English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1860-1869 DOI: 10.7536/PC160731 前一篇   后一篇

• 综述与评论 •

菱沸石在柴油车尾气NOx催化净化中的应用

谢利娟1,2, 石晓燕3,4, 刘福东3,4, 阮文权1,2*   

  1. 1. 江南大学环境与土木工程学院 无锡 214122;
    2. 江苏省厌氧生物技术重点实验室 无锡 214122;
    3. 中国科学院生态环境研究中心 北京 100085;
    4. 中国科学院大学 北京 100049
  • 收稿日期:2016-07-01 修回日期:2016-10-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 阮文权,e-mail:wqruan@jiangnan.edu.cn E-mail:wqruan@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51508231,51278486)和中央高校基本科研业务费专项资金(JUSRP11524)资助

Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite

Xie Lijuan1,2, Shi Xiaoyan3,4, Liu Fudong3,4, Ruan Wenquan1,2*   

  1. 1. School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122;
    2. Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China;
    3. Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-07-01 Revised:2016-10-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51508231, 51278486) and the Fundamental Research Funds for the Central Universities (JUSRP11524).
柴油车尾气NOx控制是目前大气污染控制领域的重要研究内容,对改善城市大气污染现状有着极其重要的作用。NH3选择性催化还原NOx(NH3-SCR)是应用于该领域的主流技术之一。近年来,以具有菱沸石(chabazite,CHA)结构的分子筛为载体负载Cu制备的Cu-CHA(Cu-SSZ-13和Cu-SAPO-34)系列催化剂,因其优秀的NH3-SCR活性和良好的水热稳定性,成为学者们关注的热点。本文首先从制备方法及反应条件对Cu-CHA催化性能的影响和NH3-SCR反应机理这几个方面系统阐述Cu基菱沸石在柴油车尾气NOx催化净化领域的研究进展;然后总结了负载其他过渡金属和稀土金属制备的M-CHA分子筛催化剂在NH3-SCR反应中的应用,指出双活性中心菱沸石催化剂在NH3-SCR领域表现出的优势;在此基础上对菱沸石NH3-SCR催化剂的进一步改良做出展望。
The purification of NOx from diesel engine exhaust is an important topic in the field of air pollution control, which is significant for the improvement of current unban air quality. The selective catalytic reduction of NOx with NH3 (NH3-SCR) is one of the most promising technologies for the control of NOx emission from diesel engine exhaust. In recent years, Cu-CHA catalysts, which are obtained from loading transition metal Cu on zeolites with chabazite (CHA) structure, have attracted much attention in the field of NH3-SCR reaction, due to their excellent NH3-SCR activity and hydrothermal stability. Cu-SSZ-13 and Cu-SAPO-34 are the two typical Cu-CHA catalysts. In this review, the progress of NOx control in the field of diesel engine exhaust with Cu-CHA catalysts is stated from three aspects firstly, including the influences of preparation method, the effects of reaction condition and the NH3-SCR reaction mechanism. Then, the application of M-CHA catalysts in NH3-SCR reaction are elaborated, where M is limited as some other transition metal and rare earth metal. Meanwhile, the advantages of bimetallic-based CHA zeolites in NH3-SCR reaction are identified. Based on these results, the possible improvement orientations for NH3-SCR catalysts with CHA zeolites structure are also prospected.

Contents
1 Introduction
2 Application of Cu-CHA catalysts in NH3-SCR
2.1 Cu-SSZ-13 used for NOx purification
2.2 Cu-SAPO-34 used for NOx purification
3 Application of Fe-CHA catalysts in NH3-SCR
4 Application of bimetallic active center catalysts with CHA structure in NH3-SCR
5 Conclusion and outlook

中图分类号: 

