English
新闻公告
More
化学进展 2009, Vol. 21 Issue (10): 2028-2036 前一篇   后一篇

• 综述与评论 •

漆酶催化氧化水中有机污染物*

李阳;蒋国翔;牛军峰**;王颖;呼丽娟   

  1. (北京师范大学环境学院 水环境模拟国家重点实验室 北京 100875)
  • 收稿日期:2008-11-03 修回日期:2009-01-15 出版日期:2009-10-24 发布日期:2009-10-09
  • 通讯作者: 牛军峰 E-mail:junfengn@bnu.edu.cn
  • 基金资助:

    国家科技支撑计划;863项目;国家自然科学基金

Laccase-Catalyzed Oxidation of Organic Pollutants in Water

Li Yang; Jiang Guoxiang; Niu Junfeng**; Wang Ying; Hu Lijuan   

  1. (The State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China )
  • Received:2008-11-03 Revised:2009-01-15 Online:2009-10-24 Published:2009-10-09
  • Contact: Niu Junfeng E-mail:junfengn@bnu.edu.cn

漆酶是一种含铜的多酚氧化酶, 属于铜蓝氧化酶蛋白, 能催化氧化多种难降解的有机污染物。漆酶催化氧化水中有机污染物具有底物广泛、能耗低、易操作、环境友好等优点,是一项前景广阔的生物处理技术。本文综述了漆酶对水中有机污染物的催化降解,主要从漆酶的化学组成、结构、催化降解机理、漆酶的固定化、影响因素(溶液pH值、温度、金属离子、营养因子、有机溶剂、漆酶的浓度、底物的初始浓度等)、降解的动力学以及漆酶在处理水中有机污染物的应用等五个方面介绍了相关的研究进展。漆酶催化氧化有机物的机理主要表现在底物自由基中间体的产生和氧气还原成水两个方面。本文提出了目前漆酶催化氧化水中有机污染物存在的主要问题,并展望了漆酶降解水体中有机污染物的发展方向。

Laccases are multi-coper proteins belonging to the small group of named blue enzymes. Laccase is a phenol oxidase that catalyzes oxidation of many organic pollutants. Laccase-catalyzed oxidation of organic pollutants in water have received much attention from researchers in recent years because of its substantial advantages such as low substrate specificity, low energy consumption, simpleness and environmentally friendly. In this paper, the latest developments in laccase-catalyzed degradation of organic pollutants in water were reviewed. The chemical composition, structure, catalytic degradation mechanism, immobilization, influence factors (pH values, temperature, metal ions, nutritional elements, organic solvents, concentration of laccase, initial concentration of substrate, etc.), degradation kinetics and application to treat organic pollutants in water are reviewed. Laccase uses molecular oxygen to oxidize various aromatic and non-aromatic compounds by a radical-catalyzed reaction mechanism with the concomitant reduction of oxygen to water. The main problems and the prospect of the application of laccase for organic wastewater treatment were presented.

Contents
1 Introduction
2 Structure and catalytic oxidation mechanisms of laccases
2.1 Chemical composition and structure of laccases
2.2 Catalytic oxidation mechanisms of laccases
3 Immobilization
3.1 Adsorption method
3.2 Entrapped method
3.3 Ionic exchanging method
3.4 Covalent method
3.5 Cross-linking method
4 Influence factors
4.1 pH values
4.2 Temperature
4.3 Metal ions
4.4 Other factors
5 Degradation kinetics
6 Application to treat organic pollutants in water
6.1 Degradation of organic pollutants by laccases
6.2 Laccase biosensors
6.3 Degradation of organic pollutants by laccase-sonic combination technology
7 Conclusion

中图分类号: 

()

