English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1781-1792 DOI: 10.7536/PC140739 前一篇   后一篇

• 综述与评论 •

单个量子点的光学性质与应用

石星波*1, 温超1, 符招弟2, 邓放明1, 郑舒1, 刘秋云1   

  1. 1. 湖南农业大学食品科技学院 食品科学与生物技术湖南省重点实验室 长沙 410128;
    2. 长沙矿冶研究院有限责任公司 分析检测中心 长沙 410012
  • 收稿日期:2014-07-01 修回日期:2014-08-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 石星波 E-mail:shixingbo123@aliyun.com
  • 基金资助:

    国家自然科学基金项目(No. 31301484)和湖南农业大学青年项目(12YJ09)资助

Photo Properties and Applications of Single Quantum Dots

Shi Xingbo*1, Wen Chao1, Fu Zhaodi2, Deng Fangming1, Zheng Shu1, Liu Qiuyun1   

  1. 1. Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
    2. Analytical Testing Laboratory, Changsha Research Institute of Mining and Metallurgy CO., LTD., Changsha 410012, China
  • Received:2014-07-01 Revised:2014-08-01 Online:2014-11-15 Published:2014-09-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 31301484) and the Youth Foundation of Hunan Agricultural University(12YJ09)

量子点(QDs)是一种具有诸多优良光学特性的荧光纳米颗粒,已在化学分析、生物传感、分子影像等领域得到了广泛应用.单个量子点的光学性质研究有望发现一些宏观方法不能发现的实验现象,可以为改善其光学性能提供思路,有助于更好的应用于各领域.本文评述了单个量子点的检测与判定方法,单个量子点的荧光增强、漂白、眨眼(blinking)、蓝移等光学性质及其在单分子示踪、生物化学传感、超分辨定位技术等方面的应用.总结了目前量子点作为荧光探针在实际应用中遇到的问题,并提出未来量子点将朝着合成能同时满足尺寸小、量子产率高、 "non-blinking"、蓝移幅度大、无生物毒性的量子点及能同时为成像/检测提供荧光探针与散射探针的等离子体量子点等研究方向发展.

As novel fluorescent nanomaterials, quantum dots (QDs) have played important roles in many fields, such as chemical analysis, biology sensor, molecular imaging, owing to their excellent optical properties. Studies on the properties of single quantum dots can help to find new experimental phenomenology which can't be found in the ensemble-approach, provide a mentality to improve the properties of quantum dots, contribute to a better application of quantum dots in various fields. In this review, identifications criterion of single quantum dots, photo-properties (such as fluorescence enhancement, bleaching, blinking, bluing, etc.) of single quantum dots, and quantum dots application (such as single quantum dots tracking, single quantum dots biosensor, super-localization technology) at single nanoparticle levels are commented. The challenges and existing problems of application of single quantum dots are summarized. In the future, synthesis in quantum dots should simultaneously satisfy many excellent photo-properties, including small size, high quantum yield, non-blinking, lager blue shift range, no-biotoxicty. Meanwhile, plasmonic quantum dots that not only exhibit strong fluorescence, but also become excellent probes for surface plasmon scattering, are another significant research field.

Contents
1 Introduction
2 Single molecule/nanoparticle detection
3 Photo-properties of single quantum dots
3.1 Fluorescence enhancement and bleaching
3.2 Blinking
3.3 Spectral blue shift
4 Application of quantum dots at single nanoparticle level
4.1 Single quantum dots tracking
4.2 Single quantum dots biosensor
4.3 Quantum dots in super-localization technology
4.4 Other application
5 Conclusion and outlook

中图分类号: 

()

