English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1578-1590 DOI: 10.7536/PC150433 前一篇   后一篇

• 综述与评论 •

类石墨烯二硫化钨薄膜的化学气相沉积法制备及其应用

尤运城1,2, 曾甜1,2, 刘劲松2, 胡廷松2, 台国安1*   

  1. 1. 南京航空航天大学航空宇航学院 机械结构与控制国家重点实验室 纳智能材料器件教育部重点实验室和纳米科学研究所 南京 210016;
    2. 南京航空航天大学材料科学与技术学院 南京 210016
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 台国安 E-mail:taiguoan@nuaa.edu.cn
  • 基金资助:
    南京航空航天大学基本科研业务费(No.NS2013095)资助

Chemical Vapor Deposition and Application of Graphene-Like Tungsten Disulfide

You Yuncheng1,2, Zeng Tian1,2, Liu Jinsong2, Hu Tingsong2, Tai Guoan1*   

  1. 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities(No.NS2013095).
类石墨烯过渡金属硫属化合物如MoS2、WS2、MoSe2、WSe2等因为具有层数依赖的带隙结构而受到了广泛关注。尤其是本征态的WS2为双极性半导体,它同时具有n型和p型电输运特性,有望在电子电路、存储器件、光电探测和光伏器件方面得以广泛应用。近年来,化学气相沉积技术已经被广泛用于制备大面积二维硫属化合物(如MoS2, MoSe2, WS2 和WSe2)原子层薄膜。目前关于其他二维材料体系的综述文献介绍较多,但是针对WS2介绍的综述文献还鲜有报道。因此,本文综述了类石墨烯WS2薄膜的化学气相沉积法制备和相关器件的国内外研究进展,讨论了WS2薄膜的化学气相沉积法制备机理及生长因素如硫粉含量、载气的成分、反应温度、基底材料等对薄膜成膜质量的影响,介绍了WS2薄膜在晶体管、光电器件及与其他二维材料构成的异质结构器件的最新研究成果,并对可能存在的问题进行了分析和述评。
Graphene-like transition metal chalcogenide compounds such as MoS2, WS2, MoSe2, WSe2 have attracted wide interests because of their unique layer number-dependent bandgap. In particularly, intrinsic WS2 is a bipolar semiconductor with n-type and p-type electronic transport properties, it is expected to be widely used in electrical circuit, memory, photodetector and photovoltaic devices. Recently, chemical vapor deposition(CVD) technique, in contrast to traditional chemical or physical exfoliation options, is extensively used to prepare large-area two-dimensional transition metal chalcogenide(such as MoS2, MoSe2, WS2 and WSe2) atomic layers. Although a few review papers about other two-dimensional materials have been published, the detailed introduction for graphene-like WS2 has been rarely reported. In this review, we summarize the research progress on chemical vapor deposition and related devices of graphene-like WS2. First, we introduce two growth methods of preparing WS2 thin films via chemical vapor deposition techniques: two-step growth route and one-step growth route, and then discuss the growth mechanism of the two methods and essential parameters that influence the growth of the WS2 thin films such as sulfur content, carrier gas composition, reaction temperature and substrate materials. Then, we introduce the research progress of WS2-based transistors, photoelectric devices and related heterostructures. Finally, we analyze and review possible problems in developing WS2-related devices.

Contents
1 Introduction
2 Physical Properties of tungsten disulfide thin films
3 Preparation of WS2 thin films via chemical vapor deposition technique
3.1 Classification of chemical vapor deposition technique
3.2 Mechanism of preparing WS2 thin films
4 Application of WS2 thin films in electrical devices
4.1 Field effect transistor
4.2 Photoelectric device
4.3 Heterostructural device
5 Conclusion and outlook

