English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1945-1958 前一篇   后一篇

• 综述与评论 •

惯性效应在微流控芯片中的应用

项楠, 朱晓璐, 倪中华*   

  1. 东南大学 江苏省微纳生物医疗器械设计与制造重点实验室 南京 211189
  • 收稿日期:2010-11-01 修回日期:2011-01-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 倪中华 E-mail:nzh2003@seu.edu.cn
  • 基金资助:

    国家高技术研究发展计划(863)项目(No.2009AA04Z310)、国家自然科学基金重大研究计划(培育)项目(No.91023024)、江苏省普通高校研究生科研创新计划项目(No.CX10B_062Z)、教育部博士研究生学术新人奖资助和东南大学优秀博士学位论文基金资助

Application of Inertial Effect in Microfluidic Chips

Xiang Nan, Zhu Xiaolu, Ni Zhonghua*   

  1. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
  • Received:2010-11-01 Revised:2011-01-01 Online:2011-09-24 Published:2011-09-02

作为一种操控粒子或流体的新技术,基于流体惯性的操控技术已被应用于微流控芯片中粒子的输运、分选、聚焦及试样的混合和反应等操作,而在微尺度惯性效应基础上的惯性微流控芯片由于具有高通量、无需外场介入、低成本、易集成及微型化等众多优点,可用于解决医疗诊断、生化分析、合成化学及环境监测等领域的检测分析和微量操控问题,因此对该技术的机理及应用研究已成为目前微流控技术领域一个重要的研究热点。本文在介绍惯性微流控芯片机理及其研究进展的同时,从惯性聚焦、惯性分选及基于Dean流的微混合器和微流控光学器件等几个方面对惯性微流控芯片的最新应用研究进展进行了较为详细的介绍和分析比较。在此基础上,分析了惯性微流控芯片的局限和未来需要解决的问题。

As a new approach to precisely manipulate particles or fluids, the manipulation technology based on fluid inertia has numerous microfluidic applications in particle transporting, sorting, focusing, and sample mixing. The inertial microfluidic chips can be used to solve a variety of real-world problems in clinical diagnostics, biochemical analysis, synthetic chemistry and environmental monitoring due to the advantages offered by microscale inertial effects, such as high throughput, operation without external fields, low cost, inherent miniaturization and portability. Therefore, the inertial microfluidics has attracted increasing interest and shows a promising future for a variety of applications. In this review, the theories of inertial microfluidics are briefly described, and recent advances in applications of inertial microfluidics are presented and compared including inertial focusing, inertial sorting, Dean flow-assisted micromixers and optofluidic lens. Limitations and prospects of inertial microfluidics are also discussed.

Contents
1 Introduction
2 Mechanisms and key technologies of inertial microfluidic chip
2.1 Inertial migration
2.2 Dean flow
2.3 Movements and equilibrium positions of particles in channel
2.4 Key technologies for the development of inertial microfluidic chip
3 Latest developments in applications of inertial microfluidics
3.1 Inertial focusing
3.2 Inertial sorting
3.3 Other applications
4 Conclusion and prospects

中图分类号: 

()

