English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1915-1928 前一篇   后一篇

• 综述与评论 •

卟啉化合物在有机染料敏化太阳能电池中的研究

汤雅芸1, 梅群波1*, 徐志杰1, 凌启淡1,2*   

  1. 1. 有机电子与信息显示国家重点实验室培育基地 南京邮电大学信息材料与 纳米技术研究院 南京 210046;
    2. 福建师范大学化学与材料学院 福州 350007
  • 收稿日期:2010-12-01 修回日期:2011-03-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 梅群波, 凌启淡 E-mail:iamqbmei@njupt.edu.cn; lingqd@fjnu.edu.cn
  • 基金资助:

    国家自然科学基金(60976019, 50803027),教育部“新世纪优秀人才”支持计划(NCET-07-0446),高校博士学科点专项科研基金(20093223110002),南京市留学回国人员科技活动择优资助项目(TJ208027),江苏省高校优秀科技创新团队资助项目(TJ207035),江苏省国际科技合作(BZ2008116).

Application of Porphyrin Compounds in Organic Solar Cells

Tang Yayun1, Mei Qunbo1*, Xu Zhijie1, Ling Qidan1,2*   

  1. 1. Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China;
    2. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
  • Received:2010-12-01 Revised:2011-03-01 Online:2011-09-24 Published:2011-09-02

卟啉化合物具有共轭的平面结构、良好的电子缓冲性和光电磁性,特别在可见光区和近红外区域具有优越的光捕获特性。近年来,卟啉类化合物以其优异的特性在有机太阳能电池领域,尤其是染料敏化太阳能电池中得到了广泛的应用研究。人们通过对卟啉分子进行改性来提高相应的太阳能电池效率,比如增加分子的共轭度、在分子上引入长烷基链、引入功能化小分子如三乙胺和噻吩等等,并取得了不错的效果。此外,卟啉化合物在本体异质结太阳能电池中的应用也越来越广泛。本文综述了最近几年各种卟啉化合物在有机太阳能电池中的应用,讨论了卟啉化合物的结构对太阳能电池光电性能的影响。

Porphyrin compounds are featured with their planar and conjugated structures. They exhibit good electronic, optical and magnetic properties. Especially, they exhibit excellent light-harvesting character in the visible and near infrared region. In recent years, porphyrin compounds have been extensively studied in the field of organic solar cell, especially in dye-sensitized solar cells for their excellent properties. Modifying the porphyrin molecule to improve the efficiency of the corresponding solar cells, such as the increasing degree of molecular conjugation in the molecule, the introduction of long alkyl chains, the introduction of functional small molecules such as triethylamine and thiophene and so on, and excellent results has been achieved. In addition, the porphyrin compounds in the bulk heterojunction solar cells application is also more extensive. This paper reviews the application of various porphyrin compounds in organic solar cells for the past few years. It mainly focuses on the relationship of porphyrin structures and the performance of solar cells.

Contents
1 Introduction
2 Basic principles of organic solar cells
2.1 Introduction of organic solar cells
2.2 Evaluation parameters of solar cells
3 Application of porphyrin compounds in organic solar cells
3.1 Porphyrin dye-sensitized solar cells
3.2 Porphyrin bulk heterojunction solar cells
3.3 Porphyrin dye-sensitized bulk heterojunction solar cells
4 Outlook

中图分类号: 

()

