English
新闻公告
More
化学进展 2010, Vol. 22 Issue (10): 1973-1982 前一篇   后一篇

• 综述与评论 •

联萘酚衍生物的光电功能及其应用*

安众福陈润锋1,2**  史慧芳1   马琮,石乃恩2   黄维2**   

  1. (1. 南京邮电大学 信息材料与纳米技术研究院 南京 210046)(2. 南京邮电大学 有机电子与信息显示国家重点实验室培育基地 南京 210046)
  • 收稿日期:2010-01-04 修回日期:2010-03-15 出版日期:2010-10-24 发布日期:2010-10-20
  • 通讯作者: 陈润锋 E-mail:iamrfchen@njupt.edu.cn
  • 基金资助:

    国家自然青年科学基金;江苏省高校自然科学基础研究面上项目;国家重大科学研究计划(973 项目);南京邮电大学攀登计划

Optoelectronic Properties and Applications of Optically Active Binaphthol Derivatives

An Zhongfu1  Chen Runfeng1,2**   Shi Huifang1  Ma Cong Shi Naien2 Huang Wei2**   

  1. (1. Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China; 2. Key Laboratory for Organic Electronics & Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210046, China)
  • Received:2010-01-04 Revised:2010-03-15 Online:2010-10-24 Published:2010-10-20
  • Contact: Chen Runfeng E-mail:iamrfchen@njupt.edu.cn

联萘酚及其衍生物具有C2轴不对称性、修饰位点多、手性构型高度稳定等特点,在分子或离子识别、有机电致发光(OLED)、非线性光学以及分子机器等光电功能材料领域得到了广泛研究并展现出良好的应用前景。本文依据联萘酚衍生物光电功能材料分子结构的不同,总结了其结构修饰的设计原理、修饰方法及其应用,评述了各位点修饰材料的结构和光电性能的关系:单位点及多位点修饰的联萘酚,主要是通过氢键作用、光诱导电子转移(PET)等机理实现分子或离子识别,多应用于荧光化学传感器;双位点修饰的联萘酚,主要是利用扭转非平面结构和π共轭特性等调节光电性能,广泛应用于OLED;同样,基于C2轴不对称性和手性诱导特性,联萘酚衍生物在非线性光学以及分子机器等领域也展现出良好的应用。最后,展望了联萘酚类光电功能材料的研究和发展方向。

Chiral binaphthol derivatives (BINOLs) have recently attracted considerable attention as active materials in photoelectric applications such as sensors, organic light-emitting diodes (OLED), nonlinear optics, and molecular machines due to their particular C2-unsymmetry, polysubstitution, and stable chiral conformation. In this review, the design strategies and applications of BINOLs are summarized according to their different molecular modification methods. The relationships between the structures and optoelectronic properties are also elucidated. Mono-substituted and polysubstituted BINOLs are mainly applied to fluorescent sensors based on photo-induced electron transfer (PET) and hydrogen bond interaction mechanisms. Disubstituted BINOLs are widely used in OLEDs, due to their outstanding optoelectronic properties that can be adjusted by changing the conformation and conjugation of the twisty π-conjugated naphthalene of BINOLs. There are also many other applications, such as in nonlinear optics and molecular machines grounding on the C2-symmetric and chiral character of BINOLs. Further development and prospects of BINOLs are also discussed.

 Contents
1. Introduction
2. Mono-substituted binaphthol derivatives(BINOLs)
2.1 2,2'-substituted BINOLs
2.2 3,3'-substituted BINOLs
2.3 6,6'-substituted BINOLs
3. Disubstituted BINOLs
3.1 2, 3-substituted BINOLs
3.2 2, 6-substituted BINOLs
4. Polysustituted BINOLs
5. Other substituted BINOLs
6. Conclusion and outlook

()