[1] 肖守军(Xiao S J), 陈凌(Chen L), 许宁(Xu N).化学进展(Progress in Chemistry), 2009, 21(11): 2397-2410
[2] 王立凯(Wang L K), 冯喜增(Feng X Z).化学进展(Progress in Chemistry), 2005, 17(3): 482-498
[3] 秦建华(Qin J H), 刘婷姣(Liu T J), 林炳承(Lin B C).色谱(Chinese Journal of Chromatography), 2009, 27(5): 654-661
[4] Sia S K, Kricka L J.Lab Chip, 2008, 8: 1982-1983
[5] Schulte T H, Bardell R L, Weigl B H.Clin.Chim.Acta, 2002, 321: 1-10
[6] Marle L, Greenway G M.TrAC, Trends Anal.Chem., 2005, 24: 795-802
[7] 林炳承(Lin B C), 秦建华(Qin J H).高等学校化学学报(Chemical Journal of Chinese Universities), 2009, 30(3): 433-445
[8] Skurtys O, Aguilera J M.Food Biophys., 2008, 3: 1-15
[9] Kjeang E, Djilali N, Sinton D.J.Power Sources, 2009, 186: 353-369
[10] Levy U, Shamai R.Microfluid.Nanofluid., 2008, 4: 97-105
[11] Drzaic P.Nat.Photonics, 2009, 3: 248-249
[12] Lin B, Long Z, Liu X, Qin J.Biotechnol.J., 2006, 1: 1225-1234
[13] Fair R.Microfluid.Nanofluid., 2007, 3: 245-281
[14] 朱晓璐(Zhu X L), 易红(Yi H), 倪中华(Ni Z H).机械工程学报(Journal of Mechanical Engineering), 2009, 45(11): 197-204
[15] Zhu X L, Gao Z Q, Yin Z F, Ni Z H.Microfluid.Nanofluid., 2010, 9: 981-988
[16] Zhu X L, Yi H, Ni Z H.Biomicrofluidics, 2010, 4: art.no.013202
[17] Zhu X L, Yin Z F, Gao Z Q, Ni Z H.Sci.China Ser.E-Tech.Sci., 2010, 53: 2388-2396
[18] Ni Z H, Yi H, Zhu S C, Song C F.Sci.China Ser.E-Tech.Sci, 2009, 52: 2831-2839
[19] LaVan D A, McGuire T, Langer R.Nat.Biotechnol., 2003, 21: 1184-1191
[20] Squires T M, Quake S R.Rev.Mod.Phys., 2005, 77: 977-1026
[21] Tabeling P.Introduction to Microfluidics.New York: Oxford University Press, 2005.76
[22] Berthier J, Silberzan P.Microfluidics for biotechnology.Boston: Artech House, 2006.11-13
[23] Segre G, Silberberg A.Nature, 1961, 189: 209-210
[24] Segre G, Silberberg A.J.Fluid Mech., 1962, 14: 115-135
[25] Segre G, Silberberg A.J.Fluid Mech., 1962, 14: 136-157
[26] Rubinow S I, Keller J B.J.Fluid Mech., 1961, 11: 447-459
[27] Bretherton F P.J.Fluid Mech., 1962, 12: 591-613
[28] Saffman P G.J.Fluid Mech., 1965, 22: 385-400
[29] McLaughlin J B.J.Fluid Mech., 1991, 224: 261-274
[30] Ho B P, Leal L G.J.Fluid Mech., 1974, 65: 365-400
[31] Schonberg J A, Hinch E J.J.Fluid Mech., 1989, 203: 517-524
[32] Asmolov E S.J.Fluid Mech., 1999, 381: 63-87
[33] Matas J-P, Morris J F, Guazzelli é.J.Fluid Mech., 2004, 515: 171-195
[34] Yu Z, Phan-thien N, Tanner R I.J.Fluid Mech., 2004, 518: 61-93
[35] Yang B H, Wang J, Joseph D D, Hu H H, PAN T-W, Glowinski R.J.Fluid Mech., 2005, 540: 109-131
[36] Di Carlo D, Edd J F, Humphry K J, Stone H A, Toner M.Phys.Rev.Lett., 2009, 102: art.no.094503
[37] Di Carlo D, Irimia D, Tompkins R G, Toner M.Proc.Natl.Acad.Sci.U.S.A., 2007, 104: 18892-18897
[38] Chun B, Ladd A J C.Phys.Fluids, 2006, 18: art.no.031704
[39] Kim Y W, Yoo J Y.J.Micromech.Microeng., 2008, 18: art.no.065015
[40] Choi Y S, Lee S J.Microfluid.Nanofluid., 2010, 9: 819-829
[41] Di Carlo D.Lab Chip, 2009, 9: 3038-3046
