应合成吡啶衍生物[J]. 化学进展, 2010, 22(04): 610-630.
[11] 李旭琴 刘安. 无保护基法合成的启示*[J]. 化学进展, 2010, 22(01): 81-90.
[12] 张晓鹏,荆唤芝,苗江欢,陆世维. 硫代氨基甲酸酯合成方法进展*[J]. 化学进展, 2008, 20(0708): 1102-1107.
[13] 吴平易,季生福,胡林华,李成岳. 介孔分子筛孔中过渡金属的组装及其催化应用*[J]. 化学进展, 2007, 19(04): 437-443.
[14] 石峰,周瀚成,陈楠,张庆华,邓友全. 非光气含氮化合物催化羰化研究进展*[J]. 化学进展, 2004, 16(06): 940-.
[15] 陈立谊,杨海健,孙文华. 水相配位催化烯烃聚合的新进展*[J]. 化学进展, 2003, 15(05): 401-.