[1] Moerner W E, Fromm D P. Rev. Sci. Instrum., 2003, 74: 3597.
[2] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P. Science, 1998, 281: 2013.
[3] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat. Methods, 2008, 5: 763.
[4] Baba K, Nishida K. Theranostics, 2012, 2: 655.
[5] Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. Nat. Biotechnol., 2004, 22: 969.
[6] Biju V, Itoh T, Ishikawa M. Chem. Soc. Rev., 2010, 39: 3031.
[7] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4: 435.
[8] Shao L, Gao Y, Yan F. Sensors, 2011, 11: 11736.
[9] Wang C, Gao X, Su X G. Anal. Bioanal. Chem., 2010, 397: 1397.
[10] Zrazhevskiy P, Sena M, Gao X H. Chem. Soc. Rev., 2010, 39: 4326.
[11] Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Chem. Rev., 2010, 110: 6873.
[12] Wu P, Yan X P. Chem. Soc. Rev., 2013, 42: 5489.
[13] Freeman R, Willner I. Chem. Soc. Rev., 2012, 41: 4067.
[14] 刘晓君(Liu X J), 涂洋(Tu Y), 盖宏伟(Gai H W). 化学进展(Progress in Chemistry), 2013, 25: 370.
[15] Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E. Nature, 1996, 383: 802.
[16] Lee S F, Osbome M A. J. Am. Chem. Soc., 2007, 129: 8936.
[17] Van Sark W, Frederix P, Bol A A, Gerritsen H C, Meijerink A. Chemphyschem, 2002, 3: 871.
[18] Lee S F, Osborne M A. Chemphyschem, 2009, 10: 2174.
[19] Cordero S R, Carson P J, Estabrook R A, Strouse G F, Buratto S K. J. Phys. Chem. B, 2000, 104: 12137.
[20] Van Sark W, Frederix P, van den Heuvel D J, Gerritsen H C, Bol A A, van Lingen J N J, Donega C D, Meijerink A. J. Phys. Chem. B, 2001, 105: 8281.
[21] Chen H P, Gai H W, Yeung E S. Chem. Commun., 2009, 1676.
[22] Shi X B, Meng X X, Sun L C, Liu J H, Zheng J, Gai H W, Yang R H, Yeung E S. Lab Chip, 2010, 10: 2844.
[23] Vela J, Htoon H, Chen Y, Park Y S, Ghosh Y, Goodwin P M, Werner J H, Wells N P, Casson J L, Hollingsworth J A. J. Biophotonics, 2010, 3: 706.
[24] Jin Y, Gao X. Nat. Nanotechnol., 2009, 4: 571.
[25] Smith A M, Duan H W, Rhyner M N, Ruan G, Nie S M. Phys. Chem. Chem. Phys., 2006, 8: 3895.
[26] Uematsu T, Maenosono S, Yamaguchi Y. Appl. Phys. Lett., 2006, 89: 031910.
[27] Myung N, Bae Y, Bard A J. Nano Lett., 2003, 3: 747.
[28] Chon J W M, Zijlstra P, Gu M, van Embden J, Mulvaney P. Appl. Phys. Lett., 2004, 85: 5514.
[29] Asami H, Abe Y, Ohtsu T, Kamiya I, Hara M. J. Phys. Chem. B, 2003, 107: 12566.
[30] Javier A, Strouse G F. Chem. Phys. Lett., 2004, 391: 60.
[31] Bao H B, Gong Y J, Li Z, Gao M Y. Chem. Mater., 2004, 16: 3853.
[32] Li Y Q, Guan L Y, Zhang H L, Chen J, Lin S, Ma Z Y, Zhao Y D. Anal. Chem., 2011, 83: 4103.
[33] Ray K, Badugu R, Lakowicz J R. J. Am. Chem. Soc., 2006, 128: 8998.
[34] Lu L, Chen D, Sun F, Ren X, Han Z, Guo G. Chem. Phys. Lett., 2010, 492: 71.
[35] Jin S, DeMarco E, Pellin M J, Farha O K, Wiederrecht G P, Hupp J T. J. Phys. Chem. Lett., 2013, 4: 3527.
[36] Castello Serrano I, Vazquez-Vazquez C, Matas Adams A, Stoica G, Correa-Duarte M A, Palomares E, Alvarez-Puebla R A. RSC Adv., 2013, 3: 10691.