[42] Eustice J.Proc.R.Soc.London, Ser.A, 1910, 84: 107-118
[43] Dean W R.Philos.Mag., 1927, 4: 208-223
[44] Dean W R.Philos.Mag., 1928, 5: 673-695
[45] Berger S A, Talbot L, Yao L S.Annu.Rev.Fluid Mech., 1983, 15: 461-512
[46] Park J S, Song S H, Jung H I.Lab Chip, 2009, 9: 939-948
[47] Lee M G, Choi S, Park J K.Lab Chip, 2009, 9: 3155-3160
[48] Lee M G, Choi S, Park J K.Appl.Phys.Lett., 2009, 95: art.no.501902
[49] Talbot L, Gong K O.J.Fluid Mech., 1983, 127: 1-25
[50] Back L H, Kwack E Y, Crawford D W.J.Biomech.Eng., 1988, 110: 310-319
[51] Paddock S W.Mol.Biotechnol., 2000, 16: 127-149
[52] Knspik D A, Starkoski B, Pavlin C J, Foster F S.IEEE Trans.Ultrason.Ferroelectr.Freq.Control, 2000, 47: 1540-1549
[53] Kim G B, Lee S J.Exp.Fluids, 2006, 41: 195-200
[54] Ahn Y C, Jung W G, Chen Z P.Lab Chip, 2008, 8: 125-133
[55] Kim S, Lee S J.Exp.Fluids, 2009, 46: 255-264
[56] Ookawara S, Higashi R, Street D, Ogawa K.Chem.Eng.J., 2004, 101: 171-178
[57] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I.Lab Chip, 2008, 8: 1906-1914
[58] Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, Papautsky I.Lab Chip, 2009, 9: 2973-2980
[59] Cox R G, Brenner H.Chem.Eng.Sci., 1968, 23: 147-173
[60] Hur S C, Tse H T K, Di Carlo D.Lab Chip, 2010, 10: 274-280
[61] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I.Microfluid.Nanofluid., 2009, 7: 217-226
[62] Zeng L, Balachandar S, Fischer P.J.Fluid Mech., 2005, 536: 1-25
[63] Bhagat A A S.Doctoral Dissertation of University of Cincinnati, 2009
[64] Humphry K J, Kulkarni P M, Weitz D A, Morris J F, Stone H A.Phys.Fluids, 2010, 22: art.no.081703
[65] Gossett D R, Di Carlo D.Anal.Chem., 2009, 81: 8459-8465
[66] Oakey J, Applegate R W, Jr., Arellano E, Di Carlo D, Graves S W, Toner M.Anal.Chem., 2010, 82: 3862-3867
[67] Bhagat A A, Kuntaegowdanahalli S S, Kaval N, Seliskar C J, Papautsky I.Biomed.Microdevices, 2010, 12: 187-195
[68] Matas J P, Glezer V, Guazzelli E, Morris J F.Phys.Fluids, 2004, 16: 4192-4195
[69] Edd J F, Di Carlo D, Humphry K J, Koster S, Irimia D, Weitz D A, Toner M.Lab Chip, 2008, 8: 1262-1264
[70] Inamuro T, Maeba K, Ogino F.Int.J.Multiphase Flow, 2000, 26: 1981-2004
[71] Yan Y G, Morris J F, Koplik J.Phys.Fluids, 2007, 19: art.no.113305
[72] Pryputniewicz R J, Galambos P, Brown G C, Furlong C, Pryputniewicz E J.Int.J.Microcircuits Electron.Packag., 2001, 24: 30-36
[73] Haeberle S, Zengerle R.Lab Chip, 2007, 7: 1094-1110
[74] Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R.Chem.Soc.Rev., 2010, 39: 1153-1182
[75] Thorsen T, Maerkl S J, Quake S R.Science, 2002, 298: 580-584
[76] van der Sman R G M.Soft Matter, 2009, 5: 4376-4387
[77] Duffy D C, McDonald J C, Schueller O J A, Whitesides G M.Anal.Chem., 1998, 70: 4974-4984
[78] McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H K, Schueller O J A, Whitesides G M.Electrophoresis, 2000, 21: 27-40
