English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

量子点给药载体研究进展

杨嬅嬿, 熊焕明*, 余绍宁*   

  1. 复旦大学化学系 上海 200433
  • 收稿日期:2012-03-01 修回日期:2012-05-01 出版日期:2012-11-24 发布日期:2012-10-23
  • 基金资助:

    国家自然科学基金项目(No.21275032、30970631),上海市重点学科建设项目(No.B109)和教育部新世纪优秀人才支持计划NCET-11-0115资助

Quantum Dots-Based Drug Delivery System

Yang Huayan, Xiong Huanming, Yu Shaoning   

  1. Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received:2012-03-01 Revised:2012-05-01 Online:2012-11-24 Published:2012-10-23
量子点因其优良的发光性质,易于修饰的表面结构,在化学、医学和材料等研究领域显示了极其广阔的应用前景,受到科研工作者越来越多的关注。本文介绍了量子点的独特光学性质、制备方法、水溶性修饰和量子点与生物分子的偶联,重点讨论了量子点作为给药载体和给药载体标记物,以及以量子点为平台建立的多功能纳米给药体系的近年研究进展,阐述了当前研究中的主要发展方向和仍需解决的问题。
Fluorescent semiconductor quantum dots have shown great potential applications in analytical chemistry, biochemistry and biomedicine. The unique optical properties and various surface structures of QDs have received more and more intensive attention. Here,we present a review of current development in QDs, including their synthetic method, surface modification and bioconjugation, especially application in drug delivery. Contents
1 Introduction
2 Features and syntheses of QDs
2.1 Optical properties
2.2 Synthesis
2.3 Surface modification
2.4 Bioconjugation
3 Applications in drug delivery system
3.1 QDs as drug carries
3.2 QD-labeled drug carriers
4 Conclusion and outlook

中图分类号: 

