English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

基于生物功能化纳米DNA探针及其传感策略

董海峰, 张学记*   

  1. 北京科技大学生物工程与传感技术研究中心 北京 100083
  • 收稿日期:2012-04-01 修回日期:2012-05-01 出版日期:2012-11-24 发布日期:2012-10-23
  • 基金资助:

    中国博士后基金 (No. 11175012)、中央高校基本科研业务费项目 (No. 06199017)和国家自然基金项目(No. 21127007, 21075055, 21135002, 21121091)资助

DNA Biosensors Based on Functional Nanoprobes

Dong Haifeng, Zhang Xueji   

  1. Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, China
  • Received:2012-04-01 Revised:2012-05-01 Online:2012-11-24 Published:2012-10-23
随着人类基因组计划的完成和功能基因研究的深入,基因诊断已成为分子生物学和生物医学的重要研究领域。DNA生物传感器作为一种利用核酸碱基配对原则进行识别,能对基因片段实现持续、快速、灵敏和选择性检测的新方法,近年来发展非常迅速。纳米材料由于具有独特物理化学性质、良好的生物相容性、优越的机械性能及表面易于生物功能化等特点,被广泛应用到生物分析之中。各种各样组成、尺寸、维度及形状的纳米材料如量子点、贵金属纳米材料、碳纳米材料等被可控地修饰上不同的生物分子,用于发展特殊性质的纳米探针,构建DNA生物传感器,实现对DNA片段高灵敏及高特异性的检测。
The accomplishment of the Human Genome Project and the progress in research of the functional genomics make gene diagnoses a hot spot in the areas of molecular biology and biomedicine. DNA biosensors, based on the bases pairing, can continuously, fast, sensitively detect the specific gene sequence, which have developed quickly in recent years. Nanoparticles are intensely studied in bioanalysis, owing to its unique physical and chemical properties, excellent biocompatibility, stable mechanical and facilitated modification properties. Various compositions, sizes, dimensions and shapes of nanomaterials such as quantum dot, noble metal nanoparticles, carbon nanomaterials are controllably tailored to couple different biomolecules in order to develop nanoprobes with desired properties for DNA biosensing. These biosensing devices can be employed for detection of DNA sequence with high sensitivity and selectivity. Contents
1 Introduction
2 The basic principle of DNA biosensors
3 General categories of DNA biosensors
4 The application of nanoparticles in DNA biosensors
4.1 Functional gold nanoprobe
4.2 Functional carbon nanoprobe
4.3 Functional semiconductor nanoprobe
5 Conclusion and outlook

中图分类号: 

