English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 497-506 DOI: 10.7536/PC150718 前一篇   后一篇

• 综述与评论 •

酰胺类化合物的高效合成研究

熊兴泉*, 范观铭, 朱荣俊, 石霖, 肖上运, 毕成   

  1. 华侨大学材料科学与工程学院 福建省高校功能材料重点实验室 厦门 361021
  • 收稿日期:2015-07-01 修回日期:2015-11-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 熊兴泉 E-mail:xxqluli@hqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21004024)、福建省自然科学基金项目(No. 2016J01063)、福建省"高校新世纪优秀人才支持计划"(No.2012FJ-NCET-ZR03)和福建省"高校杰出青年科研人才培育计划"(No.11FJPY02)以及"华侨大学中青年教师科研提升资助计划"(No.ZQN-YX103)资助

Highly Efficient Synthesis of Amides

Xiong Xingquan*, Fan Guanming, Zhu Rongjun, Shi Lin, Xiao Shangyun, Bi Cheng   

  1. The Key Laboratory for Functional Materials of Fujian Higher Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
  • Received:2015-07-01 Revised:2015-11-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21004024),the Natural Science Foundation of Fujian Province(No.2016J01063),the Program for New Century Excellent Talents in Fujian Province(No.2012FJ-NCET-ZR03), the University Distinguished Young Research Talent Training Program of Fujian Province(No.11FJPY02)and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(No.ZQN-YX103).
酰胺类化合物是有机化学中最常见的化合物之一, 在药物化学、生物化学以及高分子合成等领域都有着重要的应用. 近年来高效合成酰胺类化合物已经成为一个研究热点, 具有重要的意义.本文主要从过渡金属催化、有机小分子催化等方面讨论近几年来酰胺类化合物的合成研究进展, 并对其发展趋势进行展望.
Amides have been one of the most popular compounds in organic chemistry. There are plenty of important applications in many fields such as medicinal chemistry, biochemistry and polymer synthesis. Highly efficient synthesis of amides has become a hot topic in recent years. In this review, the application of transition metal catalysis and small molecule organocatalysis in the synthesis of amides in the last few years is briefly summarized, and the prospects of the synthesis of amides are also discussed.

Contents
1 Introduction
2 Amides synthesis of transition metal
2.1 Synthesis of amides by gold catalysts
2.2 Synthesis of amides by ruthenium-based catalysts
2.3 Synthesis of amides by copper catalysts
2.4 Synthesis of amides by iron and nickel catalysts
2.5 Synthesis of amides by palladium catalysts
3 Synthesis of amides by small molecule organic catalysts
4 Synthesis of amides by other methods
5 Conclusion

中图分类号: 