[1 ] Kyba E B,Koga K,Sousa L R,Siegel M G,Cram D J. J. Am.
Chem. Soc. ,1973,95: 2692—2693
[2 ] Irie M,Yorozu T,Hayashi K. J. Am. Chem. Soc. ,1978,
100: 2236—2237
[3 ] Avnir D,Wellner E, Ottolenghi M. J. Am. Chem. Soc. ,
1989,111: 2001—2003
[4 ] Takeuchi M,Yoda S,Imada T,Shinkai S. Tetrahedron,1997,
53: 8335—8348
[5 ] Dale T J,Rebek J. J. Am. Chem. Soc. ,2006,128: 4500—
4501
[6 ] Upadhyay S P,Pissurlenkar R R,Coutinho E C,Karnik A V.
J. Org. Chem. ,2007,72: 5709—5714
[7 ] Liu Y,Miao Q,Zhang S W,Huang X B,Zheng L F,Cheng Y
X. Macromol. Chem. Phys. ,2008,209: 685—694
[8 ] Lu Q S,Dong L,Zhang J,Li J,Jiang L,Huang Y,Qin S,Hu
C W,Yu X Q. Org. Lett. ,2009,11: 669—672
[9 ] Koeckelberghs G,Sioncke S,Verbiest T,Van S I,Picard I,
Persoons A,Samyn C. Macromolecules,2003,36: 9736—9741
[10] Di B L,Pescitelli G,Salvadori P. J. Am. Chem. Soc. ,1999,
121: 7998—8004
[11] Jen A K,Liu Y Q,Hu Q S,Pu L. Appl. Phys. Lett. ,1999,
75: 3745—3747
[12] Zheng L,Urian R C,Liu Y,Jen A K,Pu L. Chem. Mater. ,
2000,12: 13—15
[13] Sato Y,Ichinosawa S,Ogata T,Fugono M,Murata Y. Synthetic
Met. ,2000,111: 25—29
[14] Liu Y Q,Yu G,Jen A K,Hu Q S,Pu L. Macromol. Chem.
Phys. ,2002,203: 37—40
[15] He Q G,Lin H Z,Weng Y F,Zhang B,Wang Z M,Lei G T,
Wang L D. Adv. Funct. Mater. ,2006,16: 1343—1348
[16] Lee J Y,Park J Y,Min S H,Lee K W,Baek Y G. Thin Solid
Films,2007,515: 7726—7731
[17] Zhou Y,He Q G,Yang Y,Zhong H Z,He C,Sang G Y,Liu
W,Yang C H,Bai F L,Li Y F. Adv. Funct. Mater. ,2008,
18: 3299—3306
[18] Kawamoto M,Aoki T, Shiga N, Wada T. Chem. Mater. ,
2009,21: 564—572
[19] Mori T,Sato T,Kyotani M,Akagi K. Macromolecules,2009,
42: 1817—1823
[20] Zhou Q C,Qin A J,He Q G,Lei G T,Wang L D,Qiu Y,Ye
C,Teng F,Bai F L. J. Lumin. ,2007,122: 674—677
[21] Ostrowski J C,Hudack R A,Robinson M R,Wang S J,Bazan
G C. Chem. Eur. J. ,2001,7: 4500—4511
[22] Pu L. Chem. Rev. ,1998,98: 2405—2494
[23] Chen Y,Yekta S, Yudin A K. Chem. Rev. , 2003, 103:
3155—3212
[24] Di B L,Pescitelli G,Salvadori P. J. Am. Chem. Soc. ,1999,
121: 7998—8004
[25] Parker K S,Townshend A,Bale S. J. Anal. Proc. Incl. Anal.
Commun. ,1995,32: 329
[26] Kubinyi M,Pal K,Baranyai P,Grofcsik A,Bitter I,Grun A.
Chirality,2004,16: 174—179
[27] Hu C G,Huang X H,Chen Z H,He Y B. Chin. J. Chem. ,2009,27: 157—162
[28] Qin H J,He Y B,Hu C U,Chen Z H,Hu L. Tetrahedron-
Asymmetry,2007,18: 1769—1774
[29] Kubo Y,Maruyama S,Ohhara N,Nakamura M,Tokita N S. J.
Chem. Soc. Chem. Commun. ,1995: 1727—1728
[30] Kubo Y,Maeda S,Tokita S,Kubo M. Nature,1996,382:
522—524
[31] Kim K S,Jun E J,Kim S K,Choi H J,Yoo J,Lee C H,Hyun
M H,Yoon J. Tetrahedron Lett. ,2007,48: 2481—2484
[32] Li S Y,Zheng Q Y, Chen C F,Huang Z T. Tetrahedron-
Asymmetry,2005,16: 2816—2820
[33] Deng J,Song N,Zhou Q,Su Z. Org. Lett. ,2007,9: 5393—
5396
[34] Deng J,Zhou C,Chen C,Song N H,Su Z X. Macromolecules,
2008,41: 7805—7811
[35] Simonsen K B,Gothelf K V,Jorgensen K A. J. Org. Chem. ,
1998,63: 7536—7538
[36] Cox P J,Wang W,Snieckus V. Tetrahedron Lett. ,1992,33:
2253—2256
[37] Li Z B,Lin J,Pu L. Angew. Chem. Int. Edit. ,2005,44:
1690—1693
[38] Li Z B,Lin J,Zhang H C,Sabat M,Hyacinth M,Pu L. J.
Org. Chem. ,2004,69: 6284—6293