()
[1] Liu F C, Cheng T L, Shen C C, Tseng W L, Chiang M Y. Langmuir, 2008, 24(5): 2162-2167
[2] He Y, Lu H, Su Y, Sai L, Hu M, Fan C, Wang L. Biomaterials, 2011, 32(8): 2133-2140
[3] Rogach A L, Eychmüller A, Kornowski A, Weller H. Macromol. Symp., 1998, 136(1): 87-89
[4] Panda S K, Hickey S G, Demir H V, Eychmüller A. Angewandte Chemie, 2011, 123(19): 4524-4528
[5] Chakrabortty S, Yang J A, Tan Y M, Mishra N, Chan Y T. Angew. Chem. Int. Edit., 2010, 49(16): 2888-2892
[6] Rogach A L, Eychmüller A, Hickey S G, Kershaw S V. Small, 2007, 3(4): 536-557
[7] Zhang J, Tang Y, Lee K, Ouyang M. Science, 2010, 327(5973): 1634-1638
[8] Dorfs D, Hickey S, Eychmüller A. Type-Ⅰ and Type-Ⅱ Core-Shell Quantum Dots: Synthesis and Characterization. Nanotechnologies for the Life Sciences, Wiley, 2007
[9] Kim S W, Zimmer J P, Ohnishi S, Tracy J B, Frangioni J V, Bawendi M G. J. Am. Chem. Soc., 2005, 127(30): 10526-10532
[10] Zhou W, Baneyx F. ACS Nano, 2011, 5(10): 8013-8018
[11] Pradhan N, Sarma D D. The Journal of Physical Chemistry Letters, 2011, 2(21): 2818-2826
[12] Gaponik N, Hickey S G, Dorfs D, Rogach A L, Eychmüller A. Small, 2010, 6(13): 1364-1378
[13] Petroff P M. Adv. Mater., 2011, 23(20): 2372-2376
[14] Medintz I L, Mattoussi H, Clapp A R. International Journal of Nanomedicine, 2008, 3(2): 151-167
[15] Zrazhevskiy P, Sena M, Gao X. Chem. Soc. Rev., 2010, 39(11): 4326-4354
[16] Wang Y, Chen L. Nanomedicine: nanotechnology, biology, and medicine, 2011, 7(4): 385-402
[17] Hallock A J, Redmond P L, Brus L E. J. Chem. Phys., 1983, 79: 1086-1088
[18] Brus L E. The Journal of Chemical Physics, 1984, 80(9): 4403-4409
[19] Rossetti R, Ellison J L, Gibson J M, Brus L E. J. Chem. Phys., 1984, 80(9): 4664-4669
[20] Rossetti R, Hull R, Gibson J M, Brus L E. J. Chem. Phys., 1985, 82(1): 552-559
[21] Steigerwald M L, Brus L E. Annu. Rev. Mater. Sci., 1989, 19: 471-495
[22] Steigerwald M L, Brus L E. Accounts. Chem. Res., 1990, 23(6): 183-188
[23] Alivisatos A P. Science, 1996, 271(5251): 933-937
[24] Nozik A J, Thacker B R, Turner J A, Olson J M. J. Am. Chem. Soc., 1985, 107(26): 7805-7810
[25] Haase M, Weller H, Henglein A. The Journal of Physical Chemistry, 1988, 92(2): 482-487
[26] Bawendi M G, Steigerwald M L, Brus L E. Annu. Rev. Phys. Chem., 1990, 41: 477-496
[27] Ochoa O R, Colajacomo C, Witkowski Iii E J, Simmons J H, Potter Jr B G. Solid State Commun., 1996, 98(8): 717-721
[28] Algar W R, Susumu K, Delehanty J B, Medintz I L. Anal. Chem., 2011, 83(23): 8826-8837
[29] Cao Y, Banin U. J. Am. Chem. Soc., 2000, 122(40): 9692-9702
[30] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nature Methods, 2008, 5(9): 763-775
[31] Han M, Gao X, Su J Z, Nie S. Nat. Biotech., 2001, 19(7): 631-635
[32] Ludwig J A, Weinstein J N. Nat. Rev. Cancer, 2005, 5(11): 845-856
[33] Fountaine T J, Wincovitch S M, Geho D H, Garfield S H, Pittaluga S. Mod. Pathol., 2006, 19(9): 1181-1191
[34] Xing Y, Chaudry Q, Shen C, Kong K Y, Zhau H E, Chung L W, Petros J A, O'Regan R M, Yezhelyev M V, Simons J W, Wang M D, Nie S. Nature Protocols, 2007, 2(5): 1152-1165
[35] Michalet X. Science, 2005, 307(5709): 538-544
[36] Wu X, Liu H, Liu J, Haley K N, Treadway J A, Larson J P, Ge N, Peale F, Bruchez M P. Nat. Biotech., 2003, 21(1): 41-46
[37] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P. Science, 1998, 281(5385): 2013-2016
[38] Chan W C, Nie S. Science, 1998, 281(5385): 2016-2018