()
[1] Chitra S, Vishal K, Upendra S, Neeraj K, Bikram S. Current Organic Synthesis, 2013, 10: 241.
[2] Ghosh S C, Ngiam J S Y, Seayad A M, Tuan D T, Chai C L L, Chen A Q. J. Org. Chem., 2012, 77: 8007.
[3] Nordstrøm L U, Vogt H, Madsen R. J. Am. Chem. Soc., 2008, 130: 17672.
[4] Cadoni R, Porcheddu A, Giacomelli G, Luca L D. Org. Lett., 2012, 14: 5014.
[5] Allen C L, Williams J M. J. Chem. Soc. Rev., 2011, 40, 3405.
[6] Klitgaard S K, Egeblad K, Mentzel U V, Popov A G, Jensen T, Taarning E, Nielsen I S, Christensen C H. Green Chem., 2008, 10: 419.
[7] Wang Y, Zhu D P, Tang L, Wang S J, Wang Z Y. Angew. Chem Int. Ed., 2011, 123: 9079.
[8] Francois S J, Miyamura H, Kobayashi S. J. Am. Chem. Soc., 2011, 133: 18550.
[9] Zhu J L, Zhang Y, Shi F, Deng Y Q. Tetrahedron Lett., 2012, 53: 3178.
[10] Kegnæs S, Mielby J, Mentzel U V, Jensen T, Fristrup P, Riisager A. Chem. Commun., 2012, 48: 2427.
[11] Tanaka S, Minato T, Ito E, Hara M, Kim Y, Yamamoto Y, Asao N. Chem. Eur. J., 2013, 19: 11832.
[12] Guo X F, Tang L, Yang Y, Zha Z G, Wang Z Y.Green Chem., 2014, 16: 2443.
[13] Chng L L, Yang J H, Ying J Y. ChemSusChem, 2015, 8: 1916.
[14] Li F, Ma J, Lu L, Bao X F, Tang W Y. Catal. Sci. Technol., 2015, 5: 1953.
[15] Gunanathan C, Milstein D. Science, 2007, 317: 790.
[16] Zhang J, Leitus G, Ben-David Y, Milstein D. J. Am. Chem. Soc., 2005, 127: 10840.
[17] Gnanaprakasam B, Milstein D. J. Am. Chem. Soc., 2011, 133: 1682.
[18] Srimani D, Balaraman E, Hu P, Ben-David Y, Milstein D. Adv. Synth. Catal., 2013, 355: 2525.
[19] Han Q, Xiong X Q, Li S Z. Catal. Commun., 2015, 58: 85.
[20] Nordstrøm L U, Vogt H, Madsen R. J. Am. Chem. Soc., 2008, 130: 17672.
[21] Ghosh S C, Muthaiah S, Zhang Y, Xu X Y, Hong S H. Adv. Synth. Catal., 2009, 351: 2643.
[22] Chen, C, Zhang Y, Hong S H. J. Org. Chem., 2011, 76: 10005.
[23] Malineni J, Merkens C, Keul H, Möller M. Catal. Commun., 2013, 40: 80.
[24] Zhu M W, Fujita K, Yamaguchi R. J. Org. Chem., 2012, 77: 9102.
[25] Qu G R, Song Y W, Niu H Y, Guo H M, Fossey J S. RSC Adv., 2012, 2: 6161.
[26] Li X Y, Li Z K, Deng H, Zhou X G. Tetrahedron Lett., 2013, 54: 2212.
[27] Yang S Z, Yan H, Ren X Y, Shi X K, Li J, Wang Y L, Huang G S. Tetrahedron, 2013, 69: 6431.
[28] Xie Y X, Song R J, Yang X H, Xiang J N, Li J H. Eur. J. Org. Chem., 2013, 5737.
[29] Mali S M, Bhaisare R D, Gopi H N. J. Org. Chem., 2013, 78: 5550.
[30] Qin C, Zhou W, Chen F, Ou Y, Jiao N. Angew. Chem. Int. Ed., 2011, 50: 12595.
[31] Porcheddua A, Luca L D. Adv. Synth. Catal., 2012, 354: 2949.
[32] Ghosh S C, Ngiam J S Y, Chai C L L, Seayad A M, Dang T T, Chen A Q. Adv. Synth. Catal., 2012, 354: 1407.
[33] Whittaker A M, Dong V M. Angew. Chem. Int. Ed. 2015, 54:1312.
[34] Martinelli J R, Clark T P, Watson D A, Munday R H, Buchwald S L. Angew. Chem. Int. Ed., 2007, 46: 8460.
[35] Ren W, Yamane M. J. Org. Chem., 2009, 74: 8332.
[36] Dang T T, Zhu Y H, Ngiam J S Y, Ghosh S C, Chen A Q, Seayad A M. ACS Catal., 2013, 3: 1406.
[37] List B, Lerner R A, Barbas C F. J. Am. Chem. Soc., 2000, 122: 2395.
[38] Vora H U, Rovis T. J. Am. Chem. Soc., 2007, 129: 13796.
[39] Sabot C, Kumar K A, Meunier S, Mioskowski C. Tetrahedron Lett., 2007, 48: 3863.
[40] Sanz R, Martínez A, Guilarte V, Gutiérrez J M A, Rodríguez F. Eur. J. Org. Chem., 2007, 4642.
[41] Yang X, Birman V B. Org. Lett., 2009, 11: 1499.
[42] Vanjari R, Guntreddi T, Singh K N. Green Chem., 2014, 16: 351.
[43] Lanigan R M, Starkov P, Sheppard T D. J. Org. Chem., 2013, 78: 4512.
[44] Chen Z K, Fu R Z, Chai W, Zheng H, Sun L, Lu Q, Yuan R X. Tetrahedron, 2014, 70: 2237.
[45] Kumari S, Shekhar A, Mungse H P, Khatri O P, Pathak D D. RSC Adv., 2014, 4: 41690.
[1] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[2] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[3] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[4] 阙楚强, 陈宁*, 许家喜*. 氨基甲酸酯在C—H键活化中的应用[J]. 化学进展, 2018, 30(2/3): 139-155.
[5] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[6] 历阳, 孙洪满, 王有和, 许本静, 阎子峰. 沸石分子筛的绿色合成路线[J]. 化学进展, 2015, 27(5): 503-510.
[7] 汪家喜, 魏晓骏, 沈佳宇, 吕晓萌, 谢吉民, 陈敏. 光催化选择性合成有机物[J]. 化学进展, 2014, 26(09): 1460-1470.
[8] 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 手性催化剂在不对称羰基ene反应中的应用[J]. 化学进展, 2014, 26(09): 1492-1505.
[9] 龚浩, 杨义文, 匡春香. 基于C—H键官能团化的药物合成[J]. 化学进展, 2014, 26(04): 592-608.
[10] 戚自松, 董亚丽, 李亚明*, 段春迎* . 过渡金属催化芳香化合物三氟甲基化反应[J]. 化学进展, 2012, 24(11): 2177-2186.
[11] 黄燕敏, 崔建国, 甘春芳, 姚秋翠, 贾琳怡. 具有生理活性的甾体酰胺类化合物[J]. 化学进展, 2012, 24(01): 61-69.
[12] 姚臻 戴斌斌 刘少杰 曹堃 傅建松 谢家明. 乙烯和降冰片烯加成共聚合催化体系*[J]. 化学进展, 2010, 22(10): 2024-2032.
[13] 陈茂 翁玥 雷爱文. 过渡金属催化的1,n-烯炔类化合物的不对称环异构化反应[J]. 化学进展, 2010, 22(07): 1341-1352.
[14] 王春翔 李新成 徐粉 万伯顺. 过渡金属催化[2 + 2 + 2]环加成反应合成吡啶衍生物[J]. 化学进展, 2010, 22(04): 610-630.
[15] 李旭琴 刘安. 无保护基法合成的启示*[J]. 化学进展, 2010, 22(01): 81-90.
阅读次数
全文


摘要

酰胺类化合物的高效合成研究