English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1023-1037 前一篇   后一篇

• 量子化学专辑 •

新一代密度泛函方法XYG3

张颖, 徐昕*   

  1. 复旦大学化学系 分子催化与功能材料上海市重点实验室 物质计算科学教育部重点实验室 上海 200433
  • 收稿日期:2011-11-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 徐昕 E-mail:xxchem@fudan.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 91027044)和国家重点基础研究发展计划(973)项目(No.2011CB808505)资助

A New Generation Density Functional XYG3

Zhang Igor, Ying Xuxin   

  1. Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science,Fudan University,Shanghai 200433,China
  • Received:2011-11-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
大量的应用研究测试表明,以B3LYP为代表的传统密度泛函方法在反应能垒以及非键相互作用等重要性质的预测上存在困难,并且预测精度随研究体系的增大而不断变差。开发越来越精确的交换相关泛函是现代密度泛函理论发展的主线。近年来,引入未占轨道信息的新一代双杂化密度泛函方法的研究受到越来越多的关注。本篇综述回顾了这一领域已取得的一些进展;推导了双杂化泛函方法在Kohn-Sham密度泛函理论框架下的理论基础;依据各自特点,将现已提出的双杂化泛函划分为三种类别。本文着重测评了以XYG3为代表的一类双杂化泛函的表现。最后,就双杂化泛函的未来发展方向,提出了一些设想与建议。
There is growing evidence, showing that the widely-used approximate functionals, such as B3LYP, degrade as the system becomes large, underestimate reaction barrier heights and fail to bind van der Waals systems, etc. The success of the Kohn-Sham implementation of density functional theory (DFT) depends on the quality of the exchange-correlation functional. This paper provides an overview of the recent progress on the construction of a new generation of doubly hybrid density functionals (DHDFs). We pointed out that the theoretical basis of DHDFs lies in Görling-Levy (GL) coupling-constant perturbation theory and adiabatic connection method, and we proposed that the current available DHDFs can be classified into three groups by their different references used to construct the second order perturbation energy. We systematically examined the performance of various DHDFs. Finally, possible directions for future development of DHDFs are forecasted. Contents
1 Overview of modern density functional theory
1.1 Hohenberg-Kohn theory and Kohn-Sham scheme
1.2 Jacob's ladder of approximate DFT methods
2 New generation of doubly hybrid density functionals
2.1 Adiabatic connection method and Becke's hybrid functionals
2.2 Görling-Levy coupling-constant perturbation theory
2.3 Derivation of the doubly hybrid density functional XYG3
2.4 Three types of current doubly hybrid density functional
3 Systematic evaluation of XYG3
3.1 Heats of formation
3.2 Bond dissociation enthalpy
3.3 Reaction barrier height
3.4 Non-bonding interaction
4 Conclusion and outlook

中图分类号: 

