English
新闻公告
More
化学进展 2009, Vol. 21 Issue (10): 2053-2059 前一篇   后一篇

• 综述与评论 •

超顺磁性纳米颗粒为催化剂载体的研究*

王志飞1**; 杨雯2; 何农跃3   

  1. (1.东南大学化学化工学院 南京 211189;2.空军驻沪宁地区代表室 南京 210013;3.东南大学生物电子国家重点实验室 南京 210096)
  • 收稿日期:2008-11-03 修回日期:2009-02-14 出版日期:2009-10-24 发布日期:2009-10-09
  • 通讯作者: 王志飞 E-mail:zfwang@seu.edu.cn
  • 基金资助:

    国家自然科学基金

The Catalyst with the Superparamagnetic Nanoparticles as Its Supporter

Wang Zhifei1**; Yang Wen2; He Nongyue3   

  1.  (1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; 2. Military Representation Office of Air Force in Hu-Ning District, Nanjing 210013, China; 3. State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China)
  • Received:2008-11-03 Revised:2009-02-14 Online:2009-10-24 Published:2009-10-09
  • Contact: Wang Zhifei E-mail:zfwang@seu.edu.cn
  • Supported by:

    National Natural Science Foundation of China

如何结合催化剂的制备找到一条新的催化剂分离与回收途径,已成为均相催化剂以及近十年快速发展的纳米催化剂研究中的一项重要内容。近年来,基于超顺磁性纳米颗粒作为催化剂载体来制备新型纳米催化剂的工作因此受到广泛关注。利用超顺磁性纳米颗粒所提供的磁学特性进行磁分离,不仅有效地解决了分离与重复使用问题,而且因其尺度处于纳米级,保持了以上催化剂的高活性、高选择性等动力学优点。本文从超顺磁性纳米载体的制备、催化剂的制备与活性评价等角度对近几年的研究工作进行综述,并对其发展前景进行展望。

As far as the homogeneous catalyst or nano catalyst developed quickly in the past decade is concerned, it is one of the main research topics to find the new procedure to separate and recycle them out of the reaction mixture in combination with their preparation. Considering the above background, many related researches on the application of the superparamagnetic nanoparticle as the catalyst supporter have been conducted recently. Compared to their parent catalysts in solution, the magnetic nanoparticle-supported catalytic species not only allow facile seperation and recycling of the catalyst under the extern magnetic field, but also keep their previous dynamic performance such as high activity and selectivity due to the body size under the nano meter scale. In this paper, the preparation of the superparamagnetic particle as the catalyst supporter as well as the catalytic activity is reviewed, and the direction of the further research is suggested.

Contents
1 Introduction
2 Preparation of superparamagnetic nano supporter
2.1 Preparation of C/NiFe nanoparticle
2.2 Preparation of γ-Fe2O3、Fe3O4、NiFe2O3 nanoparticles and so on
2.3 Preparation of SiO2/Fe2O3 nanoparticle
2.4 Preparation of polymer/Fe2O3 nanoparticle
3 Preparation of catalyst and test of catalytic activity
3.1 Acid and base catalyst
3.2 Noble metal catalyst
3.3 Chiral catalyst
3.4 Transition metal coordination catalyst
3.5 Enzyme
3.6 Other catalysts
4 Conclusion and prospects

中图分类号: 

()