[ 1 ]  Yoshida H. J . Chem. Soc. , 1883 , 43 : 472 —486
[ 2 ]  Bertrand G C R. Acad. Sci . Paris , 1985 , 120 : 266 —269
[ 3 ]  Tezuka K, Hayashi M, Ishikara H , et al . Biochem. Mol . Biol .Int . , 1993 , 29 : 395 —402
[ 4 ]  Soden DM, O’callaghan J , Dobson A D. Microbiology , 2002 , 148 :4003 —4014
[ 5 ]  Hood E E. Enzyme Microb. Technol . , 2002 , 30 : 279 —283
[ 6 ]  Wan Y Y, Du Y M, Tetsuo M. Chin. Chem. Lett . , 2008 , 19 :333 —336
[ 7 ]  Givaudan A , Effosse A , Faure D , et al . FEMS Microbiol . Lett . ,1993 , 108 : 205 —210
[ 8 ]  Alexandre G, Zhulin I B. Trends Biotechnol . , 2000 , 18 : 41 —42
[ 9 ]  Kramer KJ , Kanost M R , Hopkins TL , et al . Tetrahedron , 2001 ,57 : 385 —392
[10 ]  Ikehata K, Buchanan I D , Smith D W. J . Environ. Eng. Sci . ,2004 , 3 : 1 —19
[11 ]  Mayer A M, Staples R C. Phytochemistry , 2002 , 60 : 551 —565
[12 ]  Dodor D E , Hwang H M, Ekunwe S I N , et al . Enzyme Microb.Technol . , 2004 , 35 : 210 —217
[13 ]  Hu X K, Zhao X H , Hwang HM. Chemosphere , 2007 , 66 : 1618 —1626
[14 ]  Canas A I , Alcalde M, Plou F , et al . Environ. Sci . Technol . ,2007 , 41 : 2964 —2971
[15 ]  Koschorreck K, Richter S M, Swierczek A , et al . Arch. Biochem.Biophys. , 2008 , 474 : 213 —219
[16 ]  Keum Y S , Li Q X. Chemosphere , 2004 , 56 : 23 —30
[17 ]  Takagi S , Shirota C , Sakaguchi K, et al . Chemosphere , 2007 , 67 :S54 —S57
[18 ]  Maruyama T, Komatsu C , Michi J , et al . Biotechnol . Prog. , 2006 ,22 : 426 —430
[19 ]  Bialk H M, Hedman C , Castillo A , et al . Environ. Sci . Technol . ,2007 , 41 : 3593 —3600
[20 ]  Jolivalt C , Brenon S , Caminade E , et al . J . Membr. Sci . , 2000 ,180 : 103 —113
[21 ]  Torres E , Bustos-Jaimes I , Borgne S L , et al . Appl . Catal . B-Environ. , 2003 , 46 : 1 —15
[22 ]  Hirai H , Nakanishi S , Nishida T. Chemosphere , 2004 , 55 : 641 —645
[23 ]  Maruyama T, Komatsu C , Michizoe J , et al . Process Biochem. ,2007 , 42 : 459 —461
[24 ]  Osma J F , Saravia V , Herrea J L T, et al . Chemosphere , 2007 , 67 :1677 —1680
[25 ]  Zhu Y, Kaskel S , Shi J , et al . Chem. Mater. , 2007 , 19 : 6408 —6413
[26 ]  Wang X K, Yao Z Y, Wang J G, et al . Ultrason. Sonochem. ,2008 , 15 : 43 —48
[27 ]  Niladevi K N , Jacob N , Prema P. Process Biochem. , 2008 , 43 :654 —660
[28 ]  Claus H. Micron. , 2004 , 35 : 93 —96
[29 ]  Mougin C , Jolivalt C , Briozzo P , et al . Environ. Chem. Lett . ,2003 , 1 : 145 —148
[30 ]  Svobodova K, Senholdt M, Novotny C , et al . Process Biochem. ,2007 , 42 : 1279 —1284
[31 ]  Matera I , Gullotto A , Tilli S , et al . Inorg. Chim. Acta , 2008 ,361 : 4129 —4137
[32 ]  Palmieri G, Cennamo G, Faraco V , et al . Enzyme Microb.Technol . , 2003 , 33 : 220 —230
[33 ]  Duran N , Rosa M A , D’Annibale A , et al . Enzyme Microb.Technol . , 2002 , 31 : 907 —931
[34 ]  Zoppellaro G, Sakurai T, Huang H. J . Biochem. , 2001 , 129 :949 —953
[35 ]  Torres J , Svistunenko D , Karlsson B , et al . J . Am. Chem. Soc. ,2002 , 124 : 963 —967