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[2] Zhang Y, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438:201.
[3] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321:385.
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Nature, 2005, 438:197.
[5] 张芸秋(Zhang Y Q),梁勇明(Liang Y M),周建新(Zhou J X). 化学学报(Acta Chim. Sinica), 2014, 72:357.
[6] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nat. Nanotechnol., 2012, 7:699.
[7] Ge W, Kawahara K, Tsuji M, Ago H. Nanoscale, 2013, 5:5773.
[8] 史建平(Shi J P), 马冬林(Ma D L), 张艳锋(Zhang Y F), 刘忠范(Liu Z F). 化学学报(Acta Chim. Sinica), 2015, DOI:10.6023/A15030157.
[9] 王新胜(Wang X S), 谢黎明(Xie L M), 张锦(Zhang J). 化学学报(Acta Chim. Sinica), 2015, DOI:10.6023/A15030187.
[10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10:1271.
[11] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011, 6:147.
[12] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Proc. Nat. Acad. Sci. U. S. A., 2005, 102:10451.
[13] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Nano Lett., 2011, 11:5111.
[14] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Angew. Chem. Int. Ed., 2011, 50:11093.
[15] Coleman J N, Lotya M, Neill A O, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Science, 2011, 331:568.
[16] Hussain A M, Sevilla G A T, Rader K R, Hussain M M. Chemical Vapor Deposition based Tungsten Disulfide(WS2) Thin Film Transistor(Eds. BenSaleh1 M S, Qasim S M), Fira:IEEE, 2013. 1.
[17] Sorkin V, Pan. H, Shi H, Quek S Y, Zhang Y W. Crit. Rev. Solid State Mater. Sci., 2014, 39:319.
[18] Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Eda G. Nanoscale, 2013, 5:9677.
[19] Shanmugam M, Bansal T, Durcan C A, Yu B. Appl. Phys. Lett., 2012, 101:263902.
[20] Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C I, Wang B, Crespi V H, López-Urías F, Charlier J C, Terrones H, Terrones M. Sci. Rep., 2013, 3:1755.
[21] Zhao W, Ribeiro R M, Eda G. Acc. Chem. Res., 2015, 48:91.
[22] Kuc A, Zibouche N, Heine T. Phys. Rev. B, 2011, 83:45213.
[23] Ji Q, Zhang Y, Zhang Y, Liu Z. Chem. Soc. Rev., 2015, 44:2587.
[24] Shi Y, Li H, Li L J. Chem. Soc. Rev., 2015, 44:2744.
[25] Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Sun L, Yu T. Adv. Opt. Mater., 2014, 2:131.
[26] Okada M, Sawazaki T, Watanabe K, Taniguch T, Hibino H, Shinohara H, Kitaura R. ACS Nano, 2014, 8:8273.
[27] Shanmugam M, Jacobs-Gedrim R, Song E S, Yu B. Nanoscale, 2014, 6:12682.
[28] Shanmugam M, Bansal T, Durcan C A, Yu B. Appl. Phys. Lett., 2012, 101:263902.
[29] Orofeo C M, Suzuki S, Sekine Y, Hibino H. Appl. Phys. Lett., 2014, 105:083112.
[30] Elías A L, Perea-López N, Castro-Beltrán A, Berkdemir A, Lv R, Feng S, Long A D, Sayashi T, Kim Y A, Endo M, Gutiérrez H R, Pradhan N R, Balicas L, Mallouk T E, López-Urías F, Terrones H, Terrones M. ACS Nano, 2013, 7:5235.
[31] Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A,Wang B, Lv R, López-Urías F, Crespi V H, Terrones H, Terrones, M. Nano Lett., 2013, 13:3447.
[32] Song J G, Park J, Lee W, Choi T, Jung H, Lee C W, Hwang S H, Myoung J M, Jung J H, Kim J H, Lansalot-Matras C, Kim H. ACS Nano, 2013, 7:11333.