[37] Ma X, Fletcher K, Kipp T, Grzelczak M P, Wang Z, Guerrero-Martinez A, Pastoriza-Santos I, Kornowski A, Liz-Marzan L M, Mews A. J. Phys. Chem. Lett., 2011, 2: 2466.
[38] Fu Y, Zhang J, Lakowicz J R. Chem. Commun., 2009, 313.
[39] Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M. Nano Lett., 2002, 2: 1449.
[40] Gueroui Z, Libchaber A. Phys. Rev. Lett., 2004, 93: 166108.
[41] Song M, Wu B, Chen G, Liu Y, Ci X, Wu E, Zeng H. J. Phys. Chem. C, 2014, 118: 8514.
[42] Pompa P P, Martiradonna L, Torre A D, Sala F D, Manna L, de Vittorio M, Calabi F, Cingolani R, Rinaldi R. Nat. Nanotechnol., 2006, 1:126.
[43] LeBlanc S J, McClanahan M R, Jones M, Moyer P J. Nano Lett., 2013, 13: 1662.
[44] Matsuda K, Ito Y, Kanemitsu Y. Appl. Phys. Lett., 2008, 92: 211911.
[45] Kuno M, Fromm D P, Johnson S T, Gallagher A, Nesbitt D J. Phys. Rev. B, 2003, 67: 125304.
[46] Verberk R, van Oijen A M, Orrit M. Phys. Rev. B, 2002, 66: 233202.
[47] Tang J, Marcus R A. Phys. Rev. Letters, 2005, 95: 107401.
[48] Cherniavskaya O, Chen L W, Brus L. J. Phys. Chem. B, 2004, 108: 4946.
[49] Frantsuzov P A, Marcus R A. Phys. Rev. B, 2005, 72:155321.
[50] Schwartz O, OronD. Israel J. Chem., 2012, 52: 992.
[51] Hohng S, Ha T. J. Am. Chem. Soc., 2004, 126: 1324.
[52] Hollingsworth J A. Chem. Mat., 2013, 25: 1318.
[53] Wang X Y, Ren X F, Kahen K, Hahn M A, Rajeswaran M, Maccagnano-Zacher S, Silcox J, Cragg G E, Efros A L, Krauss T D. Nature, 2009, 459: 686.
[54] Ha T. Nature, 2009, 459: 649.
[55] Dong C, Liu H, Zhang A, Ren J. Chem. Eur. J., 2014, 20: 1940.
[56] Zhang A, Dong C, Liu H, Ren J. J. Phys. Chem. C, 2013, 117: 24592.
[57] Dabbousi B O, Rodriguez Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. J. Phys. Chem. B, 1997, 101: 9463.
[58] Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J P, Dubertret B. Nat. Mater., 2008, 7: 659.
[59] Chen Y, Vela J, Htoon H, Casson J L, Werder D J, Bussian D A, Klimov V I, Hollingsworth J A. J. Am. Chem. Soc., 2008, 130: 5026.
[60] Ghosh Y, Mangum B D, Casson J L, Williams D J, Htoon H, Hollingsworth J A. J. Am. Chem. Soc., 2012, 134: 9634.
[61] Mahler B, Lequeux N, Dubertret B. J. Am. Chem. Soc., 2010, 132: 953.
[62] Van Embden J, Jasieniak J, Mulvaney P. J. Am. Chem. Soc., 2009, 131: 14299.
[63] Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W, Peng X. J. Am. Chem. Soc., 2014, 136: 179.
[64] Dennis A M, Mangum B D, Piryatinski A, Park Y S, Hannah D C, Casson J L, Williams D J, Schaller R D, Htoon H, Hollingsworth J A. Nano Lett., 2012, 12: 5545.
[65] Jones M, Nedeljkovic J, Ellingson R J, Nozik A J, Rumbles G. J. Phys. Chem. B, 2003, 107: 11346.
[66] Nazzal A Y, Wang X Y, Qu L H, Yu W, Wang Y J, Peng X G, Xiao M. J. Phys. Chem. B, 2004, 108: 5507.
[67] Wang Y, Tang Z Y, Correa-Duarte M A, Pastoriza-Santos I, Giersig M, Kotov N A, Liz-Marzan L M. J. Phys. Chem. B, 2004, 108: 15461.