[79] Li Y, Qu S L.Mater.Lett., 2010, 64: 1427-1429
[80] Vitek D N, Adams D E, Johnson A, Tsai P S, Backus S, Durfee C G, Kleinfeld D, Squier J A.Opt.Express, 2010, 18: 18086-18094
[81] Martinez A W, Phillips S T, Whitesides G M.Proc.Natl.Acad.Sci.U.S.A., 2008, 105: 19606-19611
[82] Martinez A W, Phillips S T, Whitesides G M, Carrilho E.Anal.Chem., 2010, 82: 3-10
[83] Martinez A W, Phillips S T, Wiley B J, Gupta M, Whitesides G M.Lab Chip, 2008, 8: 2146-2150
[84] 姚波(Yao B), 何巧红(He Q H), 杜文斌(Du W B), 石晓彤(Shi X T), 方群(Fang Q).色谱(Chinese Journal of Chromatography), 2009, 27(5): 662-666
[85] Atencia J, Cooksey G A, Jahn A, Zook J M, Vreeland W N, Locascio L E.Lab Chip, 2010, 10: 246-249
[86] Bhagat A A S, Jothimuthu P, Pais A, Papautsky I.J.Micromech.Microeng., 2007, 17: 42-49
[87] Lee G B, Lin C H, Chang G L.Sensor.Actuat.A: Phys, 2003, 103: 165-170
[88] Kachel V, Wietzorrek J.Sci.Mar., 2000, 64: 247-254
[89] Lindken R, Rossi M, Grosse S, Westerweel J.Lab Chip, 2009, 9: 2551-2567
[90] Wereley S T, Meinhart C D.Annu.Rev.Fluid Mech., 2010, 42: 557-576
[91] Varga V S, Ficsor L, Kamaras V, Jonas V, Virag T, Tulassay Z, Molnar B.Cytometry, Part A, 2009, 75A: 1020-1030
[92] Huh D, Gu W, Kamotani Y, Grotberg J B, Takayama S.Physiol.Meas., 2005, 26: R73-R98
[93] Chung T D, Kim H C.Electrophoresis, 2007, 28: 4511-4520
[94] Ateya D A, Erickson J S, Howell P B, Hilliard L R, Golden J P, Ligler F S.Anal.Bioanal.Chem., 2008, 391: 1485-1498
[95] Godin J, Chen C H, Cho S H, Qiao W, Tsai F, Lo Y H.J.Biophotonics, 2008, 1: 355-376
[96] 高健(Gao J), 殷学锋(Yin X F), 方肇伦(Fang Z L).化学进展(Progress in Chemistry), 2004, 16(6): 975-983
[97] Heikali D, Di Carlo D.JALA, 2010, 15: 319-328
[98] Pamme N.Lab Chip, 2007, 7: 1644-1659
[99] Kersaudy-Kerhoas M, Dhariwal R, Desmulliez M P Y.IET Nanobiotechnol., 2008, 2: 1-13
[100] Lenshof A, Laurell T.Chem.Soc.Rev., 2010, 39: 1203-1217
[101] Xuan X C, Zhu J J, Church C.Microfluid.Nanofluid., 2010, 9: 1-16
[102] Robinson J P.Flow cytometry.In: Wnek G E, Bowlin G L, ed.Encyclopedia of Biomaterials and Biomedical Engineering.New York: Marcel Dekker Inc, 2004.630-640
[103] Shi J, Mao X, Ahmed D, Colletti A, Huang T J.Lab Chip, 2008, 8: 221-223
[104] Goddard G R, Sanders C K, Martin J C, Kaduchak G, Graves S W.Anal.Chem., 2007, 79: 8740-8746
[105] Zeng Q, Chan H W L, Zhao X Z, Chen Y.Microelectron.Eng., 2010, 87: 1204-1206
[106] Cheng I F, Chang H C, Hou D, Chang H C.Biomicrofluidics, 2007, 1: art.no.021503
[107] Zhu J J, Tzeng T R J, Hu G Q, Xuan X C.Microfluid.Nanofluid., 2009, 7: 751-756
[108] Lin Y H, Lee G B.Biosens.Bioelectron., 2008, 24: 572-578
[109] James C D, McClain J, Pohl K R, Reuel N, Achyuthan K E, Bourdon C J, Rahimian K, Galambos P C, Ludwig G, Derzon M S.J.Micromech.Microeng., 2010, 20: art.no.045015
[110] 沈玉勤(Shen Y Q), 姚波(Yao B), 方群(Fang Q).化学进展(Progress in Chemistry), 2010, 22(1): 133-139