[39] Xu M H,Lin J,Hu Q S,Pu L. J. Am. Chem. Soc. ,2002,
124: 14239—14246
[40] Liu H L,Peng Q,Wu Y D,Chen D,Hou X L. Angewandte
Chemie. ,2009,121: 1—6
[41] Sogah G D,Cram D J. J. Am. Chem. Soc. ,1979,101:
3035—3042
[42] Ma L,White P S,Lin W. J. Org. Chem. ,2002,67: 7577—
7586
[43] James T D,Sandanayake S K R A,Shinkai S. Nature,1995,
374: 345—347
[44] Wang Q,Chen X,Tao L,Wang L,Xiao D,Yu X Q,Pu L. J.
Org. Chem. ,2007,72: 97—101
[45] Piao M H,Hwang J,Won M S,Hyun M H, Shim Y B.
Electroanal. ,2008,20: 1293—1299
[46] Wang D,Liu T J,Zhang W C,Slaven W T,Li C J. Chem.
Commun. ,1998,1747—1748
[47] Huang X B,Xu Y,Zheng L F,Meng J,Cheng Y X. Polymer,
2009,50: 5996—6000
[48] Fan L J,Zhang Y,Jones W E. Macromolecules,2005,38:
2844—2849
[49] Zhan X W,Wang S, Liu Y Q,Wu X, Zhu D B. Chem.
Mater. ,2003,15: 1963—1969
[50] Takaishi K, Kawamoto M, Tsubaki K, Wada T. J. Org.
Chem. ,2009,74: 5723—5726
[51] Kawamoto M, Aoki T,Wada T. Chem. Commun. , 2007,
930—932
[52] Lin J,Hu Q S,Xu M H,Pu L. J. Am. Chem. Soc. ,2002,
124: 2088—2089
[53] Xu M H,Lin J,Hu Q S,Pu L. J. Am. Chem. Soc. ,2002,
124: 14239—14246
[54] Liang X F,James T D,Zhao J Z. Tetrahedron,2008,64:
1309—1315
[55] Musick K Y,Hu Q S, Pu L. Macromolecules,1998,31:
2933—2942
[56] Pina J,Seixas de Melo J,Burrows H D,Manita A L,Galbrecht
F,Bünnagel T,Scherf U. Macromolecules,2009,42: 1710—
1719
[57] Jiang X Z,Liu S,Ma H,Jen A K. Appl. Phys. Lett. ,2000,
76: 1813—1815
[58] Prins P,Grozema F C,Galbrecht F,Scherf U,Siebbeles L D.
J. Phy. Chem. C,2007,111: 11104—11112
[59] Liu Z T,He Y M,Wang Z J,Feng Y,Fan Q H. J. Polym.
Sci. Pol. Chem. ,2008,46: 886—896
[60] Liu Z T,He Y M,Li B L,Liu J,Fan Q H. Macromol. Rapid
Comm. ,2007,28: 2249—2255
[61] Kokado K,Tokoro Y,Chujo Y. Macromolecules,2009,42:
9238—9242
[62] Rabe T,Hoping M,Schneider D,Becker E,Johannes H H,
Kowalsky W,Weimann T,Wang J,Hinze P,Nehls B S,Scherf
U,Farrell T,Riedl T. Adv. Funct. Mater. ,2005,15: 1188—
1192
[63] Riedl T, Rabe T, Johannes H H, Kowalsky W,Wang J,
Weimann T,Hinze P,Nehls B,Farrell T,Scherf U. Appl.
Phys. Lett. ,2006,88: 241116—241119
[64] Karnutsch C,Gyrtner C,Haug V,Lemmer U,Farrell T,Nehls
B S,Scherf U,Wang J,Weimann T,Heliotis G,Pflumm C,
Demello J C,Bradley D D. Appl. Phys. Lett. ,2006,89:
201108—201111
[65] Koeckelberghs G,Sioncke S,Verbiest T,Persoons A,Samyn C.
Chem. Mater. ,2003,15: 2870—2872
[66] Koeckelberghs G,Vangheluwe M,Picard I,De G L,Verbiest
T,Persoons A,Samyn C. Macromolecules,2004,37: 8530—
8537
[67] Mori T,Kyotani M, Akagi K. Macromolecules, 2008, 41:
607—613
[68] Zhu Y L,Gergel N,Majumdar N,Harriott L R,Bean J C,Pu
L. Org. Lett. ,2006,8: 355—358
[69] Zhang H C,Pu L. Macromolecules,2004,37: 2695—2702
[70] Gong L Z,Hu Q S,Pu L. J. Org. Chem. ,2001,66: 2358—
2367
[71] Pugh V J,Hu Q S,Pu L. Angew. Chem. Int. Ed. ,2000,39:
3638—3641
[72] Brunner H,Schiessling H. Angew. Chem. Int. Ed. ,1994,
33: 125—126
[73] Brunner H,Schiessling H. Bull. Soc. Chim. Belges. ,1994,
103: 119—126
[74] Lin J,Zhang H C,Pu L. Org. Lett. ,2002,4: 3297—3300
[75] Lin J,Li Z B,Zhang H C,Pu L. Tetrahedron Lett. ,2004,
45: 103—106
[76] Lee S J,Lin W. J. Am. Chem. Soc. ,2002,124: 4554—4555

