English
新闻公告
More
化学进展 2009, Vol. 21 Issue (10): 2009-2016 前一篇   后一篇

• 综述与评论 •

氢酶分子聚集体薄膜的组装及其在催化产氢中的应用*

钱东金**;刘安   

  1. (复旦大学化学系  上海 200433)
  • 收稿日期:2008-10-27 修回日期:2008-12-09 出版日期:2009-10-24 发布日期:2009-10-09
  • 通讯作者: 钱东金 E-mail:djqian@fudan.edu.cn
  • 基金资助:

    国家自然科学基金

Fabrication of Hydrogenase Molecular Assemblies for BioHydrogen Production

Qian Dongjin**; Liu an   

  1. (Department of Chemistry, Fudan University, Shanghai 200433, China)
  • Received:2008-10-27 Revised:2008-12-09 Online:2009-10-24 Published:2009-10-09
  • Contact: Qian Dongjin E-mail:djqian@fudan.edu.cn
  • Supported by:

    National Natural Science Foundation of China

氢气作为一种可再生和零排放的清洁能源,在全球能源和环境双重危机的今天倍受各国政府、企业和研究人员的关注。自然界中存在于藻类和细菌中的氢酶是高效的催化氢气氧化和质子还原的氧化还原酶,在生物产氢和能量转换过程中发挥着重要的作用。近年来涌现出了许多基于氢酶及其模型化合物的仿生产氢和生物燃料电池方面的研究工作。本文综述了氢酶及其分子聚集体薄膜在电极表面的组装技术,如吸附法、自组装法、Langmuir-Blodgett法和溶胶-凝胶法等,并讨论了分子聚集体薄膜中氢酶的结构、生物活性、电化学性质及其在催化产氢方面的应用。

Hydrogen is one of the centerpieces of a sustainable, carbon-free energy supply, which has been attracted growing attention because of the rapid consumption of fossil fuel and unacceptable environmental problems such as the greenhouse effect. In nature, some green algae can produce hydrogen after incubation under anaerobic conditions, during which hydrogenase is synthesized and activated. The hydrogenase can reversely catalyze oxidation of hydrogen gas and reduction of protons, thus attracted much attention in the biohydrogen production and biofuel cells. This paper reviews recent developments in the design and assembly of hydrogenase-modified electrodes, wherein the enzyme was immobilized by physical adsorption, self-assembly, sol-gel and Langmuir-Blodgett methods. Electrochemical properties of hydrogenase in the molecular assemblies and biohydrogen production are discussed.

Contents
1 Introduction
2 Physical adsorption
3 Coadsorption
3.1 Polymer-hydrogenase coadsorption
3.2 Clay-hydrogenase-polyviologen coadsorption
3.3 Carbon nanotubes-hydrogenase coadsorption
3.4 Coadsorption of self-assembled monolayers of porphyrin/viologen and hydrogenase
4 Langmuir-Blodgett method
5 Covalently bonding method
6 Sol-gel method
7 Conclusion

中图分类号: 

()