[111] Zhao Y Q, Fujimoto B S, Jeffries G D M, Schiro P G, Chiu D T.Opt.Express, 2007, 15: 6167-6176
[112] Kim Y W, Yoo J Y.Biosens.Bioelectron., 2009, 24: 3677-3682
[113] Choi S, Park J K.Anal.Chem., 2008, 80: 3035-3039
[114] Mao X L, Waldeisen J R, Huang T J.Lab Chip, 2007, 7: 1260-1262
[115] Mao X L, Lin S C S, Dong C, Huang T J.Lab Chip, 2009, 9: 1583-1589
[116] Lim J M, Kim S H, Yang S M.Microfluid.Nanofluid., 2010, 10: 211-217
[117] Lee K S, Kim S B, Lee K H, Sung H J, Kim S S.Appl.Phys.Lett., 2010, 97: art.no.021109
[118] Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S.Tissue Eng., 2005, 11: 1658-1666
[119] Calvert P.Science, 2007, 318: 208-209
[120] Lee G B, Lin C H, Chang S C.J.Micromech.Microeng., 2005, 15: 447-454
[121] McKenna B K, Selim A A, Richard Bringhurst F, Ehrlich D J.Lab Chip, 2009, 9: 305-310
[122] Su T W, Seo S, Erlinger A, Ozcan A.Biotechnol.Bioeng., 2009, 102: 856-868
[123] Coskun A F, Su T W, Ozcan A.Lab Chip, 2010, 10: 824-827
[124] Lee H, Sun E, Ham D, Weissleder R.Nat.Med., 2008, 14: 869-874
[125] Badilita V, Kratt K, Baxan N, Mohmmadzadeh M, Burger T, Weber H, von Elverfeldt D, Hennig J, Korvink J G, Wallrabe U.Lab Chip, 2010, 10: 1387-1390
[126] Russom A, Gupta A K, Nagrath S, Di Carlo D, Edd J F, Toner M.New J.Phys., 2009, 11: art.no.075025
[127] Strathmann H.AIChE J., 2001, 47: 1077-1087
[128] 徐溢(Xu Y), 张剑(Zhang J), 徐平洲(Xu P Z), 卢倩(Lu Q), 曾雪(Zeng X), 温志渝(Wen Z Y).化学进展(Progress in Chemistry), 2007, 19(1): 186-192
[129] Fu A Y, Spence C, Scherer A, Arnold F H, Quake S R.Nat.Biotechnol., 1999, 17: 1109-1111
[130] Gijs M A M, Lacharme F, Lehmann U.Chem.Rev., 2010, 110: 1518-1563
[131] Gossett D R, Weaver W M, Mach A J, Hur S C, Tse H T K, Lee W, Amini H, Di Carlo D.Anal.Bioanal.Chem., 2010, 397: 3249-3267
[132] Bhagat A, Bow H, Hou H, Tan S, Han J, Lim C.Med.Biol.Eng.Comput., 2010, 48: 999-1014
[133] Sun T, Morgan H.Microfluid.Nanofluid., 2010, 8: 423-443
[134] Rakow A L, Fernald D.Biotechnol.Progr., 1991, 7: 343-347
[135] Rakow A L, Chappell M L, Long R L.Biotechnol.Progr., 1989, 5: 105-110
[136] Wickramasinghe S R, Lin W C, Dandy D S.Biotechnol.Lett., 2001, 23: 1417-1422
[137] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I.Phys.Fluids, 2008, 20: art.no.101702
[138] Mach A J, Di Carlo D.Biotechnol.Bioeng., 2010, 107: 302-311
[139] Toner M, Irimia D.Annu.Rev.Biomed.Eng., 2005, 7: 77-103
[140] Wu Z G, Willing B, Bjerketorp J, Jansson J K, Hjort K.Lab Chip, 2009, 9: 1193-1199
[141] Faivre M, Abkarian M, Bickraj K, Stone H A.Biorheology, 2006, 43: 147-159
[142] Park J S, Jung H I.Anal.Chem., 2009, 81: 8280-8288
[143] Ookawara S, Street D, Ogawa K.Chem.Eng.Sci., 2006, 61: 3714-3724
[144] Ookawara S, Ishikawa T, Ogawa K.Chem.Eng.Technol., 2007, 30: 316-321
[145] Oozeki N, Ookawara S, Ogawa K, Lb P, Hessel V.AIChE J., 2009, 55: 24-34
[146] Ookawara S, Oozeki N, Ogawa K, Lb P, Hessel V.Chem.Eng.Process., 2010, 49: 697-703
