English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1936-1944 前一篇   后一篇

• 综述与评论 •

环糊精分子管道的制备与应用研究进展

张林1*, 李琳玲1, 程丽华2, 陈欢林1   

  1. 1. 浙江大学化学工程与生物工程学系教育部膜与水处理技术工程中心 杭州 310027;
    2. 浙江大学环境与资源学院 杭州 310027
  • 收稿日期:2010-12-01 修回日期:2011-01-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 张林 E-mail:linzhang@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20946003)和中央高校基本科研业务费专项资金项目资助

Progress of Preparation and Application of Cyclodextrin-based Molecular Tube

Zhang Lin1*, Li Linling1, Cheng Lihua2, Chen Huanlin1   

  1. 1. Engineering Research Center of Membrane and Water Treatment Technology, Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310027, China
  • Received:2010-12-01 Revised:2011-01-01 Online:2011-09-24 Published:2011-09-02

环糊精分子管道是一种基于环糊精制备的中空管状聚合物,因其特殊的空腔结构及与客体分子间的选择性组装现象而引起广泛关注。本文综述和比较了环糊精分子管道的主要制备方法,着重阐述了环糊精分子管道与客体分子间的选择性组装现象、机理及影响因素方面的研究成果。对环糊精分子管道的应用现状和潜在的应用价值进行了概括,最后提出了应予以重视的研究方向。

Cyclodextrin-based molecular tube is a hollow tubular polymer synthesized by threaded cyclodextrins. Recently, it has received extensive attention since its tubular molecular structure and selective inclusion complexation characteristic with various guest molecules including small molecules and polymers. In this paper, the main properties of cyclodextrin-based molecular tube are introduced and the preparation methods are reviewed in detail and compared with each other. The research about the selective inclusion complexation between molecular tube and guest molecules is elaborated, which include long-chain aliphatic and aromatic compounds. The assembling mechanism and influencing factors of complexation are discussed later. The recent applications of molecular tube in self-assembled monolayers, artificial chaperone and potential applications in constructing of novel self-assembly supramolecular architecture are summarized. Finally, the future research directions and problems in this area are prospected.

Contents
1 Introduction
2 Preparation of cyclodextrin-based molecular tube
3 Inclusion complexation characteristic of cyclod-extrin-based molecular tube
3.1 α-CD Molecular tube's selective inclusion compl-exation with long-chain aliphatic compounds
3.2 α-CD Molecular tube's selective inclusion compl-exation with long-chain aromatic compounds
4 Studies on application of α-CD molecular tube
5 Mechanism and influencing factors of inclusion complexation between guest Molecular and α-CD molecular tube
6 Conclusions and outlook

中图分类号: 

()