[ 1 ]  Fontecilla-Camps J C , Volbeda A , Cavazza C , Nicolet Y. Chem.Rev. , 2007 , 107 (10) : 4273 —4303
[ 2 ]  De Lacey A L , Fernández V M. Chem. Rev. , 2007 , 107 (10) :4304 —4330
[ 3 ]  Volbeta A , Charon M H , Piras C. Nature , 1995 , 373 : 580 —587
[ 4 ]  Volbeda A , Garcin E , Piras C. J . Am. Chem. Soc. , 1996 , 118(51) : 12989 —12996
[ 5 ]  De Lacey A L , Hatchikian E C , Volbeda A. J . Am. Chem. Soc. ,1997 , 119 (31) : 7181 —7189
[ 6 ]  Peters J W, Lanzilotta W N , Lemon B J , Seefeldt L C. Science ,1998 , 282 (5395) : 1853 —1858
[ 7 ]  Nicolet Y, Piras C , Legrand P , Hatchikian E C , Fontecilla-Camps J C. Structure , 1999 , 7 (1) : 13 —23
[ 8 ]  Zhao Q B , Mu Y, Wang Y, Liu XW, Pong F , Yu H Q. Bioresour.Technol . , 2008 , 99 (17) : 8344 —8347
[ 9 ]  Asada Y, Ohsawa M, Nagai Y, Ishimi K, Fukatsu M, Hideno A ,Wakayama T, Miyake J . International J . Hydrogen Energy , 2008 ,33 (19) : 5147 —5150
[10 ]  Wenk S O , Qian D J , Wakayama T, Nakamura C , Zorin N , Rêgner M, Miyake J . International J . Hydrogen Energy , 2002 , 27 (11/12) :1489 —1493
[11 ]  Hoogvliet J C , Lievense L C , Dijk C V , Veeger C. Eur. J .Biochem. , 1988 , 174 (1) : 273 —280
[12 ]  Hoogvliet J C , Lievense L C , Dijk C V , Veeger C. Eur. J .Biochem. , 1988 , 174 (1) : 281 —285
[13 ]  Qian D J , Liu A R , Nakamura C , Wenk S O , Miyake J . Chinese Chem. Lett . , 2008 , 19 (5) : 607 —610
[14 ]  Eng L H , Elmgren M, Komlos P , Nordling M, Lindquist S E ,Neujahr H Y. J . Phys. Chem. , 1994 , 98 (28) : 7068 —7072
[15 ]  De Lacey A L , Detcheverry M, Moiroux J , Bourdillon C.Biotechnol . Bioeng. , 2000 , 68 (1) : 1 —10
[16 ]  Lojou E , Giudici-Orticoni M T, Bianco P. J . Electroanal . Chem. ,2005 , 577 (1) : 79 —86
[17 ]  Johnston W. Enzyme Microbial Technol . , 2005 , 36 (4) : 540 —549
[18 ]  Jelen F , Erdem A , Paleˇcek E. Bioelectrochem. , 2002 , 55 (1/2) :169 —171
[19 ]  Léger C , Dementin S , Bertrand P , et al . J . Am. Chem. Soc. ,2004 , 126 (38) : 12162 —12172
[20 ]  Léger C , Jones A K, Armstrong F A , et al . J . Phys. Chem. B ,2002 , 106 (50) : 13058 —13063
[21 ]  Hambourger M, Gervaldo M, Svedruzic D , King P W, Gust D ,Ghirardi M, Moore A L , Moore T A. J . Am. Chem. Soc. , 2008 ,130 (6) : 2015 —2022
[22 ]  Kang M G, Park N G, Park YJ , Ryu KS , Chang S H. Sol . Energy Mater. Sol . Cells , 2003 , 75 (3P4) : 475 —479
[23 ]  Hambourger M, Liddell P A , Gust D , Moore A L , Moore T A.Photochem. Photobiol . Sci . , 2007 , 6 (4) : 431 —437
[24 ]  Parkin A , Cavazza C , Fontecilla-Camps J C , Armstrong F A. J .Am. Chem. Soc. , 2006 , 128 (51) : 16808 —16815
[25 ]  Hoeben F J M, Heller I , Albracht S P J , Dekker C , Lemay S G,Heering H A. Langmuir , 2008 , 24 (11) : 5925 —5931
[26 ]  Mousty C. Applied Clay Sci . , 2004 , 27 (3P4) : 159 —177
[27 ]  Lojou E , Biano P. Electrochim. Acta , 2007 , 52 (25) : 7307 —7314
[28 ]  Qian D J , Nakamura C , Wenk S O , Ishikawa H , Zorin N , Miyake J . Biosen. Bioelectron. , 2002 , 17 (9) : 789 —796
[29 ]  Qian D J , Nakamura C , Wenk S , Ishikawa H , Zorin N , Miyake J .Mater. Lett . , 2003 , 57 (5/6) : 1130 —1134
[30 ]  Iijima S. Nature , 1991 , 354 : 56 —58
[31 ]  Karajanagi S S , Vertegel A A , Kane R S , Dordick J S. Langmuir ,2004 , 20 (26) : 11594 —11599
[32 ]  Yan Y, Zheng W, Zhang M, Wang L , Su L , Mao L. Langmuir ,2005 , 21 (14) : 6560 —6566
