English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1811-1820 DOI: 10.7536/PC140703 前一篇   后一篇

• 综述与评论 •

嵌段共聚物结晶性胶束

杨洁心, 刘雷, 徐君庭*   

  1. 浙江大学高分子科学与工程学系 杭州 310027
  • 收稿日期:2014-07-01 修回日期:2014-08-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 徐君庭 E-mail:xujt@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21274130)资助

Crystalline Micelles of Block Copolymers

Yang Jiexin, Liu Lei, Xu Junting*   

  1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2014-07-01 Revised:2014-08-01 Online:2014-11-15 Published:2014-09-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21274130)

近年来嵌段共聚物在选择性溶剂中由结晶驱动形成胶束的自组装过程因其较好的可控性逐渐受到人们的关注.本文首先综述了嵌段共聚物结晶性胶束形貌和尺寸的影响因素,包括溶剂环境、共聚物结构、结晶温度等.然后介绍了结晶性胶束的活性生长以及"嵌段共胶束";最后提出了该研究领域目前存在的问题和今后可能的发展方向.

Recently the crystallization-driven self-assembly of block copolymers into semicrystalline micelles in the selective solvent has been paid increasing attention due to the good controllability. In this paper we first review some factors controlling the morphology and size of the semicrystalline micelles of block copolymers, including solvent quality, structure of block copolymers, and crystallization temperature. The living growth of semicrystalline micelles with time and formation of "block co-micelles" using micelles as building blocks are also introduced. Finally, currently existing problems and outlook in this field are discussed.

Contents
1 Introduction
2 Morphologies of block copolymer crystalline micelles
2.1 Effect of chain structure of block copolymer
2.2 Effect of solvent quality
2.3 Effect of crystallization temperature
3 Living growth of block copolymer crystalline micelles
4 Block co-micelles
5 Conclusion and outlook

中图分类号: 

()