[1] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[2] 龚德君, 高冠斌, 张明曦, 孙涛垒. 手性金团簇的制备、性质及应用[J]. 化学进展, 2016, 28(2/3): 296-307.
[3] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[4] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[5] 武金丹, 巨勇. 基于天然产物骨架的分子离子识别体系[J]. 化学进展, 2013, 25(11): 1888-1897.
[6] 苏斌, 赵静, 刘春波, 车广波, 王庆伟, 徐占林. 基于8-羟基喹啉及其衍生物的有机小分子电致发光材料[J]. 化学进展, 2013, 25(07): 1090-1101.
[7] 马治军, 雷霆, 裴坚*, 刘晨江*. 蓝色有机电致磷光主体材料[J]. 化学进展, 2013, 25(06): 961-974.
[8] 密保秀, 王海珊, 高志强, 王旭鹏, 陈润锋, 黄维. 小分子有机电致发光器件和材料的研究及应用[J]. 化学进展, 2011, 23(01): 136-152.
[9] 曹湖军 雷钢铁 汪磊 胡时光 张天静. 有机金属配合物电子传输材料*  [J]. 化学进展, 2010, 22(08): 1575-1582.
[10] 卿光焱,刘顺英,何永炳. 基于杯[4]芳烃的手性识别*[J]. 化学进展, 2008, 20(12): 1933-1944.
[11] 汪磊,雷钢铁,易晓华. 基于荧光与磷光复合的有机电致白光器件*[J]. 化学进展, 2008, 20(0708): 1050-1056.
[12] 黄辉,郑立飞,邹小伟,成义祥. 基于1,1'-联-2萘酚衍生物的手性荧光传感器*[J]. 化学进展, 2008, 20(04): 508-517.
[13] 翁文,韩景立,陈友遵,黄晓佳. 手性传感器研究进展*[J]. 化学进展, 2007, 19(11): 1820-1825.
[14] 孟宪乐,朱为宏,田禾. 树枝状有机电致发光材料*[J]. 化学进展, 2007, 19(11): 1671-1680.
[15] 高勇军,马晶军,吴秋华,臧晓欢,王春. 手性联萘酚配合物催化的缺电子烯烃不对称环氧化反应*[J]. 化学进展, 2007, 19(05): 796-804.