English
新闻公告
More
化学进展 2017, Vol. 29 Issue (2/3): 293-299 DOI: 10.7536/PC161020 前一篇   后一篇

• 综述 •

基于金属催化的直接叠氮化研究

窦言东, 应莎莎, 张晨卿, 余黎阳, 郑垦, 朱勍*   

  1. 浙江工业大学生物与工程学院 杭州 310014
  • 收稿日期:2016-10-24 修回日期:2017-01-04 出版日期:2017-02-15 发布日期:2017-02-27
  • 通讯作者: 朱勍 E-mail:zhuq@zjut.edu.cn

Recent Advances in C-H Azidation Catalyzed by Metals

Yandong Dou, Shasha Ying, Chenqing Zhang, Liyang Yu, Ken Zheng, Qing Zhu*   

  1. College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2016-10-24 Revised:2017-01-04 Online:2017-02-15 Published:2017-02-27
叠氮化合物在新药研发和化学生物学领域有着广泛应用,而传统的制备方法因反应步骤多、条件苛刻以及收率较低等原因限制了有机叠氮化合物的发展。因此,通过简单、有效的技术制备叠氮化合物引起了人们极大的关注。近期,利用碳氢键活化的方法直接引入叠氮,已成为金属催化研究的热点领域之一。本文综述了近五年来叠氮化构建的各种反应类型,分析阐述了反应可能的机理,最后对用于碳氢活化技术制备有机叠氮化合物的研究方向及其在天然产物修饰以及蛋白质研究等方面的应用进行了展望。
Azide compounds have displayed wide applications in biological chemistry and pharmaceutical chemistry. However, the classic methods to prepare these compounds usually involve long synthesis steps, harsh reaction conditions and low reaction yields. Recent chemical approaches for direct azidation via C-H activation have drawn more attention due to its high efficiency, high conversion rate and good selectivity. This review intends to explore advances for direct azidation via C-H functionalization in the last five years and discuss the proposed mechanisms. These results are applicable to the development of synthetic methodology, natural product synthesis, and protein research.

Contents
1 Introduction
2 Azidation via metal C-H activation
2.1 Guide group-based catalysts
2.2 Free radical reaction
3 Conclusion"

中图分类号: 