[1] He W N, Xu J T. Prog. Polym. Sci., 2012, 37: 1350.
[2] Yu Y S, Eisenberg A. J. Am. Chem. Soc., 1997, 119: 8383.
[3] Zhang L F, Eisenberg A. Polym. Adv. Technol., 1998, 9: 677.
[4] Zhulina E B, Adam M, LaRue I, Sheiko S S, Rubinstein M. Macromolecules, 2005, 38: 5330.
[5] Larue I, Adam M, Zhulina E B, Rubinstein M, Pitsikalis M, Hadjichristidis N, Ivanov D A, Gearba R I, Anokhin D V, Sheiko S S. Macromolecules, 2008, 41: 6555.
[6] Vilgis T, Halperin A. Macromolecules, 1991, 24: 2090.
[7] Wang J, Zhu W, Peng B, Chen Y M. Polymer, 2013, 54: 6760.
[8] Makino A, Hara E, Hara I, Ozeki E, Kimura S. Langmuir, 2014, 30: 669.
[9] Du Z X, Xu J T, Fan Z Q. Macromolecules, 2007, 40: 7633.
[10] Xu J T, Fairclough J P A, Mai S M, Ryan A J. J. Mater. Chem., 2003, 13: 2740.
[11] Xu J T, Jin W, Liang G D, Fan Z Q. Polymer, 2005, 46: 1709.
[12] Kamps A C, Fryd M, Park S J. ACS Nano, 2012, 6: 2844.
[13] Yin L G, Hillmyer M A. Macromolecules, 2011, 44: 3021.
[14] Wang W, Liu R, Li Z, Meng C, Wu Q, Zhu F. Macromol. Chem. Phys., 2010, 211: 1452.
[15] Zhao Y, Shi X B, Gao H Y, Zhang L, Zhu F M, Wu Q. J. Mater. Chem., 2012, 22: 5737.
[16] Liu R, Li Z Y, Mai B Y, Wu Q, Liang G D, Gao H Y, Zhu F M. J. Polym. Res., 2013, 20.
[17] Cao L, Manners I, Winnik M A. Macromolecules, 2002, 35: 8258.
[18] Mihut A M, Crassous J J, Schmalz H, Drechsler M, Ballauff M. Soft Matter, 2012, 8: 3163.
[19] Yin L G, Lodge T P, Hillmyer M A. Macromolecules, 2012, 45: 9460.
[20] Li T, Wang W J, Liu R, Liang W H, Zhao G F, Li Z Y, Wu Q, Zhu F M. Macromolecules, 2009, 42: 3804.
[21] Mai B Y, Li Z Y, Liu R, Feng S, Wu Q, Liang G D, Gao H Y, Zhu F M. J. Polym. Res., 2013, 20.
[22] Li Z Y, Liu R, Mai B Y, Feng S, Wu Q, Liang G D, Gao H Y, Zhu F M. Polym. Chem., 2013, 4: 954.
[23] Chen S C, Wu G, Shi J, Wang Y Z. Chem. Commun., 2011, 47: 4198.
[24] Chen S C, Li L L, Wang H, Wu G, Wang Y Z. Polym Chem, 2012, 3: 1231.
[25] Sun L, Petzetakis N, Pitto-Barry A, Schiller T L, Kirby N, Keddie D J, Boyd B J, O'Reilly R K, Dove A P. Macromolecules, 2013, 46: 9074.
[26] Pitto-Barry A, Kirby N, Dove A P, O'Reilly R K. Polym. Chem., 2014, 5: 1427.
[27] Gödt T, Schacher F H, McGrath N, Winnik M A, Manners I. Macromolecules, 2011, 44: 3777.
[28] Molev G, Lu Y, Kim K S, Majdalani I C, Guerin G, Petrov S, Walker G, Manners I, Winnik M A. Macromolecules, 2014, 47: 2604.
[29] Wang X S, Winnik M A, Manners I. Macromolecules, 2002, 35: 9146.
[30] Schmalz H, Schmelz J, Drechsler M, Yuan J, Walther A, Schweimer K, Mihut A M. Macromolecules, 2008, 41: 3235.
[31] Petzetakis N, Walker D, Dove A P, O'Reilly R K. Soft Matter, 2012, 8: 7408.
[32] Massey J A, Temple K, Cao L, Rharbi Y, Raez J, Winnik M A, Manners I. J. Am. Chem. Soc., 2000, 122: 11577.
[33] Glavas L, Olsen P, Odelius K, Albertsson A C. Biomacromolecules, 2013, 14: 4150.
[34] Rajagopal K, Mahmud A, Christian D A, Pajerowski J D, Brown A E X, Loverde S M, Discher D E. Macromolecules, 2010, 43: 9736.
[35] Schmelz J, Karg M, Hellweg T, Schmalz H. ACS Nano, 2011, 5: 9523.
[36] Fu J, Luan B, Yu X, Cong Y, Li J, Pan C Y, Han Y C, Yang Y M, Li B Y. Macromolecules, 2004, 37: 976.
[37] Huang W H, Luo C X, Zhang J L, Yu K, Han Y C. Macromolecules, 2007, 40: 8022.
[38] Wang H, Winnik M A, Manners I. Macromolecules, 2007, 40: 3784.
[39] Wang X S, Liu K, Arsenault A C, Rider D A, Ozin G A, Winnik M A, Manners I. J. Am. Chem. Soc., 2007, 129: 5630.
[40] Park S J, Kang S G, Fryd M, Saven J G, Park S J. J. Am. Chem. Soc., 2010, 132: 9931.
[41] Su M, Huang H Y, Ma X J, Wang Q, Su Z H. Macromol. Rapid Commun., 2013, 34: 1067.
[42] Li Z Y, Liu R, Mai B Y, Wang W J, Wu Q, Liang G D, Gao H Y, Zhu F M. Polymer, 2013, 54: 1663.
[43] He W N, Xu J T, Du B Y, Fan Z Q, Wang X. Macromol. Chem. Phys., 2010, 211: 1909.
[44] Yang J X, He W N, Xu J T, Du B Y, Fan Z Q. Chin. J. Polym. Sci., 2014, 32: 1128.
[45] He W N, Xu J T, Du B Y, Fan Z Q, Sun F L. Macromol. Chem. Phys., 2012, 213: 952.
[46] Du Z X, Xu J T, Fan Z Q. Macromol. Rapid Commun., 2008, 29: 467.