[39] John V F. Curr. Opin. Chem. Biol., 2003, 7(5): 626-634
[40] He X, Gao J, Gambhir S S, Cheng Z. Trends Mol. Med., 2010, 16(12): 574-583
[41] Tsay J M, Pflughoefft M, Bentolila L A, Weiss S. J. Am. Chem. Soc., 2004, 126(7): 1926-1927
[42] Kim S, Lim Y T, Soltesz E G, De Grand A M, Lee J, Nakayama A, Parker J A, Mihaljevic T, Laurence R G, Dor D M, Cohn L H, Bawendi M G, Frangioni J V. Nat. Biotech., 2004, 22(1): 93-97
[43] Allen P M, Bawendi M G. J. Am. Chem. Soc., 2008, 130(29): 9240-9241
[44] Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q. J. Am. Chem. Soc., 2010, 132(5): 1470-1471
[45] Shen S, Zhang Y, Peng L, Du Y, Wang Q. Angew. Chem. Int. Ed., 2011, 50(31): 7115-7118
[46] Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q. ACS Nano, 2012, 6(5): 3695-3702
[47] So M-K, Xu C, Loening A M, Gambhir S S, Rao J. Nat. Biotech., 2006, 24(3): 339-343
[48] Colvin V L, Goldstein A N, Alivisatos A P. J. Am. Chem. Soc., 1992, 114(13): 5221-5230
[49] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115(19): 8706-8715
[50] Wang X, Zhuang J, Peng Q, Li Y. Nature, 2005, 437(7055): 121-124
[51] Kairdolf B A, Smith A M, Nie S. J. Am. Chem. Soc., 2008, 130(39): 12866-12867
[52] Rogach A L. Semiconductor Nanocrystal Quantum Dots. Austria: Springer-Verlag, 2008. 1-34
[53] Yu W W. Expert. Opin. Biol. Ther., 2008, 8(10): 1571-1581
[54] Murray C B, Kagan C R, Bawendi M G. Annu. Rev. Mater. Sci., 2000, 30(1): 545-610
[55] Yin Y, Alivisatos A P. Nature, 2005, 437(7059): 664-670
[56] Park J, Joo J, Kwon S G, Jang Y, Hyeon T. Angewandte Chemie International Edition, 2007, 46(25): 4630-4660
[57] Anpo M, Kubokawa Y. The Journal of Physical Chemistry, 1984, 88(23): 5556-5560
[58] Peng Z A, Peng X. J. Am. Chem. Soc., 2000, 123(1): 183-184
[59] Jain P K, Amirav L, Aloni S, Alivisatos A P. J. Am. Chem. Soc., 2010, 132(29): 9997-9999
[60] Reiss P, Protière M, Li L. Small, 2009, 5(2): 154-168
[61] Peng X, Schlamp M C, Kadavanich A V, Alivisatos A P. J. Am. Chem. Soc., 1997, 119(30): 7019-7029
[62] Kim S, Bawendi M G. J. Am. Chem. Soc., 2003, 125(48): 14652-14653
[63] Bhargava R N, Gallagher D, Nurmikko X A. Phys. Rev. Lett., 1994, 72: 416-419
[64] Heesun Yang S S, Paul H. Holloway. Journal of Nanoscience and Nanotechnology, 2005, 5: 1364-1375
[65] Norris D J, Yao N, Charnock F T, Kennedy T A. Nano Lett., 2000, 1(1): 3-7
[66] Pradhan N, Peng X. J. Am. Chem. Soc., 2007, 129(11): 3339-3347
[67] Xie R, Peng X. J. Am. Chem. Soc., 2009, 131(30): 10645-10651
[68] Pathak S, Choi S-K, Arnheim N, Thompson M E. J. Am. Chem. Soc., 2001, 123(17): 4103-4104
[69] Correa-Duarte M A, Giersig M, Liz-Marzán L M. Chem. Phys. Lett., 1998, 286(5/6): 497-501
[70] Kovalenko M V, Bodnarchuk M I, Zaumseil J, Lee J S, Talapin D V. J. Am. Chem. Soc., 2010, 132(29): 10085-10092
[71] Nag A, Kovalenko M V, Lee J-S, Liu W, Spokoyny B, Talapin D V. J. Am. Chem. Soc., 2011, 133(27): 10612-10620
[72] Dubertret B. Science, 2002, 298(5599): 1759-1762
[73] Rogach A L, Kornowski A, Gao M, Eychmüller A, Weller H. The Journal of Physical Chemistry B, 1999, 103(16): 3065-3069
[74] Xiong H M, Liu D P, Zhang H, Chen J-S. J. Mater. Chem., 2004, 14(18): 2775-2780
[75] Xiong H M, Xu Y, Ren Q G, Xia Y Y. J. Am. Chem. Soc., 2008, 130(24): 7522-7523
[76] Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B. Chem. Mater., 2011, 23(21): 4857-4862
[77] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. Journal of the Chemical Society, Chemical Communications, 1994, (7): 801-802