[36 ]  Pozdnyakova N N , Rodakiewicz-Nowak J , Turkovskaya O V , et al .Enzyme Microb. Technol . , 2006 , 39 : 1242 —1249
[37 ]  Matijosyte I , Arends I W C E , Sheldon R A , et al . Inorg. Chim.Acta , 2008 , 361 : 1202 —1206
[38 ]  Paice M G, Bourbonnais R , Reid I D , et al . J . Pulp Pap. Sci . ,1995 , 21 : 280 —284
[39 ]  Surma-Slusarska B , Leks-Stepien J . J . Wood Chem. Technol . ,2001 , 21 : 361 —370
[40 ]  Susla M, Novotny C , Svobodova K. Bioresour. Technol . , 2007 ,98 : 2109 —2115
[41 ]  Silva C , Silva C J , Zille A , et al . Enzyme Microb. Technol . ,2007 , 41 : 867 —875
[42 ]  Mazur M, Krysinski P , Michota-Kaminska A , et al .Bioelectrochemistry , 2007 , 71 : 15 —22
[43 ]  Rasera K, Ferla J , Dillon A J P , et al . Desalination , 2009 , 245 :657 —661
[44 ]  Aburto J , Ayala M, Bustos-Jaimes I , et al . Micropor. Mesopor.Mater. , 2005 , 83 : 193 —200
[45 ]  Kunamneni A , Ghazi I , Camarero S , et al . Process Biochem. ,2008 , 43 : 169 —178
[46 ]  Rekuc A , Jastrzembska B , Liesiene J , et al . Process Biochem. ,2009 , 57 : 216 —223
[47 ]  Wang Y, Zhao M, Zheng X H. J . Biotechnol . , 2008 , 136S:S356 —S401
[48 ]  Milstein O , Nicklas B , Huettermann A. Appl . Microbiol .Biotechnol . , 1989 , 31 : 70 —74
[49 ]  Susla M, Novotny C , Svobodova K. Bioresour. Technol . , 2007 ,98 : 2109 —2115
[50 ]  Wang P , Fan X R , Cui L , et al . J . Environ. Sci . , 2008 , 20 :1519 —1522
[51 ]  Rochefort D , Kouisni L , Gendron K. J . Electroanal . Chem. , 2008 ,617 : 53 —63
[52 ]  Osiadacz J , Al-Adhami  A J H , Bajraszewska D , et al . J .Biotechnol . , 1999 , 72 : 141 —149
[53 ]  Marquez L D S , Cabral B V , Freitas F F , et al . J . Mol . Catal . B :Enzym. , 2008 , 51 : 86 —92
[54 ]  Rekuc A , Kruczkiewicz P , Jastrzembska B , et al . Int . J . Biol .Macromol . , 2009 , 57 : 216 —223
[55 ]  Peralta-Zamora P , Pereira C M, Tiburtius E R L , et al . Appl .Catal . B-Environ. , 2003 , 42 : 131 —144
[56 ]  Wan Y Y, Du YM, Shi XW, et al . Process Biochem. , 2006 , 41 :1378 —1382
[57 ]  Kunamneni A , Ghazi I , Camarero S , et al . Process Biochem. ,2008 , 43 : 169 —178
[58 ]  Dodor D E , Hwang H M, Ekunwe S I N , et al . Enzyme Microb.Technol . , 2004 , 35 : 210 —217
[59 ]  Couto S R , Osma J F , Saravia V , et al . Appl . Catal . A-Gen. ,2007 , 329 : 156 —160
[60 ]  Bryjak J , Kruczkiewicz P , Rekuc A , et al . Biochem. Eng. J . ,2007 , 35 : 325 —332
[61 ]  D’Annibale A , Stazi S R , Vinciguerra V , et al . J . Biotechnol . ,2007 , 77 : 265 —273
[62 ]  Arica M Y, Altintas B , Bayramoˇglu G. Bioresour. Technol . , 2009 ,100 : 665 —669
[63 ]  Jiang D S , Long S Y, Huang J , et al . Biochem. Eng. J . , 2005 ,25 : 15 —23
[64 ]  Bryjak J , Kruczkiewicz P , Rekuc A , et al . Biochem. Eng. J . ,2007 , 35 : 325 —332
[65 ]  Rekuc A , Bryjak J , Szymanska K, et al . Process Biochem. , 2009 ,44 : 191 —198
[66 ]  Osiadacz J , Al2Adhami A J H , Bajraszewska D , et al . J .Biotechnol . , 1999 , 72 : 141 —149
