English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 550-558 DOI: 10.7536/PC141238 前一篇   后一篇

• 综述与评价 •

生物分子相互作用动力学的表面等离子体共振研究方法

王霄1,2, 许吉英1, 陈义*1,2,3   

  1. 1. 中国科学院化学研究所 活体分析化学院重点实验室 北京 100190;
    2. 中国科学院大学 北京 100049;
    3. 北京分子科学国家实验室 北京 100190
  • 收稿日期:2014-12-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 陈义 E-mail:chenyi@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 21235007, 21135006)和中国科学院知识创新工程重要方向项目(No.KJCX2-EW-N06-01)资助

Surface Plasmon Resonance Methodology for Interaction Kinetics of Biomolecules

Wang Xiao1,2, Xu Jiying1, Chen Yi*1,2,3   

  1. 1. Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Beijing National Laboratory for Molecular Science, Beijing 100190, China
  • Received:2014-12-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21235007, 21135006) and the Chinese Academy of Sciences(No. KJCX2-EW-N06-01).
表面等离子体共振及其成像方法以其免标记、可实时动态原位跟踪反应过程而在生物分子相互作用动力学及其常数测定研究中凸显优势,近年来这方面的研究进展迅速,但缺乏必要的总结归纳.为此,本文就这一主题所涉及的关键研究方法与应用进展作简要的归纳分析并展望了该领域的发展前景.
Surface plasmon resonance sensing and imaging methods have been developing very fast during recent years, especially in applying to the study of biomolecular interactions and/or recognitions and determination of kinetic and thermodynamic constants. These progresses are broadly interesting but remain short of reviewing. This paper is thus designed and dedicated to the methodization of the very recent, critical developments in the study of molecular reaction kinetics and measure of their constants. In the end, their prospect is given, in addition to a brief summary of other research progresses.

Contents
1 Introduction
2 Basic principles
2.1 SPR/SPRi principle
2.2 Kinetics principle
2.3 SPR/SPRi approach
2.4 Parameter calculation
3 Practical Methods
3.1 Multi-cycle
3.2 Improved multi-cycle
3.3 Kinetic titration
3.4 Steady state
3.5 Arraying
4 Conclusion and prospect

中图分类号: 