[78] Wang Q, Pan D, Jiang S, Ji X, An L, Jiang B. ChemInform, 2006, 37(7): doi: 10.1002/chin.200607229
[79] Pan D, Jiang S, An L, Jiang B. Adv. Mater., 2004, 16(12): 982-985
[80] Pan D, Wang Q, Jiang S, Ji X, An L. Adv. Mater., 2005, 17(2): 176-179
[81] Wang Q, Liu Y, Ke Y, Yan H. Angewandte Chemie. International Edition, 2008, 47(2): 316-319
[82] He Y, Zhong Y, Peng F, Wei X, Su Y, Lu Y, Su S, Gu W, Liao L, Lee S T. J. Am. Chem. Soc., 2011, 133(36): 14192-14195
[83] Jin T, Tiwari D K, Tanaka S-i, Inouye Y, Yoshizawa K, Watanabe T M. Molecular BioSystems, 2010, 6(11): 2325-2331
[84] Diagaradjane P, Orenstein-Cardona J M, Colon-Casasnovas N E, Deorukhkar A, Shentu S, Kuno N, Schwartz D L, Gelovani J G, Krishnan S. Clin. Cancer Res., 2008, 14(3): 731-741
[85] Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger P H. J. Am. Chem. Soc., 2009, 131(6): 2110-2112
[86] Jaiswal J K, Mattoussi H, Mauro J M, Simon S M. Nat Biotech, 2003, 21(1): 47-51
[87] Wu X, Liu H, Liu J, Haley K N, Treadway J A, Larson J P, Ge N, Peale F, Bruchez M P. Nat. Biotechnol., 2002, 21(1): 41-46
[88] Lidke D S, Nagy P, Heintzmann R, Arndt-Jovin D J, Post J N, Grecco H E, Jares-Erijman E A, Jovin T M. Nat. Biotechnol., 2004, 22(2): 198-203
[89] Mittal R, Bruchez M P. Bioconjugate. Chem., 2011, 22(3): 362-368
[90] Rozenzhak S M, Kadakia M P, Caserta T M, Westbrook T R, Stone M O, Naik R R. Chem. Commun., 2005, (17): 2217
[91] Medintz I L, Clapp A R, Brunel F M, Tiefenbrunn T, Tetsuo Uyeda H, Chang E L, Deschamps J R, Dawson P E, Mattoussi H. Nature Materials, 2006, 5(7): 581-589
[92] Bhang S H, Won N, Lee T J, Jin H, Nam J, Park J, Chung H, Park H S, Sung Y E, Hahn S K, Kim B S, Kim S. ACS Nano, 2009, 3(6): 1389-1398
[93] Juliano R L, Varner J A. Curr. Opin. Cell Biol., 1993, 5(5): 812-818
[94] Cai W, Shin D W, Chen K, Gheysens O, Cao Q, Wang S X, Gambhir S S, Chen X. Nano Letters, 2006, 6(4): 669-676
[95] Choi H S, Liu W, Liu F, Nasr K, Misra P, Bawendi M G, Frangioni J V. Nat Nano, 2010, 5(1): 42-47
[96] Schroeder J E, Shweky I, Shmeeda H, Banin U, Gabizon A. J. Control Release., 2007, 124(1/2): 28-34
[97] Liu J, Lee J H, Lu Y. Anal. Chem., 2007, 79(11): 4120-4125
[98] Chen X C, Deng Y L, Lin Y, Pang D W, Qing H, Qu F, Xie H Y. Nanotechnology, 2008, 19(23): art. no. 235105
[99] Shi J, Votruba A R, Farokhzad O C, Langer R. Nano Letters, 2010, 10(9): 3223-3230
[100] Rosenthal S J, Chang J C, Kovtun O, McBride J R, Tomlinson I D. Chem. Biol., 2011, 18(1): 10-24
[101] Swafford L A, Weigand L A, Bowers M J, McBride J R, Rapaport J L, Watt T L, Dixit S K, Feldman L C, Rosenthal S J. J. Am. Chem. Soc., 2006, 128(37): 12299-12306
[102] Byrne S J, le Bon B, Corr S A, Stefanko M, OConnor C, Gun'ko Y K, Rakovich Y P, Donegan J F, Williams Y, Volkov Y, Evans P. ChemMedChem, 2007, 2(2): 183-186
[103] Chang J C, Tomlinson I D, Warnement M R, Iwamoto H, DeFelice L J, Blakely R D, Rosenthal S J. J. Am. Chem. Soc., 2011, 133(44): 17528-17531
[104] Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff P W, Langer R, Farokhzad O C. Nano Letters, 2007, 7(10): 3065-3070
[105] Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Nature, 1998, 391(6669): 806-811
[106] Qian J, Steigerwald K, Combs K A, Barton M C, Groden J. Oncogene, 2007 26(33): 4872-4876
[107] Mikiko C S. Adv. Drug Deliver. Rev., 2009, 61(9): 668-671
[108] Li J M, Zhao M X, Su H, Wang Y Y, Tan C P, Ji L N, Mao Z W. Biomaterials., 2011, 32(31): 7978-7987