[67 ]  Camarero S , Canas A I , Nousiainen P , et al . Environ. Sci .Technol . , 2008 , 42 : 6703 —6709
[68 ]  Russo M E , Giardina P , Marzocchella A , et al . Enzyme Microb.Technol . , 2008 , 42 : 521 —530
[69 ]  Couto S R , Osma J F , Saravia V , et al . Appl . Catal . A-Gen. ,2007 , 329 : 156 —160
[70 ]  Palmieri G, Giardina P , Sannia G. Biotechnol . Prog. , 2005 , 21 :1436 —1441
[71 ]  Pandya P H , Jasra R V , Newalker B L , et al . Micropor. Mesopor.Mater. , 2004 , 77 : 67 —77
[72 ]  Liu Z J , Deng J Q , Li D. Anal . Chim. Acta , 2000 , 407 : 87 —96
[73 ]  Zhang J B , Liu X P , Xu Z Q , et al . Int . Biodeterior. Biodegrad. ,2008 , 61 : 351 —356
[74 ]  Hublik G, Schinner F. Enzyme Microb. Technol . , 2000 , 407 :87 —96
[75 ]  Jordaan J , Leukes W D. Enzyme Microb. Technol . , 2003 , 33 :212 —219
[76 ]  Couto S R , Sanroman M, Gubitz G M. Chemosphere , 2005 , 58 :417 —422
[77 ]  Santos C , Fragoeiro S , Valentim H , et al . Sci . Hortic. , 2006 ,107 : 131 —136
[78 ]  Lorenzo M, Moldes D , Sanroman M A. Chemosphere , 2006 , 63 :912 —917
[79 ]  涂楚桥(Tu C Q) , 梁宏(Liang H) , 王光辉(Wang G H) . 光谱学与光谱分析( Spectroscopy and Spectral Analysis) , 2001 , 21 :524 —526
[80 ]  Galhaup C , Wagner H , Hinterstoisser B , et al . Enzyme Microb.Technol . , 2002 , 30 : 529 —536
[81 ]  彭立凤(Peng L F) . 化学进展(Progress in Chemistry) , 2000 , 12 :296 —304
[82 ]  Rodakiewcz-Nowak J , Jarosz-Wilkolazka A. J . Mol . Catal . B :Enzym. , 2007 , 44 : 53 —59
[83 ]  Farnet A M, Gil G, Ferre E. Chemosphere , 2008 , 70 : 895 —900
[84 ]  Cristovao R O , Tavares A P M, Ribeiro A S , et al . Bioresour.Technol . , 2008 , 99 : 4768 —4774
[85 ]  Auriol M, Filali-Meknassi Y, Tyagi R D , et al . Water Res. , 2007 ,41 : 3281 —3288
[86 ]  May S W, Li N N. Biochem. Biophys. Res. Commun. , 1972 , 47 :1179 —1185
[87 ]  Horndy W E , Lilly M D , Crock E M. Biochem. J . , 1968 , 107 :668 —673
[88 ]  Georgieva S , Godjevargova T, Portaccio M, et al . J . Mol . Catal .A: Chem. , 2008 , 55 : 177 —184
[89 ]  Casella L , Gullotti M, Monzani E , et al . J . Inorg. Biochem. ,2006 , 100 : 2127 —2139
[90 ]  Gianfreda L , Sannino F , Filazzola M T, et al . J . Mol . Catal . B :Enzym. , 1998 , 4 : 13 —23
[91 ]  Sadhasivam S , Savitha S , Swaminathan K, et al . Process Biochem. ,2008 , 43 : 736 —742
[92 ]  Setti L , Giuliani S , Spinozzi G, et al . Enzyme Microb. Technol . ,1999 , 25 : 285 —289
[93 ]  Trovaslet M, Enaud E , Guiavarc’h Y, et al . Enzyme Microb.Technol . , 2007 , 41 : 368 —376
[94 ]  Brandi P , DpAnnibale A , Galli C , et al . J . Mol . Catal . , 2006 ,41 : 61 —69
[95 ]  Rogalski J , Dawidowicz A , Jozwik E , et al . J . Mol . Catal . B :Enzym. , 1999 , 6 : 29 —39
[96 ]  Singh G, Capalash N , Goel R , et al . Enzyme Microb. Technol . ,2007 , 41 : 794 —799
[97 ]  Jiang X, Wang T. Environ. Sci . Technol . , 2007 , 41 : 4441 —4446
[98 ]  Pozdnyakova N N , Rodakiewicz-Nowak J , Turkovskaya O V , et al .Enzyme Microb. Technol . , 2006 , 39 : 1242 —1249