[1] Iijima S.Nature, 1991, 354: 56-58
[2] Szejtli J.Chem.Rev., 1998, 98(5): 1743-1754
[3] Harada A.Coordin.Chem.Rev., 1996, 148: 115-133
[4] Harada A, Li J, Kamachi M.Nature, 1993, 364: 516-518
[5] Ceccato M, Lo Nostro P, Rossi C, Bonechi C, Donati A, Baglioni P.J.Phys.Chem.B, 1997, 101: 5094-5099
[6] Okumura Y, Ito K, Hayakawa R.Phys.Rev.Lett., 1998, 80: 5003-5006
[7] Ikeda T, Hirota E, Ooya T, Yui N.Langmuir, 2001, 17: 234-238
[8] Ceccato M, Lo Nostro P, Baglioni P.Langmuir, 1997, 13: 2436-2439
[9] Ooya T, Eguchi M, Yui N.J.Am.Chem.Soc., 2003, 125(43): 13016-13017
[10] Majumdar S, Mitra K, Raha S.Polymer, 2005, 46: 11858-11869
[11] Samitsu S, Araki J, Shimomura T, Ito K.Macromolecules, 2008, 41: 5385-5392
[12] Topchieva I N, Kalashnikov F A, Spiridonov V V, Mel'nikov A B, Polushina G E, Lezov A V.Dokl.Chem., 2003, 390(1/3): 115-118
[13] Liu Y, You C C, Zhang H Y, Kang S Z, Zhu C F, Wang C.Nano Lett., 2001, 1(11): 613-616
[14] Liu Y, Yang Z X, Chen Y, Song Y, Shan N.ACS Nano, 2008, 2(3): 554-560
[15] Ikeda T, Ooya T, Yui N.Polym.Adv.Technol., 2000, 11: 830-836
[16] Harada A.Carbohyd.Polym., 1997, 34: 183-188
[17] Ikeda T, Hirota E, Ooya T, Yui N.Langmuir, 2001, 17: 234-238
[18] Ikeda T, Ooya T, Yui N.Macromol.Rapid Commun., 2000, 21: 1257-1262
[19] Wenz G, Han B H, Müller A.Chem.Rev., 2006, 106: 782-817
[20] 朱玉珑(Zhu Y L), 虞鑫海(Yu X H).绝缘材料(Insulated Materials), 2005, 5: 6-8
[21] Kim S Y, Lee Y M.Biomaterials, 2001, 22: l697-1704
[22] 崔国振(Cui G Z), 贺继东(He J D).青岛科技大学学报(自然科学版)(Journal of Qingdao University of Science and Technology(Natural Science Edition)), 2010, 31(4): 395-399
[23] Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K.Cancer Res., 1991, 51(12): 3229-3236
[24] 张琰(Zhang Y), 邵芳可(Shao F K), 吴唯(Wu W), 杨武利(Yang W L), 府寿宽(Fu S K).高分子通报(Polymer Bulletin), 2007, 10: 34-40
[25] Ikeda E, Okumura Y, Shimomura T, Ito K, Hayakawa R.J.Chem.Phys., 2000, 112(9): 4321-4325
[26] Okumura Y, Ito K, Hayakawa R, Nishi T.Langmuir, 2000, 16: 10278-10280
[27] Ikeda T, Lee W K, Ooya T, Yui N.J.Phys.Chem.B, 2003, 107: 14-19
[28] Samitsu S, Araki J, Shimomura T, Ito K.Macromolecules, 2008, 41: 5385-5392
[29] Li J, Li X, Toh K C, Ni X P, Zhou Z H, Leong K W.Macromolecules, 2001, 34: 8829-8831
[30] Li J, Ni X P, Leong K W.Angew.Chem.Int.Ed., 2003, 42(1): 69-72
[31] Li J, Ni X P, Zhou Z H, Leong K W.J.Am.Chem.Soc., 2003, 125(7): 1788-1795
[32] 赵群(Zhao Q), 倪沛红(Ni P H).化学进展(Progress in Chemistry), 2006, 18(6): 768-779
[33] Lee K S, Blanchet G B, Gao F, Loo Y L.Applied Physics Letters, 2005, 86(7): art.no.074102
[34] Ito K, Shimomura T, Okumura Y.Macromol.Symp., 2003, 201: 103-110
[35] Cardin D J.Adv.Mater., 2002, 14(8): 553-563
[36] Yoshida K, Shimomura T, Ito K, Hayakawa R.Langmuir, 1999, 15(4): 910-913
[37] Shimomura T, Yoshida K, Ito K, Hayakawa R.Polym.Adv.Technol., 2000, 11: 837-839
[38] Shimomura T, Akai T, Abe T, Ito K.J.Chem.Phys., 2002, 116: 1753-1756
[39] Akai T, Shimomura T, Ito K.Synthetic Met., 2003, 135-136: 777-778
[40] Shimomura T, Akai T, Fujimori M, Heike S, Hashizume T, Ito K.Synthetic Met., 2005, 153: 497-500
[41] Okumura Y, Ito K.Adv.Mater., 2001, 13(7): 485-487
[42] Li G, McGown L B.Science, 1994, 264: 249
[43] Kawaguchi Y, Arai H, Okada M, Kamachi M, Harada A.Polym.Prep.Jpn., 1999, 48: 436-438
[44] 何品刚(He P G), 铃木(Ling M).高等学校化学学报(Chemical Research in Chinese Univers-ities), 1996, 17(6): 893-895
[45] 王臻(Wang Z), 张浩力(Zhang H L).物理化学学报(Acta Physico-Chimica Sinica), 1999, 15(7): 606-612
[46] Samitsu S, Shimomura T, Ito K.Appl.Phys.Lett., 2004, 85(17): 3875-3877
[47] Sharma A, Karuppiah N.US 5728804, 1984
[48] Yazdanparast R, Khodarahmi R, Soori E.Arch.Biochem.Biophys., 2005, 437: 178-185
[49] Karuppiah N, Sharma A.Biochem.Biophys.Res.Commun., 1995, 211: 60-66
[50] Yazdanparast R, Khodagholi F, Khodarahmi R.Int.J.Biol.Macromol., 2005, 35: 257-263
[51] Yazdanparast R, Esmaeili M A, Khodarahmi R.Biochemistry (Moscow), 2006, 71(12): 1298-1306
[52] Pozuelo J, Mendicuti F, Mattice W L.Macromolecules, 1997, 30: 3685-3690
[53] Ceccato M, Lo Nostro P, Rossi C, Bonechi C, Donati A, Baglioni P.J.Phys.Chem.B, 1997, 101: 5094-5099
[54] Okumura Y, Ito K, Hayakawa R.Phys.Rev.Lett., 1998, 80(22): 5003-5006
[55] Saito M, Shimomura T, Okumura Y, Ito K.J.Chem.Phys., 2001, 114(1): 1-3
[56] Shimomura T, Funaki T, Ito, K, Choi B K, Hashizume T.J.Incl.Phenom.Macrocycl.Chem., 2002, 44: 275-278