[33] Rong Y, Fan Y, Koh A L, Robertson A W, He K,Wang S, Tan H, Sinclair R, Warner J H. Nanoscale, 2014, 6:12096.
[34] Jung Y, Shen J, Liu Y, Woods J M, Sun Y, Cha J J. Nano Lett., 2014, 14:6842.
[35] Zhang Y, Zhang Y, Ji Q, Ju J, Yuan H, Shi J, Gao T, Ma D, Liu M, Chen Y, Song X, Hwang H Y, Cui Y, Liu Z. ACS Nano, 2013, 7:8963.
[36] Vander Vlies A J, Kishan G, Niemantsverdriet J W, Prins R, Weber T. J. Phys. Chem. B, 2002, 106:3449.
[37] Ovchinnikov D, Allain A, Huang Y S, Dumcenco D, Kis A. ACS Nano, 2014, 8:8174.
[38] Liu X, Hu J, Yue C, Della Fera N, Ling Y, Mao Z, Wei J. ACS Nano, 2014, 8:10396.
[39] Braga D, Gutiérrez Lezama I, Berger H, Morpurgo A. F. Nano Lett., 2012, 12:5218.
[40] 唐晶晶(Tang J J), 第凤(Di F), 徐潇(Xu X), 肖迎红(Xiao Y H), 车剑飞(Che J F). 化学进展(Progress in Chemistry), 2012, 24:501.
[41] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M. Nat. Nanotechnol., 2014, 9:780.
[42] Sang Y, Zhao Z, Zhao M, Hao P, Leng Y, Liu H. Adv. Mater., 2015, 27:363.
[43] Lee S H, Lee D, Hwang W S, Hwang E, Jena D, Yoo W J. Appl. Phys. Lett., 2014, 104:193113.
[44] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y-J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H, Novoselov K S. Science, 2013, 340:1311.
[45] Perea-López N, Elías A L, Berkdemir A, Castro-Beltran A, Gutiérrez H R, Feng S, Lv R, Hayashi T, López-Urías F, Ghosh S, Muchharla B, Talapatra S, Terrones H, Terrones M. Adv. Funct. Mater., 2013, 23:5511.
[46] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H. ACS Nano, 2012, 6:74.
[47] Cao B, Shen X, Shang J, Cong C, Yang W, Eginligil M, Yu T. APL Mater., 2014, 2:116101.
[48] Geim A K, Grigorieva I V. Nature, 2013, 499:419.
[49] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A. Nat. Nanotechnol., 2013, 8:100.
[50] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X. Nat. Nanotechnol., 2014, 9:1024.
[51] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F. Nat. Nanotechnol., 2014, 9:682.
[52] Yuan J, Najmaei S, Zhang Z, Zhang J, Lei S M, Ajayan P, Yakobson B I, Lou J. ACS Nano, 2015, 9:555.
[53] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J, Sinclair R, Wu J. Nano Lett., 2014, 14:3185.
[54] Jung Y, Shen J, Sun Y, Cha J J. ACS Nano, 2014, 8:9550.
[1] 张辉, 王珊珊, 余金山. 低对称性二维ReS2及其异质结的化学气相沉积法制备及性质[J]. 化学进展, 2022, 34(6): 1440-1452.
[2] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[3] 张奇, 项徽清, 刘建国, 曾晓雁. 喷墨打印制备高性能薄膜晶体管的材料体系[J]. 化学进展, 2019, 31(10): 1417-1424.
[4] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.
[5] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[6] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
[7] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[8] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[9] 朱文杰, 台国安, 王旭峰, 古其林, 伍增辉, 朱孔军. 二维原子晶体材料的制备与应变传感特性研究[J]. 化学进展, 2017, 29(11): 1285-1296.
[10] 曾甜, 尤运城, 王旭峰, 胡廷松, 台国安. 二维硫化钼基原子晶体材料的化学气相沉积法制备及其器件[J]. 化学进展, 2016, 28(4): 459-470.
[11] 周丽, 邓慧萍, 张为. 可见光响应的银系光催化材料[J]. 化学进展, 2015, 27(4): 349-360.
[12] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[13] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[14] 朱伟钢, 甄永刚, 董焕丽, 付红兵, 胡文平. 有机共晶光电功能材料与器件[J]. 化学进展, 2014, 26(08): 1292-1306.
[15] 宋静怡, 江浪*, 董焕丽, 胡文平*. 有机微纳晶场效应晶体管[J]. 化学进展, 2013, 25(01): 12-27.