[99 ]  Cabana H , Jones J P , Agathos S N. J . Biotechnol . , 2007 , 132 :23 —31
[100 ] Kulys J , Krikstopaitis K, Ziemys A , et al . J . Mol . Catal . B :Enzym. , 2002 , 18 : 99 —108
[101 ] Yoshitsune S Y, Aye H N , Hong K J , et al . Enzyme Microb.Technol . , 2005 , 36 : 147 —152
[102 ] Pedroza A M, Mosqueda R , Alonso-Vante N , et al . Chemosphere ,2007 , 67 : 793 —801
[103 ] Karamyshev A V , Shleev S V , Koroleva O V , et al . Enzyme Microb.Technol . , 2003 , 33 : 556 —564
[104 ] Vasil′eva I S , Morozova O V , Shumakovich G P , et al . Synth.Met . , 2007 , 157 : 684 —689
[105 ] Suresh P S , Kumar A , Kumar R , et al . J . Mol . Graph. Model . ,2008 , 26 : 845 —849
[106 ] Pedroza A M, Mosqueda R , Alonso-Vante N , et al . Chemosphere ,2007 , 67 : 793 —801
[107 ] Michniewicz A , Ledakowicz S , Ullrich R , et al . Dyes Pigment . ,2008 , 77 : 295 —302
[108 ] Amitai G, Adani R , Sod-Moriah G, et al . FEBSLett . , 1998 , 438 :195 —200
[109 ] Collins P J , Koterman M J J , Field J A , et al . Appl . Environ.Microbiol . , 1996 , 62 : 4563 —4567
[110 ] Freire R S , Duran N , Kubota L T. Talanta , 2001 , 54 : 681 —686
[111 ] Michniewicz A , Ledakowicz S , Ullrich R , et al . Dyes Pigment . ,2008 , 77 : 295 —302
[112 ] Adewuyi Y G. Environ. Sci . Technol . , 2005 , 39 : 3409 —3420
[113 ] Xin Q , Zhang X W, Li ZJ , et al . Ultrason. Sonochem. , 2009 , 16 :1 —3
[114 ] Peller J , Wiest O , Kamat P V. Environ. Sci . Technol . , 2003 , 37 :1926 —1932
[115 ] 王颖(Wang Y) , 牛军峰(Niu J F) , 张哲 (Zhang Z Y) 等. 化学进展(Progress in Chemistry) , 2008 , 20 : 1621 —1620
[116 ] Basto C , Tzanov T, Cavaco-Paulo A. Ultrason. Sonochem. , 2007 ,14 : 350 —354
[117 ] Destaillats H , Hung HM, Hoffmann M R. Environ. Sci . Technol . ,2000 , 34 : 311 —317
[118 ] Basto C , Silva C J , Gubitz G, et al . Ultrason. Sonochem. , 2007 ,14 : 355 —362
[119 ] Haarstrick A , Kut O M, Heinzle E A. Environ. Sci . Technol . ,1996 , 30 : 817 —824
[120 ] Rehorek A , Tauber M, Gubitz G. Ultrason. Sonochem. , 2004 , 11 :177 —182
[121 ] Tauber MM, Gubitz GM, Rehorek A , et al . Bioresour. Technol . ,2008 , 99 : 4213 —4226
[122 ] Rehorek A , Hoffmann P , Kandelbauer A , et al . Chemosphere ,2007 , 67 : 1526 —1532

[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[3] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[6] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[7] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[8] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[9] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[10] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[11] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[12] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[13] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
[14] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[15] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
阅读次数
全文


摘要

漆酶催化氧化水中有机污染物*