()
[1] Du Z F, Luo Q, Yang L P, Bing T, Li X C, Guo W, Wu K, Zhao Y, Xiong S X, Shangguan D H, Wang F Y. J. Am. Chem. Soc., 2014, 136: 2948.
[2] Kašpárková J, Brabec V. Biochemistry, 1995, 34: 12379.
[3] Jamieson E R, Lippard S J. Biochemistry, 2000, 39: 8426.
[4] Jamieson E R, Jacobson M P, Lippard S J. J. Biol. Chem.,1999, 274(18): 12346.
[5] Chen G P, Wang X, Liu A R, Qian D J. Mat. Sci. Eng. C, 2009, 29(3): 925.
[6] Caruso F, Niikura K, Furlong D N, Okahata Y. Langmuir, 1997, 13: 3427.
[7] Rich R L, Myszka D G. J. Mol. Recognit., 2006, 19: 478.
[8] Rich R L, Myszka D G. J. Mol. Recognit., 2007, 20: 300.
[9] Crescenzo G D, Boucher C, Durocher Y, Jolicoeur M. Cell Mole. Bioeng., 2008,1(4): 204.
[10] Li Y J, Xiang J, Zhou F M. Plasmonics, 2007, 2: 79.
[11] 杨帆(Yang F),杨秀荣(Yang X R). 化学传感器(Chemical Sensors), 2003, 23(2): 32.
[12] Rich R L, Cannon M J, Jenkins J, Pandian P, Sundaram S, Magyar R, Brockman J, Lambert J, Myszka D G. Anal. Biochem., 2008, 373: 112.
[13] 吴星怡(Wu X Y), 张磊(Zhang L),吕丹(Lv D), 刘艳华(Liu Y H), 陈亚南(Chen Y N),苏位君(Su W J),罗娜(Luo N),向荣(Xiang R).化学学报(Acta Chim. Sinica), 2013, 71: 299.
[14] 申刚义(Shen G Y), 陈义(Chen Y),张轶鸣(Zhang Y M),崔箭(Cui J). 化学进展(Progress in Chemistry), 2010, 26(8): 1648.
[15] 陈义(Chen Y). 化学进展(Progress in Chemistry),2005,17(4): 573.
[16] 张延彪(Zhang Y B),徐超(Xu C),姚辉(Yao H),张肖会(Zhang X H),张军(Zhang J),尹洪宗(Yin H Z).分析科学学报(Journal of Analytical Science), 2012, 28(1): 126.
[17] 陈焕文(Chen H W),牟颖(Mou Y),赵晓君(Zhao X J),宋大千(Song D Q),张寒琦(Zhang H Q),金钦汉(Jin Q H).分析仪器(Analytical Instrumentation), 2001, 2: 3.
[18] Scarano S, Mascini M, Turner A P F, Minunni M. Biosens. Bioelectron., 2010, 25: 957.
[19] 杨帆(Yang F),杨秀荣(Yang X R). 生物工程(Chinese Journal of Biotechnology), 2011, 17(4): 375.
[20] Pillet F, Sanchez A, Formosa C, Séverac M, Trévisiol E, Bouet J Y, Leberre V A. Biosens. Bioelectron., 2013, 43: 148.
[21] Fang S P, Lee H J, Wark A W, Kim H M, Corn R M. Anal. Chem., 2005, 77: 6528.
[22] Shannessy D J, Bruke M B, Soneson K K, Hensley P, Brooks I. Anal. Biochem., 1993, 212: 457.
[23] 黄昊文(Huang H W).化学传感器(Chemical Sensors), 2006, 26(1): 13.
[24] Katsamba P S, Park S, Laird-Offringa I A. Methods, 2002, 26: 95.
[25] Abdiche Y N, Lindquist K C, Pinkerton A, Pons J, Rajpal A. Anal. Biochem., 2011, 411: 139.
[26] Núñez S, Venhorst J, Kruse C G. Drug. Discov. Today, 2012, 17(1): 10.
[27] Hayashi G, Hagihara M, Nakatani K. J. Biotechnol., 2008, 135: 157.
[28] Piliarik M, Parova L, Homola J. Biosens. Bioelectron., 2009, 24(5): 1399.
[29] Lecaruyer P, Mannelli I, Courtois V, Goossens M, Canva M. Anal. Chim. Acta, 2006: 573.
[30] Nelson B P, Grimsrud T E, Liles M R, Goodman R M, Corn R M. Anal. Chem., 2001, 73: 1.
[31] ?ípová H, Homola J. Anal. Chim. Acta., 2013, 773: 9.
[32] Agata R D, Spoto G. Anal. Bioanal. Chem., 2013, 405: 573.
[33] Sassolas A, Béatrice D, Loc J B. Chem. Rev., 2008, 108: 109.
[34] Jeong E J, Jeong Y S, Park Y, Yi S Y, Ahn J, Chung S J, Kim M, Chung B H. J. Biotechnol., 2008, 135(1): 16.
[35] Bouffartigues E, Leh H, Anger-Leroy M, Rimsky S, Buckle M. Nucleic Acids Res., 2007, 35(6): E39.
[36] Wegner G J, Lee H J, Marriott G, Corn R M. Anal. Chem., 2003, 75(18): 4740.
[37] 徐霞(Xu X),叶尊忠(Ye Z R),吴坚(Wu J),应义斌(Zhuang Y B).分析化学(Chinese Journal of Analytical Chemistry), 2010, 38(7): 1052.
[38] du Puch C B M, Barbier E, Kraut A, Couté Y, Fuchs J, Buhot A, Livache T, Sève M, Favier A, Douki T, Gasparutto D, Sauvaigo S, Breton J. Arch. Biochem. Biophys., 2011, 507: 296.