[147] Yoon D H, Ha J B, Bahk Y K, Arakawa T, Shoji S, Go J S.Lab Chip, 2009, 9: 87-90
[148] Seo J, Lean M H, Kole A.J.Chromatogr.A, 2007, 1162: 126-131
[149] Seo J, Lean M H, Kole A.Appl.Phys.Lett., 2007, 91: art.no.033901
[150] PARC (Palo Alto Research Center).Low-energy, Compact, Cost-effective Separation for Water Treatment and Recycling or Precious Resource Recovery .http: //www.parc.com/work/focus-area/clean-water/
[151] Bhagat A A S, Kuntaegowdanahalli S S, Dionysiou D D, Papautsky I.Microfluidics, BioMEMS, and Medical Microsystems VI(Eds.Wanjun W, Claude V).California: SPIE, 2008.68860M
[152] Di Carlo D, Edd J F, Irimia D, Tompkins R G, Toner M.Anal.Chem., 2008, 80: 2204-2211
[153] Sollier E, Rostaing H, Pouteau P, Fouillet Y, Achard J L.Sens.Actuators, B, 2009, 141: 617-624
[154] Stroock A D, Dertinger S K W, Ajdari A, Mezic I, Stone H A, Whitesides G M.Science, 2002, 295: 647-651
[155] Ottino J M, Wiggins S.Philos.Trans.R.Soc.London, Ser.A, 2004, 362: 923-935
[156] Nguyen N T, Wu Z.J.Micromech.Microeng., 2005, 15: R1-R16
[157] Bhagat A A S, Peterson E T K, Papautsky I.J.Micromech.Microeng., 2007, 17: 1017-1024
[158] Hessel V, Lwe H, Schnfeld F.Chem.Eng.Sci., 2005, 60: 2479-2501
[159] Liu R H, Stremler M A, Sharp K V, Olsen M G, Santiago J G, Adrian R J, Aref H, Beebe D J.J.Microelectromech.Syst., 2000, 9: 190-197
[160] Beebe D J, Adrian R J, Olsen M G, Stremler M A, Aref H, Jo B-H.Mec.Ind., 2000, 2: 343-348
[161] Liu Y Z, Kim B J, Sung H J.Int.J.Heat Fluid Flow, 2004, 25: 986-995
[162] Schonfeld F, Hardt S.AIChE J., 2004, 50: 771-778
[163] Jiang F, Drese K S, Hardt S, Kupper M, Schonfeld F.AIChE J., 2004, 50: 2297-2305
[164] Mengeaud V, Josserand J, Girault H H.Anal.Chem., 2002, 74: 4279-4286
[165] Nonino C, Savino S, Del Giudice S.Heat Transfer Eng., 2009, 30: 101-112
[166] Howell P B, Mott D R, Golden J P, Ligler F S.Lab Chip, 2004, 4: 663-669
[167] Sudarsan A P, Ugaz V M.Lab Chip, 2006, 6: 74-82
[168] Sudarsan A P, Ugaz V M.Proc.Natl.Acad.Sci.U.S.A., 2006, 103: 7228-7233
[169] Tang G H, He Y L, Tao W Q.Appl.Phys.Lett., 2010, 107: art.no.104906
[170] Chung C K, Shih T R.J.Micromech.Microeng., 2007, 17: 2495-2504
[171] Chung C K, Shih T R.Microfluid.Nanofluid., 2008, 4: 419-425
[172] Chung C K, Shih T R, Wu B H, Chang C K.Microsyst.Technol., 2010, 16: 1595-1600
[173] Wang J, Zhan Y H, Ugaz V M, Lu C.Lab Chip, 2010, 10: 2057-2061
[174] Mao X L, Waldeisen J R, Juluri B K, Huang T J.Lab Chip, 2007, 7: 1303-1308
[175] Rosenauer M, Vellekoop M J.Lab Chip, 2009, 9: 1040-1042
[176] Nguyen N T.Biomicrofluidics, 2010, 4: art.no.031501
[177] Levesley J A, Bellhouse B J.Chem.Eng.Sci., 1993, 48: 3657-3669
[178] Williams P S, Lee S H, Giddings J C.Chem.Eng.Commun., 1994, 130: 143-166
[179] Williams P S, Moon M H, Giddings J C.Colloids Surf., A, 1996, 113: 215-228
[180] Williams P S, Moon M H, Xu Y H, Giddings J C.Chem.Eng.Sci., 1996, 51: 4477-4488