()
[1] Huang J, Wu Y R, Chen Y, Zhu Z, Yang X H, Yang C Y J, Wang K M, Tan W H. Angew. Chem. Int. Ed., 2011, 50: 401-404
[2] Bi S, J. Zhang L, Zhang S S. Chem. Commun., 2010, 46: 5509-5511
[3] Cai S, Lau C W, Lu J Z. Anal. Chem., 2010, 82: 7178-7184
[4] Chai Y, Tian D Y, Wang W, Cui H. Chem. Commun., 2010, 46: 7560-7562
[5] 黄强(Huang Q), 刘红英(Liu H Y), 方宾(Fang B). 化学进展(Progress in Chemistry), 2009, 21: 1052-1059
[6] 闫继明(Yan J M), 秦安军(Qin A J), 孙景志(Sun J Z), 唐本忠(Tang B Z). 科学通报(Chinese Science Bulletin), 2010, 55: 1206-1213
[7] Zhang Y Y, Tang Z W, Wang J, Wu H, Maham A H, Lin Y H. Anal. Chem., 2010, 82: 6440-6446
[8] Driskell J D, Tripp R A. Chem. Commun., 2010, 46: 3298-3300
[9] 漆红兰(Ji H L), 张成孝. (Zhang C X). 化学进展(Progress in Chemistry), 2005, 17: 911-915
[10] Zhang G J, Luo Z H H, Huang M J, Tay G K I, Lim E A. Biosens. Bioelectron., 2010, 25: 2447-2453
[11] De M, Ghosh P S, Rotello V M. Adv. Mater., 2008, 20: 4225-4241
[12] 孙伟(Sun W), 焦奎(Jiao K), 王振永(Wang Z Y), 陆路德(Lu L D), 理化检验 ·化学分册(Physical Testing and Chemical Analysis Part B: chemical Analysis), 2004, 40: 742-745
[13] Sassolas A, Leca-Bouvier B D, Blum L J. Chem. Rev., 2008: 108, 109-139
[14] Bailey V J, Easwaran H, Zhang Y, Griffiths E, Belinsky S A, Herman J G, Baylin S B, Carraway H E, Wang T H. Genome Res., 2009, 19: 1455-1461
[15] Li D, Song S, Fan C. Acc. Chem. Res., 2010, 43, 631-641
[16] Gooding J J. Electroanalysis, 2002, 14: 1149-1156
[17] Bakker E, Telting-Diaz M. Anal. Chem., 2002, 74: 2781-2800
[18] 唐婷(Tang T), 彭图治(Peng T Z), 时巧翠(Shi Q C). 化学学报(Journal of the Chinese Chemical Society)2005, 63: 2042-2046
[19] 张炯(Zhang J), 万莹(Wan Y), 王丽华(Wang L H), 宋世平(Song S P), 樊春海(Fan C H). 化学进展 (Progress in Chemistry), 2007, 19: 1576-1584
[20] Epstein J R, Leung A P K, Lee K H, Walt D R. Biosens. Bioelectron., 2003, 18: 541-546
[21] Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Science, 1997, 277: 1078-1081
[22] Cao Y C, Jin R, Mirkin C A. Science, 2002, 297: 1536-1540
[23] Taton T A, Mirkin C A, Lets inger R L. Science, 2000, 289: 1757-1760
[24] Thaxton C S, Mirkin C A. Nature, 2005, 23: 681-682
[25] Dufva M. Biomol. Eng., 2005, 22: 173-184
[26] Fritz J, Baller M K, Lang H P, Rothuizen H, Vettiger P, Meyer E, Guntherodt H J, Gerber C, Gimzewski J K. Science, 2000, 288: 316-318
[27] Song S P, Qin Y, He Y, Huang Q, Fan C H, Chen H Y. Chem. Soc. Rev., 2010, 39: 4234-4243
[28] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382: 607-609
[29] Nam J M, Stoeva S I, Mirkin, C A. J. Am. Chem. Soc., 2004, 126: 5932-5933
[30] Li J, Song S P, Liu X F, Wang L H, Pan D, Huang Q, Zhao Y, Fan C. Adv. Mater., 2008, 20: 497-500
[31] Song S, Liang Z, Zhang J, Wang L, Li G, Fan C. Angew. Chem. Int. Ed., 2009, 48: 8670-8674
[32] Cao Y W C, Jin R C, Mirkin C A. Science, 2002, 297: 1536-1540
[33] Hu J, Zheng P C, Jiang J H, Shen G L, Yu R Q, Liu G K. Analyst, 2010, 135: 1084-1089
[34] Taton T A, Mirkin C A, Letsinger R L. Science, 2000, 289: 1757-1760
[35] Ji H X, Dong H F, Yan F, Lei J P, Ding L, Gao W C, Ju H X. Chem. Eur. J., 2011, 17: 11344-11349
[36] Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C., J. Am. Chem. Soc., 2006, 128: 8575-8580
[37] Gao W C, Dong H F, Gao W C, Lei J P, Ji H X, Ju H X. Chem. Commun., 2011, 47: 5220-5222
[38] Pinijsuwan S, Rijiravanich P, Somasundrum M, Surareungchai W. Anal. Chem., 2008, 80: 6779-6784
[39] Li L., Wang S, Yang T, Huang S M, Wang J C. Biosens. Bioelectron., 2011, 33: 279-283
[40] Roy S, Gao Z. Q. Nano Today, 2011, 4: 318-334
[41] Claussen J C, Franklin A D, ul Haque A, Porterfield D M, Fisher T S. ACS Nano, 2011, 3: 37-44
[42] Li H L, Tian J Q, Wang L, Zhang Y W, Sun X P. J. Mater. Chem., 2011, 21: 824-828.
[43] Wang J, Liu G, Jan M R. J. Am. Chem. Soc., 2004, 126: 3010-3011
[44] Munge B, Liu G, Collins G, Wang J. Anal. Chem., 2005, 77: 4662-4666
[45] Star A, Tu E, Niemann J, Gabriel J C, Joiner C S, Valcke C. Proc. Natl. Acad. Sci. USA, 2006, 103: 921-926
[46] Mohanty N, Berry V. Nano Lett., 2008, 8: 4469-4476
[47] Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan, W. J. Am. Chem. Soc., 2008, 130: 8351-8358
[48] He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20: 453-459
[49] Dong H F, Gao W C, Yan F, Ji H X, Ju H X. Anal. Chem., 2010, 82: 5511-5517
[50] Gill R, Zayats M, Willne I. Angew. Chem. Int. Ed., 2008, 47: 7602-7625.
[51] Zhang C Y, Yeh H C, Kuroki M T, Wang T H. Nat. Mater., 2005, 4: 826-831
[52] Han M, Gao X, Su J Z, Nie S. Nat. Biotechnol., 2001, 19: 631-635
[53] Willner I, Patolsky F, Wasserman J. Angew. Chem. Int. Ed., 2001, 40: 1861-1864
[54] Dong H F, Yan F, Ji H X, Wong D K Y, Ju H X. Adv. Funct. Mater., 2010, 20: 1173-1179
[55] Wang J, Liu G, Merkoci A. J. Am. Chem. Soc., 2003, 125: 3214-3215
[56] Arora K., Prabhakar N, Chand S, Malhotra B D. Biosen. Bioelectron., 2007, 23: 613-620
[57] Li M Z, He F, Liao Q, Liu J, Xu L, Jiang L, Song Y L, Wang S, Zhu D B. Angew. Chem. Int. Ed., 2008, 47: 7258 -7262
[58] Mitchel N. Howorka S, Angew. Chem. Int. Ed. 2008, 47: 5565 -5568
[59] Kavanagh P, Leech D. Anal. Chem., 2006, 78: 2710-2716
[60] Zheng W M, He L. J. Am. Chem. Soc., 2009, 131, 3432-3433
[1] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[2] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[3] 朱春雷, 杨琼, 刘礼兵, 王树. 高灵敏共轭聚合物化学传感器[J]. 化学进展, 2011, 23(10): 1993-2002.
[4] 胡娟 张春阳. 应用于基因分析的最新SERS技术*[J]. 化学进展, 2010, 22(08): 1641-1647.
[5] 贺芳 王树. 基于水溶性共轭聚合物的蛋白质检测*[J]. 化学进展, 2009, 21(11): 2372-2378.
[6] 黄强,刘红英,方宾. 电化学DNA生物传感器研究的应用进展*[J]. 化学进展, 2009, 21(05): 1052-1059.