[ 1 ]  Yin YD , Rioux R M, Erdonmez C K, et al . Science , 2004 , 304 :711 —713
[ 2 ]  Bell A T. Science , 2003 , 299 : 1688 —1691
[ 3 ]  Astruc D , Lu F , Aranzaes J R. Angew. Chem. Int . Ed. , 2005 ,44 : 7852 —7872
[ 4 ]  Thomas J M, Johnson B F G, Raja R , et al . Acc. Chem. Res. ,2003 , 36 : 20 —32
[ 5 ]  Manas MM, Pleixats R. Acc. Chem. Res. , 2003 , 36 : 638 —643
[ 6 ]  Cole-Hamilton D J . Science , 2003 , 299 : 1702 —1706
[ 7 ]  Grêschel L R , Haidar A , Beyer K H , et al . Catal . Lett . , 2004 ,95 : 67 —75
[ 8 ]  Vos D E , Dams M, Sels B F , et al . Chem. Rev. , 2002 , 102 :3615 —3640
[ 9 ]  Kidambi S , Dai J H , Lin J , et al . J . Am. Chem. Soc. , 2004 ,126 : 2658 —2659
[10 ]  Teunissen W, Bol A A , Geus J W. Catal . Today , 1999 , 48 : 329 —336
[11 ]  Heerbeek R V , Kamer P C J , Leeuwen P W N M, et al . Chem.Rev. , 2002 , 102 : 3717 —3756
[12 ]  Teunissen W, Groot F M F , Geus J , et al . J . Catal . , 2001 , 204 :169 —174
[13 ]  [2008-5-21 ]http://www.magneticmicrosphere.com/meetings/meet-2008
[14 ]  Tartaj P , Carreno T G, Serna CJ . Adv. Mater. , 2001 , 13 : 1620 —1624
[15 ]  Frenkel J , Dorfman J . Nature , 1930 , 126 : 274 —275
[16 ]  Tsang S C , Caps V , Paraskevas I , et al . Angew. Chem. Int . Ed. ,2004 , 43 : 5645 —5649
[17 ]  Baruwati B , Guin D , Manorama S V. Org. Lett . , 2007 , 26 :5377 —5380
[18 ]  Kang Y S , Risbud S , Rabolt J F , et al . Chem. Mater. , 1996 , 8 :2209 —2211
[19 ]  Sun S H , Zeng H , Robinson D B , et al . J . Am. Chem. Soc. ,2004 , 126 : 273 —279
[20 ]  Bruce I J , Taylor J , Todd M, et al . J . Mag. Mag. Mater. , 2004 ,284 : 145 —160
[21 ]  Yoon T J , Lee W, Oh Y S , et al . New J . Chem. , 2003 , 27 :227 —229
[22 ]  Hu A G, Yee G T, Lin W B. J . Am. Chem. Soc. , 2005 , 127 :12486 —12487
[23 ]  Stevens P D , Li G F , Fan J D , et al . Chem. Comm. , 2005 ,4435 —4437
[24 ]  Guin D , Baruwati B , Manorama S V. Org. Lett . , 2007 , 7 : 1419 —1421
[25 ]  Wang Z F , Shen B , Zou A H , et al . Chem. Eng. J . , 2005 , 113 :27 —34
[26 ]  Duanmu C , Saha I , Zheng Y, et al . Chem. Mater. , 2006 , 18 :5973 —5981
[27 ]  Dong K Y, Su SL , Jackie Y Y. Chem. Mater. , 2006 , 18 : 2459 —2461
[28 ]  Wang Z F , Xiao P F , He N Y, et al . Colloids and Surf . A: Physicochem. Eng. Aspects , 2006 , 276 : 116 —121
[29 ]  Lee J , Lee YJ , Youn J K, et al . Small , 2008 , 4 : 143 —152
[30 ]  Ge J P , Huynh T, Hu Y X, et al . Nano Lett . , 2008 , 8 : 931 —934
[31 ]  Shokouhimehr M, Piao Y Z, Kim J , et al . Angew. Chem. Int .Ed. , 2007 , 46 : 7039 —7043
[32 ]  Stevens P D , Fan J D , Gardimalla HM R , et al . Org. Lett . , 2005 ,7 : 2085 —2088
[33 ]  Ko S , Jang J . Angew. Chem. Int . Ed. , 2006 , 45 : 7564 —7567
[34 ]  Zhu Y H , Ship C P , Emi A , et al . Adv. Synth. Catal . , 2007 ,349 : 1917 —1922
[35 ]  张冠东(Zhang G D) , 官月平( Guan Y P) , 单国彬(Shan G B)等. 过程工程学报(The Chinese Journal of Process Engineering) ,2002 , 2 : 319 —324
[36 ]  张冠东(Zhang G D) , 单国彬(Shan G B) , 孟祥昆(Meng X K)等. 催化学报(Chinese Journal of Catalysis) , 2003 , 24 (11) :839 —844