[1] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[2] 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 金属有机骨架材料的复合成型[J]. 化学进展, 2021, 33(12): 2173-2187.
[3] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[4] 丁跃, 卢波, 季君晖. 聚乳酸基生物可降解材料的相容性[J]. 化学进展, 2020, 32(6): 738-751.
[5] 倪陈, 姜迪, 徐幼林, 唐文来. 黏弹性流体在微粒被动操控技术中的应用[J]. 化学进展, 2020, 32(5): 519-535.
[6] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[7] 黄笛, 项楠, 唐文来, 张鑫杰, 倪中华. 基于微流控技术的循环肿瘤细胞分选研究[J]. 化学进展, 2015, 27(7): 882-912.
[8] 戚华彪, 周光正, 于福海, 葛蔚, 李静海. 颗粒物质混合行为的离散单元法研究[J]. 化学进展, 2015, 27(1): 113-124.
[9] 董航, 张林, 陈欢林, 高从堦. 混合基质水处理膜:材料、制备与性能[J]. 化学进展, 2014, 26(12): 2007-2018.
[10] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[11] 苏斌, 赵静, 刘春波, 车广波, 王庆伟, 徐占林. 基于8-羟基喹啉及其衍生物的有机小分子电致发光材料[J]. 化学进展, 2013, 25(07): 1090-1101.
[12] 陈婷, 赵海雷, 谢志翔, 徐景璨, 徐南生, 李福燊. 双相致密透氧膜[J]. 化学进展, 2012, 24(01): 163-172.
[13] 刘广山. 海洋放射化学[J]. 化学进展, 2011, 23(7): 1558-1565.
[14] 温祖标, 田舒, 曲群婷, 吴宇平. 以嵌入化合物为正极的混合超级电容器[J]. 化学进展, 2011, 23(0203): 589-594.
[15] 刘海晶, 夏永姚. 混合型超级电容器的研究进展[J]. 化学进展, 2011, 23(0203): 595-604.
阅读次数
全文


摘要

惯性效应在微流控芯片中的应用