()
[1] Hohenberg P, Kohn W. Phys. Rev. B, 1964, 136: B864-B871
[2] (a) Parr R G, Yang W T. Density Functional Theory. Oxford: Oxford University, 1998; (b) Perdew J P, Schmidt K. Density Functional Theory and Its Application to Materials (Eds. Doren V V, Geerlings P, Alsenoy C V). Belgium: AIP, 2001
[3] Koch W, Holthausen W C. A Chemistry's Guide to Density Functional Theory. Wiley-VCH, 2001
[4] Gritsenko O V, Schipper P R T, Baerends E J. J. Chem. Phys., 1997, 107: 5007-5015
[5] Kohn W, Sham L J. Phys. Rev. A, 1965, 140: 1133-1138
[6] Sharp R T, Horton G K. Phys. Rev., 1953, 90: 317-317
[7] Talman J D, Shadwick W F. Phys. Rev. A, 1976, 14: 36-40
[8] Krieger J B, Yan L, Iafrate G J. Phys. Rev. A, 1992, 45: 101-126
[9] Grabowski I, Hirata S, Ivanov S, Bartlett R J. J. Chem. Phys., 2002, 116: 4415-4425
[10] Yang W, Ayers P W, Wu Q. Phys. Rev. Lett., 2004, 92: 146404
[11] Mori-S醤chez P, Wu Q, Yang W T. J. Chem. Phys., 2005, 123: art. no. 062204
[12] Vosko S H, Wilk L, Nusair M. Canadian J. Phys., 1980, 58: 1200-1211
[13] Becke A D. Phys. Rev. A, 1988, 38: 3098-3100
[14] Lee C T, Yang W T, Parr R G. Phys. Rev. B, 1988, 37: 785-789
[15] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865-3868
[16] Tao J M, Ruzsinszky M, Scuseria G E, Csonka G I, Staroverov V N, Perdew J P. Philosophical Magazine, 2007, 87: 1071-1084
[17] Becke A D. J. Chem. Phys., 1993, 98: 5648-5652
[18] Xu X, Goddard W A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 2673-2677
[19] Zhao Y, Truhlar D G. Accounts Chem. Research, 2008, 41: 157-167
[20] Zhao Y, Truhlar D G. J. Phys. Chem. A, 2005, 109: 5656-5667
[21] Zhang Y, Xu X, Goddard W A. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 4963-4968
[22] Perdew J P, Ruzsinszky A, Tao J M, Staroverov V M, Scuseria G E, Csonka G I. J. Chem. Phys., 2005, 123: art. no. 062201
[23] Slater C J. Quantun Theory of Molecules and Solids. New York: McGraw-Hill, 1974
[24] Perdew J P, Emzerhof M, Burke K. J. Chem. Phys., 1996, 105: 9982-9985
[25] Curtiss L A, Raghavachari K, Redfern P C, Pople J A. J. Chem. Phys., 1997, 106: 1063-1079
[26] Curtiss L A, Raghavachari K, Redfern P C, Pople J A. J. Chem. Phys., 2000, 112: 7374-7383
[27] Wodrich M D, Corminboeuf C, Schleyer P V. Org. Lett., 2006, 8: 3631-3634
[28] Burns L A, Mayagoitia A V, Sumpter B G, Sherrill C D. J. Chem. Phys., 2011, 134: 084107-1-25.
[29] Mori-Sanchez P, Cohen A J, Yang W T. J. Chem. Phys., 2006, 124: art. no. 091102
[30] Langreth D C, Perdew J P. Phys. Rev. B, 1977, 15: 2884-2901
[31] Gunnarsson O, Lundqvist B I. Phys. Rev. B, 1976, 13: 4274-4298
[32] Kurth S, Perdew J P. Phys. Rev. B, 1999, 59: 10461-10468
[33] Becke A D. J. Chem. Phys., 1993, 98: 1372-1377
[34] Zhang I Y, Wu J M, Xu X. Chem. Commun., 2010, 46: 3057-3070
[35] Zhang I Y, Luo Y, Xu X. J. Chem. Phys., 2010, 132: art. no. 194105
[36] Zhang I Y, Luo Y, Xu X. J. Chem. Phys., 2010, 133: art. no. 104105
[37] Zhao Y, Lynch B J, Truhlar D G. J. Phys. Chem. A, 2004, 108: 4786-4791
[38] Grimme S. J. Chem. Phys., 2006, 124: 034108-16
[39] Schwabe T, Grimme S. Phys. Chem. Chem. Phys., 2007, 9: 3397-3406
[40] Graham D C, Menon A S, Goerigk L, Grimme S, Radom L. J. Phys. Chem. A, 2009, 113: 9861-9873
[41] Tarnopolsky A, Karton A, Sertchook R, Vuzman D, Martin J M L. J. Phys. Chem. A, 2008, 112: 3-8
[42] Karton A, Tarnopolsky A, Lamere J F, Schatz G C, Martin J M L. J. Phys. Chem. A, 2008, 112: 12868-12886
[43] Sancho-Garcia J C, Perez-Jimenez A J. J. Chem. Phys., 2009, 131: art. no. 084108
[44] Zhang I Y, Xu X. Int. Rev. Phys. Chem., 2011, 30: 115-160
[45] Görling A, Levy M. Phys. Rev. B, 1993, 47: 13105-13113
[46] Levy M. Proc. Natl. Acad. Sci. U. S. A., 1979, 76: 6062-6065
[47] Cremer D. Mol. Phys., 2001, 99: 1899-1940
[48] Curtiss L A, Raghavachari K, Trucks G W, Pople J A. J. Chem. Phys., 1991, 94: 7221-7230