()
[1] 中华人民共和国环境保护部(Ministry of Environmental Protection of the People's Republic of China). http://dqhj.mep.gov.cn/jdchjgl/zhgldt/201605/P020160513584284608848.pdf, 2014.
[2] 陈艳平(Chen Y P), 程党国(Cheng D G), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 化学进展(Progress in chemistry), 2014, 26:248.
[3] 帅石金(Shuai S J), 唐韬(Tang T), 赵彦光(Zhan Y G), 华伦(Hua L).汽车安全与节能学报(Journal of Automotive Safety and Energy), 2012, 3:200.
[4] 刘福东(Liu F D), 单文坡(Shan W P), 石晓燕(Shi X Y), 贺泓(He H).化学进展(Progress in Chemistry), 2012, 4:445.
[5] 贺泓(He H), 翁端(Weng D), 资新运(Zi X Y).环境科学(Environmental Science), 2007, 28:1169.
[6] Brandenberger S, Kröcher O, Tissler A, Althoff R. Catal. Reviews, 2008, 50:492.
[7] Park J, Park H, Baik J, Nam I, Shin C, Lee J, Cho B, Oh S. J. Catal., 2006, 240:47.
[8] Pieterse J A Z, Pirngruber G D, van Bokhoven J A, Booneveld S. Appl. Catal. B, 2007, 71:16.
[9] Kefirov R, Penkova A, Hadjiivanov K, Dzwigaj S, Che M. Micropor. Mesopor. Mater., 2008, 116:180.
[10] Heo I, Lee Y, Nam I S, Choung J W, Lee J H, Kim H J. Micropor. Mesopor. Mater., 2011, 141:8.
[11] 徐如人(Xu R R), 庞文琴(Pang W Q). 分子筛与多孔材料化学(Chemistry-Zeolites and Porous Materials). 北京:科学出版社(Beijing:Science Press), 2004. 29.
[12] 翁端(Weng D), 王蕾(Wang L), 吴晓东(Wu X D), 冉锐(Ran R), 司知蠢(Si Z C). 科技导报(Science & Technology Review), 2013, 31:68.
[13] Andersen P J, Bailie J E, Casci J L, Chen H Y, Fedeyko J M, Foo R K S. WO 2008/132452 A2, 2008.
[14] Bull I, Xue W M, Burk P, Boorse R S, Jaglowski W M, Koermer G S, Moini A, Patchett J A, Dettling J C, Caudle M T. US 7601662, 2009.
[15] Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J. Catal., 2010, 275:187.
[16] Kwak J H, Tran D, Burton S D, Szanyi J, Lee J H, Peden C H F. J.Catal., 2012, 287:203.
[17] Schmieg S J, Oh S H, Kim C H, Brown D B, Lee J H, Peden C H F, Kim D H. Catal. Today, 2012, 184:252.
[18] Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A. Appl. Catal. B, 2012, 127:273.
[19] Wang D, Jangjou Y, Liu Y, Sharma M K, Luo J, Li J, Kamasamudram K, Epling W S. Appl. Catal. B, 2015, 165:438.
[20] Blakeman P G, Burkholder E M, Chen H Y, Collier J E, Fedeyko J M, Jobson H, Rajaram R R. Catal. Today, 2013, 231:56.
[21] Sultana A, Nanba T, Sasaki M, Haneda M, Suzuki K, Hamada H. Catal. Today, 2011, 164:495.
[22] 任利敏(Ren L M), 张一波(Zhang Y B), 曾尚景(Zeng S J), 朱龙凤(Zhu L F), 孙琦(Sun Q), 张海燕(Zhang H Y), 杨承广(Yang C G), 孟祥举(Meng X J), 杨向光(Yang X G), 肖丰收(Xiao F S). 催化学报(Chinese Journal of Catalysis), 2012, 33:92.
[23] Kwak J H, Tran D, Szanyi J, Peden C H F, Lee J H. Catal. Letters, 2012, 142:295.
[24] Wang D, Gao F, Peden, C H F, Li J, Kamasamudram K, Epling W S. ChemCatChem, 2014, 6:1579.
[25] Clemens A K S, Shishkin A, Carlsson P A, Skoglundh M, Martínez-Casado F J, Matěj Z, Balmes O, Härelind H. ACS Catal., 2015, 5:6209.
[26] Shwan S, Skoglundh M, Lundegaard L F, Tiruvalam R R, Janssens T V W, Carlsson A, Vennestrøm P N R. ACS Catal., 2015, 5:16.