()
[1] a) Keana J F W, Cai S X. J. Org. Chem., 1990, 55:3640.; b) Chehade K A H, Spielmann H P. J. Org. Chem., 2000, 65:4949.; c) Ritchie C D, Wright D J. J. Am. Chem. Soc., 1971, 93:2429.; d) Ritchie C D, Virtanen P O I. J. Am. Chem. Soc., 1972, (94):4966.; e) Avemaria F, Zimmermann V, Brase S. Synlett., 2004, 11:63.
[2] a) Abegg D, Frei R, Cerato L. Angew. Chem. Int. Ed., 2015, 54:10852.; b) Shi H, Zhang C J, Yao S Q. J. Am. Chem. Soc., 2012, 134:3001.
[3] a) Park C M, Niu W, Xian M. Org. Lett., 2012, 14:4694.;b) Soellner M B, Dickson K A, Raines R T. J. Am. Chem. Soc., 2003, 125:11790.; c) Liang H W, Jiang K, Ding W, Yuan Y, Shuai L, Chen Y C, Wei Y. Chem. Commun., 2015, 51:16928.; d) Xu J, Zhu X, Zhou G, Ying B, Ye P, Su L, Shen C, Zhang P. Org. Biomol. Chem., 2016, 14:3016.
[4] Shen M, Driver T G. Org. Lett., 2008, 10:3367.
[5] a) Hammers M D, Taormina M J, Cerda M M. J. Am. Chem. Soc., 2015, 137:10216.; b) Henthorn H A, Pluth M D. J. Am. Chem. Soc., 2015, 137:15330.; c) Du J, Xu G, Lin H K. Green Chem., 2016, 18:2726.
[6] Zhou S, Liao H, Liu M, Feng G. Bioorganic & Medicinal Chemistry, 2014, 22:6438.
[7] Shi H, Zhang C J, Chen G Y J, Yao S Q. J. Am. Chem. Soc., 2012, 134:3001.
[8] Borden W T, Gritsan N P, Hadad C M, Karney W L, Kemnitz R, Platz M S. Acc. Chem. Res., 2000, 33:765.
[9] Preston G W, Wilson A J. Chem. Soc. Rev., 2013, 42:3289.
[10] Li G, Liu Y, Yu X, Li X. Bioconjugate Chem., 2014, 25:1172.
[11] a) Hammers M D, Taormina M J, Cerda M M. J. Am. Chem. Soc., 2015, 137:10216.; b) Henthorn H A, Pluth M D. J. Am. Chem. Soc., 2015, 137:15330.
[12] Ke B, Wu W, Liu W, Li M. Anal. Chem., 2016, 88:592.
[13] a) Zhang C P, Vicic D A. J. Am. Chem. Soc., 2012, 134:183.; b) Reddick J J, Cheng J, Roush W R. Org. Lett., 2003, 5:1967.
[14] Griess P. Philos. Trans. R. Soc. London, 1864, 13:377.
[15] a) Keana J F W, Cai S X. J. Org. Chem., 1990, 55:3640.; b) Chehade K A H, Spielmann H P. J. Org. Chem., 2000, 65:4949.
[16] a) Ritchie C D, Wright D J. J. Am. Chem. Soc., 1971, 93:2429.; b) Ritchie C D, Virtanen P O I. J. Am. Chem. Soc., 1972, 94:4966.; c) Avemaria F V, Zimmerman B S. Synlett, 2004, 11:63.
[17] a) Zhu W, Ma D. Chem. Commun., 2004, 8:88.; b) Tao C Z, Cui X, Li J, Liu A X, Liu L, Guo Q X. Tetrahedron Lett., 2007, 48:3525.
[18] a) Du B, Jiang X Q. J. Org. Chem., 2013, 78:2786.; b) Cullen S C, Shekhar S, Nere N K. J. Org. Chem., 2013, 78:12194.; c) Chu L L, Yue X Y, Qing F L. Org. Lett., 2010, 12:1644.
[19] a) Tang C, Jiao N. J. Am. Chem. Soc., 2012, 134:18924.; b) Du B N, Jiang X Q, Sun P P. J. Org. Chem., 2013, 78:2786.; c) Wang Z, Kuninobu Y.Org. Lett., 2014, 16:4790.
[20] Tang C, Jiao N. J. Am. Chem. Soc., 2012, 134:18924.
[21] Fan Y, Wan W, Ma G B, Gao W, Hao J. Chem. Commun., 2014, 50:5733.
[22] Azad C S, Narula A K. RSC Adv., 2015, 5:100223.
[23] Dou Y D, Xie Z D, Sun Z G, Fang H L, Shen C, Zhang P F, Zhu Q. ChenCatChem, 2016, 8(23):3570.
[24] Xie F, Qi Z, Li X. Angew. Chem. Int. Ed., 2013, 52:11862.
[25] McHargue J S. Ind. Eng. Chem., 1926, 18:172.
[26] Huang X Y, Bergsten T M, Groves J T. J. Am. Chem. Soc., 2015, 137:5300.
[27] Sun X, Li X Y, Song S, Zhu Y C, Liang Y F, Jiao N. J. Am. Chem. Soc., 2015, 137:6059.
[28] Zhao Y, Hu Y C, Wang H L. J. Org. Chem., 2016, 81:4412.
[29] Sharma A, Hartwig J F. Nature, 2015, 29:600.
[30] Rabet P T G, Fumagalli G, Boyd S. Org. Lett., 2016, 18:1646.
[31] Rueping M, Vila C, Uria U. Org. Lett., 2012, 14:768.
[32] Liu C, Wang X Q, Li Z D. J. Am. Chem. Soc., 2015, 137:9820.
[33] Reddy Y S, Pal A P J, Ansari P G A. J. Org. Chem., 2011, 76:5972.
[34] Zhang X, Yang H D, Tang P. Org. Lett., 2015, 17:5828.
[35] Li P, Zhao J J, Xia C G. Org. Chem. Front., 2015, 2:1313.
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[5] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[6] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[7] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[8] 钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛. 生物质基分子水相催化加氢反应及多相催化剂[J]. 化学进展, 2019, 31(8): 1075-1085.
[9] 窦言东, 顾晓旭, 蒋建泽, 朱勍. 导向基团辅助的C—H键功能化[J]. 化学进展, 2018, 30(9): 1317-1329.
[10] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[11] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[12] 阙楚强, 陈宁*, 许家喜*. 氨基甲酸酯在C—H键活化中的应用[J]. 化学进展, 2018, 30(2/3): 139-155.
[13] 黄依铃, 魏文廷*. 水介质中的有机自由基反应[J]. 化学进展, 2018, 30(12): 1819-1826.
[14] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[15] 熊兴泉, 范观铭, 朱荣俊, 石霖, 肖上运, 毕成. 酰胺类化合物的高效合成研究[J]. 化学进展, 2016, 28(4): 497-506.
阅读次数
全文


摘要

基于金属催化的直接叠氮化研究