[49] Curtiss L A, Redfern P C, Raghavachari K. J. Chem. Phys., 2007, 126: art. no. 084108
[50] Curtiss L A, Raghavachari K, Redfern P C, Rassolov V, Pople J A. J. Chem. Phys., 1998, 109: 7764-7776
[51] Pople J A, Head-Gordon M, Fox D J, Raghavachari K, Curtiss L A. J. Chem. Phys., 1989, 90: 5622-5629
[52] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian, Inc., Wallingford CT, 2009.
[53] Dean J A. Lange's Handbook of Chemistry, 15th ed.. New York: McGraw-Hill, 1999
[54] Lide D R. CRC Handbook of Chemisty and Physics, 84th ed.. Boca Raton: CRC Press, 2001-2002
[55] Luo Y R. CRC Handbook of Chemistry and Physics, 84th ed.. Boca Raton CRC Press, 2002
[56] Blanksby S J, Ellison G B. Acc. Chem. Res., 2003, 36: 255-263
[57] Berkowitz J, Ellison G B, Gutman D. J. Phys. Chem., 1994, 98: 2744-2765
[58] Mcmillen D F, Golden D M. Annual Rev. Phys. Chem., 1982, 33: 493-532
[59] Simoes J A M, Beauchamp J L. Chem. Rev., 1990, 90: 629-688
[60] Irikura K K. J. Phys. Chem. A, 2002, 106: 9910-9917
[61] Ruscic B, Feller D, Dixon D A, Peterson K A, Harding L B, Asher R L, Wagner A F. J. Phys. Chem. A, 2001, 105: 1-4
[62] Seetula J A. J. Chem. Soc. Faraday Transactions, 1998, 94: 891-898
[63] Montgomery J A, Frisch M J, Ochterski J W, Petersson G A. J. Chem. Phys., 2000, 112: 6532-6542
[64] Petersson G A, Malick D K, Wilson W G, Ochterski J W, Montgomery J A. Frish M J. J. Chem. Phys., 1998, 109: 10570-10579
[65] Martin J M L, de Oliveira G. J. Chem. Phys., 1999, 111: 1843-1856
[66] Boese A D, Oren M, Atasoylu O, Martin J M L, Kallay M, Gauss J. J. Chem. Phys., 2004, 120: 4129-4141
[67] Karton A, Rabinovich E, Martin J M L, Ruscic B. J. Chem. Phys., 2006, 125: art. no. 144108
[68] Brinck T, Lee H N, Jonsson M. J. Phys. Chem. A, 1999, 103: 7094-7104
[69] Henry D J, Parkinson C J, Mayer P M, Radom L. J. Phys. Chem. A, 2001, 105: 6750-6756
[70] Chem C C, Bozzelli J W. J. Phys. Chem. A, 2003, 107: 4531-4546
[71] Johnson E R, Clarkin O J, DiLabio A G. J. Phys. Chem. A, 2003, 107: 9953-9963
[72] Yao X Q, Hou X J, Jiao H J, Xiang H W, Li Y W. J. Phys. Chem. A, 2003, 107: 9991-9996
[73] Senosiain J P, Han J H, Musgrave C B, Golden D M. Faraday Discussion, 2001, 119: 173-189
[74] Speybroeck V V, Marin G B, Waroquier M. ChemPhysChem, 2006, 7: 2205-2214
[75] Coote M L. J. Phys. Chem. A, 2004, 108: 3865-3872
[76] Izgorodina E I, Coote M L, Radom L. J. Phys. Chem. A, 2005, 109: 7558-7566
[77] Wu J M, Xu X. J. Chem. Phys., 2008, 129: art. no. 164103
[78] Zhang I Y, Wu J M, Luo Y, Xu X. J. Comput. Chem., 2011, 32: 1824-1838
[79] Zhao Y, Gonz醠ez-Garc韆 N, Truhlar D G. J Phys. Chem. A, 2005, 109: 2012-2018
[80] Zhang L L, Lu Y P, Lee Y, Zhang D H. J. Chem. Phys., 2007, 127: art. no. 234313
[81] Takatani T, Sherrill C D. Phys. Chem. Chem. Phys., 2007, 9: 6106-6114
[82] Kobayashi M, Imamura Y, Nakai H. J. Chem. Phys., 2007, 127: art. no. 074103
[83] Häser M, Almlöf J. J. Chem. Phys., 1992, 96: 489-494
[84] Rauhut G, Pulay P. Chem. Phys. Lett., 1996, 248: 223-227
[1] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[2] 郄佳, 李明, 刘利, 梁英华, 崔文权*. g-C3N4光催化材料的第一性原理研究[J]. 化学进展, 2016, 28(10): 1569-1577.
[3] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[4] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.
[5] 蒋鸿*. 带隙问题:第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(06): 910-927.
[6] 王东琪, Wilfred F. van Gunsteren. 锕系计算化学进展[J]. 化学进展, 2011, 23(7): 1566-1581.
[7] 朱崇强 杨春晖 孙亮. 非线性光学晶体CdGeAs2点缺陷的研究*[J]. 化学进展, 2010, 22(0203): 315-321.
[8] 徐宇虹,尹鸽平,左朋建. 锂离子电池正极材料的第一性原理研究进展[J]. 化学进展, 2008, 20(11): 1827-1833.
[9] 刘文剑. 相对论量子化学新进展*[J]. 化学进展, 2007, 19(06): 833-851.
[10] 李震宇 贺 伟 杨金龙. 密度泛函理论及其数值方法新进展*[J]. 化学进展, 2005, 17(02): 192-202.
[11] 戴瑛,黎乐民. 密度泛函理论处理激发态与多重态结构研究进展[J]. 化学进展, 2001, 13(03): 167-.
阅读次数
全文


摘要

新一代密度泛函方法XYG3