[68] Empedocles S A, Bawendi M G. J. Phys. Chem. B, 1999, 103: 1826.
[69] Liu L P, Peng Q, Li Y D. Inorg. Chem., 2008, 47: 3182.
[70] Galian R E, de la Guardia M, Perez-Prieto J. J. Am. Chem. Soc., 2009, 131: 892.
[71] Hay K X, Waisundara V Y, Zong Y, Han M Y, Huang D J. Small, 2007, 3: 290.
[72] Bonneau S, Dahan M, Cohen L D. LEEE T. Image Process., 2005, 14: 1384.
[73] Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G. Nat. Methods, 2008, 5: 695.
[74] Keller A M, Ghosh Y, DeVore M S, Phipps M E, Stewart M H, Wilson B S, Lidke D S, Hollingsworth J A, Werner J H. Adv. Funct. Mater., 2014, DOI: 10.1002/adfm. 201400349.
[75] Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Science, 2003, 302: 442.
[76] Bouzigues C, Morel M, Triller A, Dahan M. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 11251.
[77] Nechyporuk-Zloy V, Stock C, Schillers H, Oberleithner H, Schwab A. Am. J. Physiol. Cell Ph., 2006, 291: C266.
[78] Crane J M, van Hoek A N, Skach W R, Verkman A S. Mol. Biol. Cell, 2008, 19: 3369.
[79] Serge A, Bertaux N, Rigneault H, Marguet D. Nat. Methods, 2008, 5: 687.
[80] Pinaud F, Michalet X, Iyer G, Margeat E, Moore H P, Weiss S. Traffic, 2009, 10: 691.
[81] Ohmachi M, Komori Y, Iwane A H, Fujii F, Jin T, Yanagida T. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 5294.
[82] Hennig S, van de Linde S, Heilemann M, Sauer M. Nano Lett., 2009, 9: 2466.
[83] Watanabe T M, Fujii F, Jin T, Umemoto E, Miyasaka M, Fujita H, Yanagida T. Biophys. J., 2013, 105: 555.
[84] Zhang C Y, Yeh H C, Kuroki M T, Wang T H. Nat. Mater., 2005, 4: 826.
[85] Zhang C Y, Johnson L W. Anal. Chem., 2009, 81: 3051.
[86] Long Y, Zhang L F, Zhang Y, Zhang C Y. Anal. Chem., 2012, 84: 8846.
[87] Zhang Y, Zhang C Y. Anal. Chem., 2012, 84: 224.
[88] Zhang C Y, Hu J. Anal. Chem., 2010, 82: 1921.
[89] Song Y K, Zhang Y, Wang T H. Small, 2013, 9: 1096.
[90] Opperwall S R, Divakaran A, Porter E G, Christians J A, DenHartigh A J, Benson D E. ACS Nano, 2012, 6: 8078.
[91] Zhou J, Wang Q X, Zhang C Y. J. Am. Chem. Soc., 2013, 135: 2056.
[92] Zeng Y P, Zhu G C, Yang X Y, Cao J, Jing Z L, Zhang C Y. Chem. Commun., 2014, 50: 7160.
[93] Yeh H C, Ho Y P, Wang T H. Nanomedicine, 2005, 1: 115.
[94] Yeh H C, Ho Y P, Shih I M, Wang T H. Nucleic Acids Res., 2006, 34: e35.
[95] Zinchuk V, Zinchuk O. Curr. Protoc. Cell Biol., 2008, Chapter 4: Unit 4.19.
[96] Comeau J W, Costantino S, Wiseman P W. Biophys. J., 2006, 91: 4611.
[97] Liu J B, Yang X H, Wang K M, Wang Q, Liu W, Wang D. Nanoscale, 2013, 5: 11257.
[98] Ho Y P, Kung M C, Yang S, Wang T H. Nano Lett., 2005, 5: 1693.
[99] Hell S W. Science, 2007, 316: 1153.
[100] Qu X H, Wu D, Mets L, Scherer N F. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 11298.
[101] Gordon M P, Ha T, Selvin P R. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 6462.
[102] Heilemann M, Dedecker P, Hofkens J, Sauer M. Laser Photonics Rev., 2009, 3: 180.