[39] Solomun T, Sturm H, Wellhausen R, Seitz H. Chem. Phys. Lett., 2012, 533: 92.
[40] Grant C F, Kanda V, Yu H, Bundle D R, McDermott M T. Langmuir, 2008, 24(24): 14125.
[41] Mercey E, Sadir R, Maillart E, Roget A, Baleux F, Lortat-Jacob H, Livache T. Anal. Chem., 2008, 80: 3476.
[42] Wark A W, Lee H J, Corn R M. Angew. Chem. Int. Edit., 2008, 47: 644.
[43] Smith E A, Thomas W D, Kiessling L L, Corn R M. J. Am. Chem. Soc., 2003, 125(20): 6140.
[44] Liang K, Chen Y. Bioconjugate. Chem., 2012, 23: 1300.
[45] Wang H B, Zhang Y M, Yuan X, Chen Y, Yan M D. Bioconjugate. Chem., 2011, 22(1): 26.
[46] Nylander C, Liedberg B, Lind T. Sensor. Actuat., 1983, 3: 79.
[47] Liedberg B, Nylander C, Lunstrm I. Sensor. Actuat., 1983, 4: 229.
[48] Nahshol O, Bronner V, Notcovich A, Rubrecht L, Laune D, Bravman T. Anal. Biochem., 2008, 383: 52.
[49] Säfsten P, Klakamp S L, Drake A W, Karlsson R, Myszka D G. Anal. Biochem., 2006, 353: 181.
[50] Steukers M, Schaus J M, Gool R V, Hoyoux A, Richalet P, Sexton D J, Nixon A E, Vanhove M. J. Immunol. Methods, 2006, 310: 126.
[51] Li Y, Lee H J, Corn R M. Nucleic Acids Res., 2006, 34: 6416.
[52] Nelson B P, Liles M R, Frederick K B, Corn R M, Goodman R M. Environ. Microbiol., 2002, 4(11): 735.
[53] Garcia B H N, Goodman R M. J. Virol. Methods, 2008, 147: 18.
[54] Katsamba P S, Navratilova I, Calderon-Cacia M, Fan L,Thornton K, Zhu M D,Vanden Bos T, Forte C, Friend D, Laird-Offringa I. Anal. Biochem., 2006, 352(2): 208.
[55] Krishnamoorthy G, Carlen E T, Berg A V D, Schasfoort R M B. Sensors Actuat. B, 2010, 148: 511.
[56] Cole D K, Pumphrey N J, Boulter J M, Sami M, Bell J I, Gostick E, Price D A, Gao G F, Sewell A K, Jakobsen B K. J. Immunol., 2007, 178: 5727.
[57] Schasfoort R M B, Lau W D, Kooi K, Clevers H, Engbers G H M. Anal. Biochem., 2012, 421: 794.
[58] Cannon M J, Papalia G A, Navratilova I, Fisher R J, Roberts L R, Worthy K M, Stephen A G, Marchesini G R,Collins E J,Casper, D. Anal. Biochem., 2004, 330(1): 98.
[59] Papalia G A, Leavitt S, Bynum M A, Katsamba P S, Wilton R, Qiu H W, Steukers M, Wang S M, Bindu L, Phogat S. Anal. Biochem., 2006, 359(1): 94.
[60] Wolf L K, Gao Y, Georgiadis R M. J. Am. Chem. Soc., 2007, 129: 10503.
[61] Raz S R, Bremer M G E G, Giesbers M, Norde W. Biosens. Bioelectron., 2008, 24: 552.
[62] Tsai W C, Hsu Y H. Anal. Lett., 2012, 45: 1495.
[63] Scarano S, Mascini M, Turner A P F, Minunni M. Biosens. Bioelectron., 2010, 25(5): 957.
[64] Rich R L, Myszka D G. Anal. Biochem., 2007, 361: 1.
[65] Christensen L L. Anal. Biochem., 1997, 249: 153.
[66] Glaser R W. Anal. Biochem., 1993, 213: 152.
[67] Goldstein B, Coombs D, He X Y, Pineda A R, Wofsy C. J. Mol. Recognit., 1999,12: 293.
[68] Myszka D G, He X, Dembo M, Morton T A, Goldstein B. J. Biophys., 1998, 75: 583.
[69] Kikuchi Y, Uno S, Nanami M, Yoshimura Y, Iida S I, Fukushima N, Tsuchiya M, et al. J. Biosci. Bioeng., 2005, 100(3): 311.
[70] Puiu M, Istrate O, Rotariu L, Bala C. Anal. Biochem., 2012,421: 587.
[71] 杨帆(Yang F), 杨秀荣(Yang X R). 分析化学(Chin. J. Anal. Chem.), 2013, 41(5): 664.
[72] Yamamoto A, Ando Y, Yoshioka K I, Saito K, Tanabe T, Shirakawa H, Yoshida M. J. Biochem., 1997, 122: 586.
[73] Krishnamoorthy G, Beusink J B, Schasfoort R M B. Anal. Methods, 2010, 2: 1020.
[74] Krishnamoorthy G, Carlen E T, Beusink J B, Schasfoort R M B, Berg A V D. Anal. Methods, 2009, 1: 162.
[75] Pillet F, Romera C, Trévisiol E, Bellon S, Teulade-Fichou M P, Francois J M, Pratviel G, Leberre V A. Sensors Actuat. B, 2011, 157: 304.