[109] Derfus A M, Chen A A, Min D H, Ruoslahti E, Bhatia S N. Bioconjugate. Chem., 2007, 18(5): 1391-1396
[110] Walther C, Meyer K, Rennert R, Neundorf I. Bioconjugate. Chem., 2008, 19(12): 2346-2356
[111] Al-Jamal W T, Al-Jamal K T, Tian B, Lacerda L, Bomans P H, Frederik P M, Kostarelos K. ACS Nano, 2008, 2(3): 408-418
[112] Al-Jamal W T, Al-Jamal K T, Bomans P H, Frederik P M, Kostarelos K. Small, 2008, 4(9): 1406-1415
[113] Weng K C, Noble C O, Papahadjopoulos-Sternberg B, Chen F F, Drummond D C, Kirpotin D B, Wang D, Hom Y K, Hann B, Park J W. Nano Lett., 2008, 8(9): 2851-2857
[114] Koiwai K, Tokuhisa K, Karinaga R, Kudo Y, Kusuki S, Takeda Y, Sakurai K. Bioconjugate. Chem., 2005, 16(6): 1349-1351
[115] Kim B Y S, Jiang W, Oreopoulos J, Yip C M, Rutka J T, Chan W C W. Nano Letters, 2008, 8(11): 3887-3892
[116] Yezhelyev M V, Qi L, O’Regan R M, Nie S, Gao X. J. Am. Chem. Soc., 2008, 130(28): 9006-9012
[117] Qi L, Gao X. ACS Nano, 2008, 2(7): 1403-1410
[118] Zhang P, Liu W. Biomaterials, 2010, 31(11): 3087-3094
[119] Liu T Y, Chen S Y, Lin Y L, Liu D M. Langmuir, 2006, 22(23): 9740-9745
[120] Cui W, Lu X, Cui K, Wu J, Wei Y, Lu Q. Langmuir, 2011, 27(13): 8384-8390
[121] Kim S Y, Lee H, Cho S, Park J W, Park J, Hwang J. Ind. Eng. Chem. Res., 2011, 50, 13762-13770
[122] Tan W B, Huang N, Zhang Y. J. Colloid Interf. Sci., 2007, 310(2): 464-470
[123] Tan W B, Jiang S, Zhang Y. Biomaterials, 2007, 28(8): 1565-1571
[124] Yuan Q, Hein S, Misra R D K. Acta Biomaterialia, 2010, 6(7): 2732-2739
[125] Li L, Chen D, Zhang Y, Deng Z, Ren X, Meng X, Tang F, Ren J, Zhang L. Nanotechnology, 2007, 18(40): art. no. 405102
[126] Kim J, Lee J E, Lee S H, Yu J H, Lee J H, Park T G, Hyeon T. Adv. Mater., 2008, 20(3): 478-483
[127] Park J H, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M J. Angewandte Chemie International Edition, 2008, 47(38): 7284-7288
[128] Cho H S, Dong Z, Pauletti G M, Zhang J, Xu H, Gu H, Wang L, Ewing R C, Huth C, Wang F, Shi D. ACS Nano, 2010, 4(9): 5398-5404
[129] Herrero M A, Toma F M, Al-Jamal K T, Kostarelos K, Bianco A, Da Ros T, Bano F, Casalis L, Scoles G, Prato M. J. Am. Chem. Soc., 2009, 131(28): 9843-9848
[130] Bianco A, Kostarelos K, Prato M. Curr. Opin. Chem. Biol., 2005, 9(6): 674-679
[131] Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z. Nano Lett., 2007, 7(10): 2976-2980
[132] Guo Y, Shi D, Cho H, Dong Z, Kulkarni A, Pauletti G M, Wang W, Lian J, Liu W, Ren L, Zhang Q, Liu G, Huth C, Wang L, Ewing R C. Adv. Funct. Mater., 2008, 18(17): 2489-2497
[133] Bhirde A A, Patel V, Gavard J, Zhang G, Sousa A A, Masedunskas A, Leapman R D, Weigert R, Gutkind J S, Rusling J F. ACS Nano, 2009, 3(2): 307-316
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[5] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[6] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[7] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[8] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[9] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[10] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[11] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[12] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[13] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[14] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[15] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
阅读次数
全文


摘要

量子点给药载体研究进展