[33 ]  Liu A R , Qian D J , Chen M, Wakayama T, Nakamura C , Zorin N A , Miyake J . Nanobiotechnology , 2006 , 2 : 135 —141
[34 ]  McDonald TJ , Svedruzic D , Kim Y H , Blackburn J L , Zhang S B ,King P W, Heben MJ . Nano Lett . , 2007 , 7 (11) : 3528 —3534
[35 ]  Liu A R , Wang X, Nakamura C , Miyake J , Zorin N A , Qian D J .J . Phys. Chem. C , 2008 , 112 (5) : 1582 —1588
[36 ]  Qian D J , Nakamura C , Noda K, Zorin N A , Miyake J . Appl .Biochem. Biotech. , 2000 , 84/86 : 409 —418
[37 ]  Hou Y, Jaffrezic-Renault N , Martelet C , Tlili C , Zhang A , Pernollet J C , Briand L , Gomila G, Errachid A , Samitier J , Salvagnac L ,Torbiero B , Temple-Boyer P. Langmuir , 2005 , 21 (9) : 4058 —4065
[38 ]  Arias-Marin E , Arnault J C , Guillon D , Maillou T, Le Moigne J ,Geffroy B , Nunzi J M. Langmuir , 2000 , 16 (9) : 4309 —4318
[39 ]  Noda K, Zorin N A , Nakamura C , Miyake M, Gogotov I N , Asada Y, Akutsu H , Miyake J . Thin Solid Films , 1998 , 327P329 : 639 —642
[40 ]  Zorin N A , Pashkova O N , Gogotov I N. Biochem. (Moscow) ,1995 , 60 (4) : 379 —384
[41 ]  Nakamura C , Noda K, Zorin N A , Akutsu H , Miyake J . Synth.Met . , 2001 , 117 (1P3) : 285 —288
[42 ]  Qian D J , Nakamura C , Zorin N , Miyake J . Colloid Surf . A-Physiochem. Eng. Asp. , 2002 , 198P200 : 663 —669
[43 ]  Qian D J , Wakayama T, Nakamura C , Wenk S O , Miyake J .BioHydrogen Ⅲ ( Eds. Miyake J , Igarashi Y, Rêgner M) . Kyoto ,Japan , 2004. 161 —170
[44 ]  Liu A R , Wakayama T, Nakamura C , Miyake J , Qian D J .Electrochim. Acta , 2007 , 52 (9) : 3222 —3228
[45 ]  Bartosz T, Leonarski F , Les ’ A , Adamowicz L. J . Phys. Chem. B ,2005 , 109 (37) : 17734 —17742
[46 ]  Petrovic’ J , Clark R A , Yue H , Waldeck D H , Bowden E F.Langmuir , 2005 , 21 (14) : 6308 —6316
[47 ]  Rüdiger O , Abad J M, Hatchikian E C , Fernandez V M, De Lacey A L. J . Am. Chem. Soc. , 2005 , 127 (46) : 16008 —16009
[48 ]  Delamar M, Hitmi R , Pinson J , Saveant J M. J . Am. Chem. Soc. ,1992 , 114 (14) : 5883 —5884
[49 ]  Allongue P , Delamar M, Desbat B , Fagebaume O , Hitmi R , Pinson J , Saveant J M. J . Am. Chem. Soc. , 1997 , 119 (1) : 201 —207
[50 ]  Alonso2Lomillo M A , Rüdiger O , Maroto-Valiente A , Velez M,Rodríguez-Ramos I , Muìoz F J , Fernández V M, De Lacey A L.Nano Lett . , 2007 , 7 (6) : 1603 —1608
[51 ]  Roy S , Vedala H , Choi W. Nanotechnology , 2006 , 17 (4) : S14 —S18
[52 ]  Kim W S , Kim M G, Ahn J H , Bae B S , Park C B. Langmuir ,2007 , 23 (9) : 4732 —4736
[53 ]  Ichinose I , Takaki R , Kuroiwa K, Kunitake T. Langmuir , 2003 , 19(9) : 3883 —3888
[54 ]  Elgren T E , Zadvorny O A , Brecht E , Douglas T, Zorin N A ,Maroney MJ , Peters J W. Nano Lett . , 2005 , 5 (10) : 2085 —2087

[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[3] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[4] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[5] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[6] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[7] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[8] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[9] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[10] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[13] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[14] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[15] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.