[47] Raez J, Tomba J P, Manners I, Winnik M A. J. Am. Chem. Soc., 2003, 125: 9546.
[48] Mihut A M, Drechsler M, Moeller M, Ballauff M. Macromol. Rapid Commun., 2010, 31: 449.
[49] Mihut A M, Chiche A, Drechsler M, Schmalz H, Di Cola E, Krausch G, Ballauff M. Soft Matter, 2009, 5: 208.
[50] Mihut A M, Crassous J J, Schmalz H, Ballauff M. Colloid Polym. Sci., 2010, 288: 573.
[51] Schmelz J, Schacher F H, Schmalz H. Soft Matter, 2013, 9: 2101.
[52] Geng Y, Dalhaimer P, Cai S S, Tsai R, Tewari M, Minko T, Discher D E. Nat. Nanotechnol., 2007, 2: 249.
[53] Gilroy J B, Gödt T, Whittell G R, Chabanne L, Mitchels J M, Richardson R M, Winnik M A, Manners I. Nat. Chem., 2010, 2: 566.
[54] McGrath N, Schacher F H, Qiu H B, Mann S, Winnik M A, Manners I. Polym. Chem., 2014, 5: 1923.
[55] Patra S K, Ahmed R, Whittell G R, Lunn D J, Dunphy E L, Winnik M A, Manners I. J. Am. Chem. Soc., 2011, 133: 8842.
[56] Gwyther J, Gilroy J B, Rupar P A, Lunn D J, Kynaston E, Patra S K, Whittell G R, Winnik M A, Manners I. Chem. Eur. J., 2013, 19: 9186.
[57] Qian J S, Guerin G, Cambridge G, Manners I, Winnik M A. Macromol. Rapid Commun., 2010, 31: 928.
[58] Wang Y S, Zou S, Kim K T, Manners I, Winnik M A. Chem. Eur. J., 2008, 14: 8624.
[59] Qi F, Guerin G, Cambridge G, Xu W, Manners I, Winnik M A. Macromolecules, 2011, 44: 6136.
[60] Qian J S, Lu Y J, Cambridge G, Guerin G, Manners I, Winnik M A. Macromolecules, 2012, 45: 8363.
[61] Qian J S, Lu Y J, Chia A, Zhang M, Rupar P A, Gunari N, Walker G C, Cambridge G, He F, Guerin G, Manners I, Winnik M A. ACS Nano, 2013, 7: 3754.
[62] Qian J, Guerin G, Lu Y, Cambridge G, Manners I, Winnik M A. Angew. Chem. Int. Ed., 2011, 50: 1622.
[63] Petzetakis N, Dove A P, O'Reilly R K. Chem. Sci., 2011, 2: 955.
[64] He W N, Zhou B, Xu J T, Du B Y, Fan Z Q. Macromolecules, 2012, 45: 9768.
[65] Yusoff S F M, Hsiao M S, Schacher F H, Winnik M A, Manners I. Macromolecules, 2012, 45: 3883.
[66] Hsiao M S, Yusoff S F M, Winnik M A, Manners I. Macromolecules, 2014, 47: 2361.
[67] Wang X S, Guerin G, Wang H, Wang Y S, Manners I, Winnik M A. Science, 2007, 317: 644.
[68] Gödt T, Ieong N S, Cambridge G, Winnik M A, Manners I. Nat. Mater., 2009, 8: 144.
[69] He F, Gödt T, Manners I, Winnik M A. J. Am. Chem. Soc., 2011, 133: 9095.
[70] Hudson Z M, Lunn D J, Winnik M A, Manners I. Nat. Commun., 2014, 5: 3372
[71] Yusoff S F M, Gilroy J B, Cambridge G, Winnik M A, Manners I. J. Am. Chem. Soc., 2011, 133: 11220.
[72] Soto A P, Gilroy J B, Winnik M A, Manners I. Angew. Chem. Int. Ed., 2010, 49: 8220.
[73] Qiu H, Cambridge G, Winnik M A, Manners I. J. Am. Chem. Soc., 2013, 135: 12180.
[74] Qiu H, Du V A, Winnik M A, Manners I. J. Am. Chem. Soc., 2013, 135: 17739.
[75] Schacher F H, Bellas V, Winnik M A, Manners I. Soft Matter, 2013, 9: 8569.
[76] Schmelz J, Schedl A E, Steinlein C, Manners I, Schmalz H. J. Am. Chem. Soc., 2012, 134: 14217.
[77] Qian J S, Li X Y, Lunn D J, Gwyther J, Hudson Z M, Kynaston E, Rupar P A, Winnik M A, Manners I. J. Am. Chem. Soc., 2014, 136: 4121.
[78] Qiu H, Russo G, Rupar P A, Chabanne L, Winnik M A, Manners I. Angew. Chem. Int. Ed., 2012, 51: 11882.
[79] Rupar P A, Chabanne L, Winnik M A, Manners I. Science, 2012, 337: 559.
[80] Rizis G, van de Ven T G M, Eisenberg A. Soft Matter, 2014, 10: 2825.
[81] Wang H, Lin W J, Fritz K P, Scholes G D, Winnik M A, Manners I. J. Am. Chem. Soc., 2007, 129: 12924.
[82] He F, Gödt T, Jones M, Scholes G D, Manners I, Winnik M A. Macromolecules, 2009, 42: 7953.
[83] Wang H, Patil A J, Liu K, Petrov S, Mann S, Winnik M A, Manners I. Adv. Mater., 2009, 21: 1805.

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[6] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[7] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[8] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[11] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[12] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
阅读次数
全文


摘要

嵌段共聚物结晶性胶束