[1] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[2] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[3] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[4] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[5] 廖荣强, 刘满朔, 廖霞俐, 杨波. 基于环糊精的智能刺激响应型药物载体[J]. 化学进展, 2015, 27(1): 79-90.
[6] 韩彬, 廖霞俐, 杨波. 基于环糊精的靶向药物传递系统[J]. 化学进展, 2014, 26(06): 1039-1049.
[7] 徐妮为, 刘梦艳, 洪诗斌, 颜蔚, 付继芳, 邓维. 基于环糊精构建的基因载体进展[J]. 化学进展, 2014, 26(0203): 375-384.
[8] 彭了, 冯岸超, 王宏, 张慧娟, 袁金颖. 基于β-环糊精和二茂铁的电压刺激响应体系[J]. 化学进展, 2013, 25(11): 1942-1950.
[9] 白阳, 范晓东*, 穆承广, 杨臻, 王丹, 张海涛. 含环糊精链节的拓扑高分子[J]. 化学进展, 2013, 25(0203): 363-369.
[10] 谢锐, 杨眉, 程昌敬, 姜晶, 褚良银. 分子识别与温度响应复合智能材料[J]. 化学进展, 2012, 24(0203): 195-202.
[11] 辛飞飞, 张华承, 孙涛, 孔丽, 李月明, 郝爱友. 基于超分子环糊精两亲分子的敏感型囊泡体系[J]. 化学进展, 2012, 24(0203): 414-422.
[12] 孙涛, 李月明, 辛飞飞, 李尚洋, 侯月会, 郝爱友. 基于环糊精和偶氮化合物的光控可逆超分子体系[J]. 化学进展, 2012, 24(01): 70-79.
[13] 董海青, 李永勇, 李兰, 时东陆. 生物医用类环糊精/聚合物(准)聚轮烷[J]. 化学进展, 2011, 23(5): 914-922.
[14] 张华承, 辛飞飞, 李月明, 郝爱友, 安伟, 孙涛. 超分子环糊精两亲分子[J]. 化学进展, 2010, 22(12): 2276-2281.
[15] 孙涛 张华承 李月明 辛飞飞 孔丽 郝爱友. 基于环糊精和富勒烯偶联体系的新型分子机器*[J]. 化学进展, 2010, 22(11): 2156-2164.