[103] Chien F C, Kuo C W, Chen P L. Analyst, 2011, 136: 1608.
[104] Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 22287.
[105] Hoyer P, Staudt T, Engelhardt J, Hell S W. Nano Lett., 2011, 11: 245.
[106] Lagerholm B C, Averett L, Weinreb G E, Jacobson K, Thompson N L. Biophys. J., 2006, 91: 3050.
[107] Lidke K A, Rieger B, Jovin T M, Heintzmann R. Opt. Express, 2005, 13: 7052.
[108] Thompson R E, Larson D R, Webb W W. Biophys. J., 2002, 82: 2775.
[109] Antelman J, Wilking-Chang C, Weiss S, Michalet X. Nano Lett., 2009, 9: 2199.
[110] Agrawal A, Deo R, Wang G D, Wang M D, Nie S M. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 3298.
[111] Shi X B, Xie Z Q, Song Y H, Tan Y J, Yeung E S, Gai H W. Anal. Chem., 2012, 84: 1504.
[112] Huang B, Wang W, Bates M, Zhuang X. Science, 2008, 319: 810.
[113] Bulyshev A, Amzajerdian F, Roback V E, Hines G, Pierrottet D, Reisse R. Appl. Opt., 2014, 53: 2583.
[114] Biteen J S, Goley E D, Shapiro L, Moerner W E. Chemphyschem, 2012, 13: 1007.
[115] Wang Y, Fruhwirth G, Cai E, Ng T, Selvin P R. Nano Lett., 2013, 13: 5233.
[116] Heller M J. Annu. Rev. Biomed. Eng., 2002, 4: 129.
[117] Tan P K, Downey T J, Spitznagel E L, Xu P, Fu D, Dimitrov D S, Lempicki R A, Raaka B M, Cam M C. Nucleic Acids Res., 2003, 31: 5676.
[118] Naef F, Socci N D, Magnasco M. Bioinformatics, 2003, 19: 178.
[119] Ji H, Davis R W. Nat. Biotech., 2006, 24: 1112.
[120] Patterson T A, Obenhofer E K, Fulmer-Smentek S B, Collins P J, Chu T M, Bao W, Fang H, Kawasaki E S, Hager J, Tikhonova I R, Walker S J, Zhang L, Hurban P, de Longueville F, Fuscoe J C, Tong W, Shi L, Wolfinger R D. Nat. Biotech., 2006, 24: 1140.
[121] Hesse J, Jacak J, Kasper M, Regl G, Eichberger T, Winklmayr M, Aberger F, Sonnleitner M, Schlapak R, Howorka S, Muresan L, Frischauf A M, Schutz G J. Genome Res., 2006, 16: 1041.
[122] Clarke S, Pinaud F, Beutel O, You C, Piehler J, Dahan M. Nano Lett., 2010, 10: 2147.
[123] Uddayasankar U, Zhang Z F, Shergill R T, Gradinaru C C, Krull U J. Bioconjugate Chem., 2014, 25: 1342.

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[3] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[4] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[5] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[6] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[7] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[8] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[9] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[10] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[11] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[12] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[13] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[14] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[15] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
阅读次数
全文


摘要

单个量子点的光学性质与应用