[37 ]  Kwon M S , Park I S , Jang J S , et al . Org. Lett . , 2007 , 17 :3417 —3419
[38 ]  Mori K, Kanai S , Hara T, et al . Chem. Mater. , 2007 , 19 : 1249 —1256
[39 ]  Lu A H , Schmidt W, Matoussevitch N , et al . Angew. Chem. Int .Ed. , 2004 , 43 : 4303 —4306
[40 ]  Luo S Z, Zheng X X, Xu H , et al . Adv. Synth. Catal . , 2007 ,349 : 2431 —2434
[41 ]  Phan N T S , Jones C W. J . Mol . Catal . A: Chem. , 2006 , 253 :123 —131
[42 ]  Phan N T S , Gill C S , Nguyen J V , et al . Angew. Chem. Int .Ed. , 2006 , 45 : 2209 —2212
[43 ]  Dalaigh C O , Corr S A , Ko Y G, et al . Angew. Chem. Int . Ed. ,2007 , 46 : 4329 —4332
[44 ]  Wang J , Yang P P , Fan M Q , et al . Mater. Lett . , 2007 , 61 :2235 —2238
[45 ]  Abu-Reziq R , Wang D S , Post M, et al . Adv. Synth. Catal . ,2007 , 349 : 2145 —2150
[46 ]  Yoon H , Ko S , Jang J . Chem. Comm. , 2007 , 1468 —1470
[47 ]  Liu J , Peng X, Sun W, et al . Org. Lett . , 2008 , 10 : 3933 —3036
[48 ]  Kotani M, Koike T, Yamaguchi K, et al . Green Chem. , 2006 , 8 :735 —741
[49 ]  Luo S Z, Zheng X X, Cheng J P. Chem. Comm. , 2008 , 5719 —5721
[50 ]  Rtu-Reid R , Alper H , Wang D S , et al . J . Am. Chem. Soc. ,2006 , 128 : 5279 —5282
[51 ]  Ding S , Xing Y, Radosz M, et al . Macromolecules , 2006 , 39 :6399 —6405
[52 ]  Chouhan G, Wang D , Alper H. Chem. Comm. , 2007 , 4809 —4811
[53 ]  Yang H H , Zhang S Q , Chen X L , et al . Anal . Chem. , 2004 , 76 :1316 —1321
[54 ]  Gardimalla HM R , Mandal D , Stevens P D , et al . Chem. Comm. ,2005 , 4432 —4434
[55 ]  Schêtz A , Grass R N , Stark W J , et al . Chem. Eur. J . , 2008 , 14 :8262 —8266
[56 ]  Zheng Y, Duanmu C , Gao Y. Org. Lett . , 2006 , 8 : 3215 —3217
[57 ]  Kawamura M, Sato K. Chem. Comm. , 2006 , 4718 —4719
[58 ]  Kawamura M, Sato K. Chem. Comm. , 2007 , 3404 —3405
[59 ]  Shi F , Tse M K, Pohl MM, et al . Angew. Chem. Int . Ed. , 2007 ,46 : 4329 —4332
[60 ]  Guin D , Baruwati B , Manorama S V. J . Mol . Catal . A: Chem. ,2005 , 242 : 26 —31
[61 ]  Martnez R , Raman D J , Yusa M. Adv. Synth. Catal . , 2008 , 350 :1235 —1240

[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[3] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[4] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[5] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[6] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[7] 陈天有, 王子豪, 许子政, 徐祖顺, 曹峥. 基于树枝状聚合物的无机纳米颗粒的制备及应用[J]. 化学进展, 2020, 32(2/3): 249-261.
[8] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[9] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[10] 周伶俐, 谢瑞刚, 王林江. 层状双金属氢氧化物在电催化中的应用[J]. 化学进展, 2019, 31(2/3): 275-282.
[11] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[12] 崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015, 27(10): 1509-1522.
[13] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
[14] 刘张波, 刘蓓蓓, 夏长荣. 固体氧化物燃料电池的纳米阳极[J]. 化学进展, 2013, 25(11): 1821-1829.
[15] 张磊, 刘晓燕, 沈晶晶, 卢晓梅, 范曲立, 黄维. 纳米颗粒在抗癌药物可控靶向释放中的应用[J]. 化学进展, 2013, 25(08): 1375-1382.