[27] Krishna K, Seijger G B F, Bleek C M, Makkee M, Mul G, Calis H P A. Catal. Letters, 2003, 86:121.
[28] Deka U, Lezcano-Gonzalez I, Warrender S J, Lorena Picone A, Wright P A, Weckhuysen B M, Beale A M. Micropor. Mesopor. Mater., 2013, 166:144.
[29] Zones S I J. Chem. Society, Faraday Transactions, 1991, 87:3709.
[30] Chen B, Xu R, Zhang R, Liu N. Environ. Sci. Technol, 2014, 48:13909.
[31] Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao F S. Chem. Commun., 2011, 47:9789.
[32] Zamadies M, Chen X, Kevan L. J Phys. Chem., 1992, 96:2652.
[33] Xie L, Liu F, Ren L, Shi X, Xiao F S, He H. Environ. Sci. Technol., 2014, 48:566.
[34] Xie L, Liu F, Shi X, Xiao F S, He H. Appl. Catal. B, 2015, 179:206.
[35] Martínez-Franco R, Moliner M, Thogersen J R, Corma A. ChemCatChem, 2013, 5:3316.
[36] Kwak J H, Lee J H, Burton S D, Lipton A S, Peden C H, Szanyi J. Angew. Chem., 2013, 52:9985.
[37] Su W, Chang H, Peng Y, Zhang C, Li J. Environ. Sci. Technol., 2015, 49:467.
[38] Lezcano-Gonzalez I, Deka U, Arstad B, van Yperen-De Deyne A, Hemelsoet K, Waroquier M, van Speybroeck V, Weckhuysen B M, Beale A M. Phys. Chem. Chem. Phys., 2014, 16:1639.
[39] Shan W, Liu F, He H, Shi X, Zhang C. Appl. Catal. B, 2012, 115/116:100.
[40] Shi X, Liu F, Xie L, Shan W, He H. Environ. Sci. Technol., 2013, 47:3293.
[41] Xie L, Liu F, Liu K, Shi X, He H. Catal. Sci. Technol., 2014, 4:1104.
[42] Kumar A, Smith M A, Kamasamudram K, Currier N W, An H, Yezerets A. Catal. Today, 2014, 231:75.
[43] Wijayanti K, Leistner K, Chand S, Kumar A, Kamasamudram K, Currier N W, Yezerets A, Olsson L. Catal. Sci. Technol., 2016, 6:2565.
[44] Ma L, Su W, Li Z, Li J, Fu L, Hao J. Catal. Today, 2015, 245:16.
[45] Lezcano-Gonzalez I, Deka U, van der Bij H E, Paalanen P, Arstad B, Weckhuysen B M, Beale A M. Appl. Catal. B, 2014, 154/155:339.
[46] Yu T, Fan D, Hao T, Wang J, Shen M, Li W. Chem. Engin. J., 2014, 243:159.
[47] Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W. Appl. Catal. B, 2012, 127:137.
[48] Xiang X, Yang M, Gao B, Qiao Y, Tian P, Xu S, Liu Z. RSC Advances, 2016, 6:12544.
[49] Panahi P N, Niaei A, Salari D, Mousavi S M, Delahay G J. Environ. Sci., 2015, 35:135.
[50] Wang L, Li W, Qi G, Weng D. J. Catal., 2012, 289:21.
[51] Gao F, Walter E D, Washton N M, Szanyi J, Peden C H F. Appl. Catal. B, 2015, 162:501.
[52] Bull I, Muller U. US20100310440A1, 2010.
[53] Fan S, Xue J, Yu T, Fan D, Hao T, Shen M, Li W. Catal. Sci. Technol., 2013, 3:2357.
[54] Martínez-Franco R, Moliner M, Concepcion P, Thogersen J R, Corma A. J. Catal, 2014, 314:73
[55] Niu C, Shi X, Liu F, Liu K, Xie L, You Y, He H. Chem. Eng. J., 2016, 294:254.
[56] Fickel D W, D'Addio E, Lauterbach J A, Lobo R F. Appl. Catal. B, 2011, 102:441.
[57] Wang L, Gaudet J R, Li W, Weng D. J. Catal., 2013, 306:68.
[58] Gao F, Walter E D, Washton N M, Szanyi J, Peden C H F. ACS Catal., 2013, 3:2083.
[59] Wang D, Zhang L, Kamasamudram K, Epling W S. ACS Catal., 2013, 3:871.