[76] Wegner G J, Wark A W, Lee H J, Codner E, Saeki T, Fang S P, Corn R M. Anal. Chem., 2004, 76: 5677.
[77] Bravman T, Bronner V, Lavie K, Notcovich A, Papalia G A, Myszka D G. Anal. Biochem., 2006, 358: 281.
[78] Karlsson R, Michaeisson A, Mattsson L. J. Immunol. Mehods, 1991, 145: 229.
[79] Ferreira D C M, Mendes R K, Kubota L T. J. Braz. Chem. Soc., 2010, 21(9): 1648.
[80] O'Shannessy D J, Brighamburke M, Soneson K K, Hensley P,Brooks I. Anal. Biochem., 1993, 212: 457.
[81] Schubert F, Zettl H, Hafner W, Krausch G. Biochemistry, 2003, 42: 10288.
[82] Edwards P R, Leatherbarrow R J. Anal. Biochem., 1997, 246: 1.
[83] Calakos N, Bennett M K, Peterson K E, Scheller R H. Science, 1994, 263: 1145.
[84] Höbel S, Vornicescu D, Bauer M, Fischer D, Keusgen M, Aigner A. Anal. Chem., 2014, 86(14): 6827.
[85] Rich R L, Papalia G A, Flynn P J, Furneisen J, Quinn J, Klein J S, et al. Anal. Biochem., 2009, 386(2) : 194.
[86] Karlsson R, Katsamba P S, Nordin H, Pol E, Myszka D G. Anal. Biochem., 2006, 349: 136.
[87] Miao Y, Cui T J, Leng F F, Wilson W D. Anal. Biochem., 2008,374: 7.
[88] Tan M C, Matsuoka S, Ano H, Ishida H, Hirose M, Sato F, Sugiyama S, Murata M. Bioorg. Med. Chem., 2014, 22: 1804.
[89] Pillet F, Sanchez A, Formosa C, Séverac M, Trévisiol E, Bouet J Y, Leberre V A. Biosens. Bioelectron., 2013, 43: 148.
[90] Palau W, Primo C D. Biochimie, 2012, 94: 1891.
[91] Glöck J M, Koenig B W, Willbold D. Anal. Biochem., 2011, 408: 46.
[92] Gopinath S C B, Hayashi K, Lee J B, Kamori A, Dong C X, Hayashi T, Kumar P K P. Anal. Chem., 2013, 85: 10455.
[93] Trutnau H H. J. Biotechnol., 2006, 124: 191.
[94] Suenaga E, Mizuno H, Penmetcha K K R. Biosens. Bioelectron., 2012, 32: 195.
[95] Gamsjaeger R, Kariawasam R, Bang L H, Touma C, Nguyen C D, Matthews J M, Cubeddu L, Mackay J P. Anal. Biochem., 2013, 440: 178.
[96] Cao J, Sun T, Grattan K T V. Sensor. Actuat. B-Chem., 2014, 195: 332.
[97] Wark A W, Lee H J, Corn R M. Anal. Chem., 2005, 77: 3904.
[98] Li M, Cushing S K, Wu N Q. Analyst, 2015, 140: 386.
[99] Farcau C, Astilean S. J. Phys. Chem. C, 2010, 114: 11717.
[100] Vasdekis A E, Laporte G P J. Int. J. Mol. Sci., 2011, 12: 5135.
[101] Hwang E, Smolyaninov I I, Davis C C. Nano Lett., 2010, 10: 813.
[102] Chabot V, Miron Y, Grandbois M, Charette P G. Sensor. Actuat. B-Chem., 2012, 174: 94.
[1] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4): 516-535.
[2] 曹小卫, 陈帅, 鲍敏, 史宏灿, 李巍. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展, 2018, 30(9): 1380-1391.
[3] 方维娜, 鲁爽, 王丽华, 樊春海, 柳华杰. 纳米金三角片的合成及应用[J]. 化学进展, 2017, 29(5): 459-466.
[4] 赵兵, 祁宁, 张克勤. 等离子体增强上转换发光及其应用[J]. 化学进展, 2016, 28(11): 1615-1625.
[5] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[6] 张骞, 周莹, 张钊, 何云, 陈永东, 林元华. 表面等离子体光催化材料[J]. 化学进展, 2013, 25(12): 2020-2027.
[7] 朱明山, 陈鹏磊*, 刘鸣华*. 银/卤化银:一类新型等离子体光催化剂[J]. 化学进展, 2013, 25(0203): 209-220.
[8] 申刚义 陈义 张轶鸣 崔箭. 表面等离子体共振成像*[J]. 化学进展, 2010, 22(08): 1648-1655.
[9] 肖桂娜 蔡继业. 基于局域表面等离子体共振效应的光学生物传感器*[J]. 化学进展, 2010, 22(01): 194-200.
[10] 姜萍,屈锋,谭信,李勤,耿利娜,邓玉林. 基于微流控芯片电泳的生物分子间相互作用研究*[J]. 化学进展, 2009, 21(09): 1895-1904.
[11] 马占芳,司国丽,初一鸣,陈颖. 三角银纳米柱的研究进展* [J]. 化学进展, 2009, 21(09): 1847-1856.
[12] 王琼,唐浩,谢青季,姚守拙. 电化学表面等离子体共振技术*[J]. 化学进展, 2007, 19(0203): 370-376.
[13] 刘惠玉,陈东,高继宁,唐芳琼,任湘菱. 贵金属纳米材料的液相合成及其表面等离子体共振性质应用*[J]. 化学进展, 2006, 18(0708): 889-896.
[14] 胡永红,容建华,刘应亮,满石清. 金属介电核壳结构复合材料的制备、性质及应用*[J]. 化学进展, 2005, 17(06): 994-1000.
[15] 陈义. 高通微量分析*[J]. 化学进展, 2005, 17(04): 573-580.