[60] Yu T, Hao T, Fan D, Wang J, Shen M, Li W. J. Phys. Chem. C, 2014, 118:6565.
[61] 郝腾(Hao T), 王军(Wang J), 于铁(Yu T), 王建强(Wang J Q), 沈美庆(Shen M Q). 物理化学学报(Acta Phys.-Chim. Sin.), 2014, 30:1567.
[62] Zhang L, Wang D, Liu Y, Kamasamudram K, Li J, Epling W. Appl. Catal. B, 2014, 156/157:371.
[63] Wijayanti K, Andonova S, Kumar A, Li J, Kamasamudram K, Currier N W, Yezerets A, Olsson L. Appl. Catal. B, 2015, 166/167:568.
[64] Liu X, Wu X, Weng D, Si Z. Catal. Commun., 2015, 59:35.
[65] Yu T, Wang J, Shen M, Wang J, Li W. Chem. Eng. J., 2015, 264:845.
[66] Leistner K, Olsson L. Appl. Catal. B, 2015, 165:192.
[67] Wang J, Fan D, Yu T, Wang J, Hao T, Hu X, Shen M, Li W. J. Catal., 2015, 322:84.
[68] Ma J, Si Z, Weng D, Wu X, Ma Y. Chem. Eng. J., 2015, 267:191.
[69] Zhang T, Li J, Liu J, Wang D, Zhao Z, Cheng K, Li J. Aiche J, 2015, 61:3825.
[70] Shi X, Liu F, Shan W, He H. Chin. J. Catal., 2012, 33:454.
[71] Malpartida I, Marie O, Bazin P, Daturi M, Jeandel X. Appl. Catal. B, 2011, 102:190.
[72] Ma L, Li J, Cheng Y, Lambert C K, Fu L. Environ. Sci. Technol., 2012, 46:1747.
[73] Ye Q, Wang L, Yang R. T. Appl. Catal. A, 2012, 427/428:24.
[74] Gao F, Kollár M, Kukkadapu R K, Washton N M, Wang Y, Szanyi J, Peden C H F. Appl. Catal. B, 2015, 164:407.
[75] Shishkin A, Kannisto H, Carlsson P A, Härelind H, Skoglundh M. Catal. Sci. Technol., 2014, 4:3917.
[76] Andonova S, Tamm S, Montreuil C, Lambert C, Olsson L. Appl. Catal. B, 2016, 180:775.
[77] Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A. Appl. Catal. B, 2014, 148/149:520.
[78] Sultana A, Sasaki M, Suzuki K, Hamada H. Catal. Commun., 2013, 41:21.
[79] Yang X, Wu Z, Moses-Debusk M, Mullins D R, Mahurin S M, Geiger R A, Kidder M, Narula C K. J. Phys. Chem. C, 2012, 116:23322.
[80] Zhang R, Li Y, Zhen T. RSC Advances, 2014, 4:52130.
[81] Shen B, Zhang X, Ma H, Yao Y, Liu T J. Environ. Sci., 2013, 25:791.
[82] Liu Z, Yi Y, Li J, Woo S I, Wang B, Cao X, Li Z. Chem. Commun., 2013, 49:7726.
[83] Liu X, Li Y, Zhang R. RSC Advances, 2015, 5:85453.
[84] Wang J, Peng Z, Qiao H, Yu H, Hu Y, Chang L, Bao W. Ind. Eng. Chem. Res., 2016, 55:1174.
[85] Dong X, Wang J, Zhao H, Li Y. Catal. Today, 2015, 258:28.
[86] Cao Y, Zou S, Lan L, Yang Z, Xu H, Lin T, Gong M, Chen Y J. Mol. Catal. A, 2015, 398:304.
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[8] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[9] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[10] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[11] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[12] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[13] 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 木质纤维素催化转化制备DMF和C5/C6烷烃[J]. 化学进展, 2016, 28(2/3): 363-374.
[14] 王亚军, 李泽雪, 于海洋, 冯长根. 亚稳态分子间复合物反应机理研究[J]. 化学进展, 2016, 28(11): 1689-1704.
[15] 李盼盼, 于锋, 朱明远, 汤常金, 代斌, 董林. 选择性氧化还原脱硝催化剂[J]. 化学进展, 2016, 28(10): 1578-1590.