[1] Armaroli N, Balzani V.Angew.Chem.Int.Ed., 2007, 46: 52-66
[2] Zhan X, Zhu D.Polym.Chem., 2010, 1: 409-419
[3] Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L.Adv.Mater., 2010, 22: 1-4
[4] Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L.Jpn.J.Appl.Phys.Lett., 2006, 45: 638-640
[5] Grätzel M.Inorg.Chem., 2005, 44: 6841-6851
[6] Tachibana Y, Haque S, Mercer I, Durrant J, Klug D.J.Phys.Chem.B, 2000, 104: 1198-1205
[7] Tachibana Y, Rubtsov I, Montanari I, Yoshihara K, Klug D, Durrant J.J.Photochem.Photobiol.A: Chemistry, 2001, 142: 215-220
[8] Gervaldo M, Fungo F, Durantini E, Silber J, Sereno L, Otero L.J.Phys.Chem.B, 2005, 109: 20953-20962
[9] Imahori H, Umeyama T.J.Phys.Chem.C, 2009, 113: 9029-9039
[10] Wang X F, Tamiaki H.Energy Environ.Sci., 2010, 3: 94-106
[11] Ooyama Y, Harima Y.Eur.J.Org.Chem., 2009, 2009: 2903-2934
[12] Wang Q, Campbell W, Bonfantani E, Jolley K, Officer D, Walsh P, Gordon K, Humphry-Baker R, Nazeeruddin M, Grätzel M.J.Phys.Chem.B, 2005, 109: 15397-15409
[13] Campbell W, Jolley K, Wagner P, Wagner K, Walsh P, Gordon K, Schmidt-Mende L, Nazeeruddin M, Wang Q, Grätzel M, Officer D.J.Phys.Chem.C, 2007, 111(32): 11760-11762
[14] Lind S, Gordon K, Gambhir S, Officer D.Phys.Chem.Chem.Phys., 2009, 11: 5598-5607
[15] Tanaka M, Hayashi S, Eu S, Umeyama T, Matano Y, Imahori H.Chem.Commun., 2007, 2007: 2069-2071
[16] Hayashi S, Tanaka M, Hayashi H, Eu S, Umeyama T, Matano Y, Araki Y, Imahori H.J.Phys.Chem.C, 2008, 112: 15576-15585
[17] Eu S, Hayashi S, Umeyama T, Matano Y, Araki Y, Imahori H.J.Phys.Chem.C, 2008, 112(11): 4396-4405
[18] Kira A, Matsubara Y, Iijima H, Umeyama T, Matano Y, Ito S, Niemi M, Tkachenko N, Lemmetyinen H, Imahori H.J.Phys.Chem.C, 2010, 114: 11293-11304
[19] Imahori H, Hayashi S, Hayashi H, Oguro A, Eu S, Umeyama T, Matano Y.J.Phys.Chem.C, 2009, 113: 18406-18413
[20] Imahori H, Matsubara Y, Iijima H, Umeyama T, Matano Y, Ito S, Niemi M, Tkachenko N, Lemmetyinen H.J.Phys.Chem.C, 2010, 114: 10656-10665
[21] Liu Y, Xiang N, Feng X, Shen P, Zhou W, Weng C, Zhao B, Tan S.Chem.Commun., 2009, 18: 2499-2501
[22] Eu S, Hayashi S, Umeyama T, Oguro A, Kawasaki M, Kadota N, Matano Y, Imahori H.J.Phys.Chem.C, 2007, 111: 3528-3537
[23] Lin C, Lo C, Luo L, Lu H, Hung C, Diau E.J.Phys.Chem.C, 2008, 113: 755-764
[24] Lin C, Wang Y, Hsu S, Lo C, Diau E.J.Phys.Chem.C, 2009, 114: 687-693
[25] Lo C, Hsu S, Wang C, Cheng Y, Lu H, Diau E, Lin C.J.Phys.Chem.C, 2010, 114(27): 12018-12023
[26] Lu H, Mai C, Tsia C, Hsu S, Hsieh C, Chiu C, Yeh C, Diau E.Phys.Chem.Chem.Phys., 2009, 11: 10270-10274
[27] Hsieh C, Lu H, Chiu C, Lee C, Chuang S, Mai C, Yen W, Hsu S, Diau E, Yeh C.J.Mater.Chem., 2010, 20: 1127-1134
[28] Lee C, Lu H, Lan C, Huang Y, Liang Y, Yen W, Liu Y, Lin Y, Diau E, Yeh C.Chem.Eur.J., 2009, 15: 1403-1412
[29] Lu H, Tsai C, Yen W, Hsieh C, Lee C, Yeh C, Diau E.J.Phys.Chem.C, 2009, 113: 20990-20997
[30] Park J, Lee H, Chen J, Shinokubo H, Osuka A, Kim D.J.Phys.Chem.C, 2008, 112: 16691-16699
[31] Rochford J, Chu D, Hagfeldt A, Galoppini E.J.Am Chem.Soc., 2007, 129: 4655-4665
[32] Tacconi N, Chanmanee W, Rajeshwar K, Rochford J, Galoppini E.J.Phys.Chem.C, 2009, 113: 2996-3006
[33] Lee C, Hupp J.Langmuir, 2010, 26: 3760-3765
[34] Jensen R, Van Ryswyk H, She C, Szarko J, Chen L, Hupp J.Langmuir, 2010, 26: 1401-1404
[35] Dy J T, Tamaki K, Sanehira Y, Nakazaki J, Uchida S, Kubo T, Segawa H.Electrochemistry, 2009, 77: 206-209
[36] Takahashi K, Takano Y, Yamaguchi Takahashi K, Takano Y, Yamaguchi T, Nakamura J, Yokoe C, Murata K.Synth.Met., 2005, 155: 51-55
[37] Takechi K, Shiga T, Motohiro T, Akiyama T, Yamada S, Nakayama H, Kohama K.Sol.Energy Mater.Sol.Cells, 2006, 90: 1322-1330
[38] Hagemann O, Jorgensen M, Krebs F.J.Org.Chem, 2006, 71: 5546-5559
[39] Huang X, Zhu C, Zhang S, Li W, Guo Y, Zhan X, Liu Y, Bo Z.Macromolecules, 2008, 41: 6895-6902
[40] Huang X, Shi Q, Chen W Q, Zhu C, Zhou W, Zhao Z, Duan X M.Zhan X, Macromolecules, 2010, 43: 9620-9626
[41] Tkachenko N, Chukharev V, Kaplas P, Tolkki A, Efimov A, Haring K, Viheriälä J, Niemi T, Lemmetyinen H.Appl.Surf.Sci., 2010, 256(12): 3900-3905
[42] Kira A, Tanaka M, Umeyama T, Matano Y, Yoshimoto N, Zhang Y, Ye S, Lehtivuori H, Tkachenko N, Lemmetyinen H, Imahori H, J.Phys.Chem.C, 2007, 111: 13618-13626
[43] Subbaiyan N K, Obraztsov L, Wijesinghe C A, Tran K, Kutner W, D'Souza F.J.Phys.Chem.C, 2009, 113: 8982-8989
[44] Subbaiyan N, Wijesinghe C, D'Souza F.J.Am.Chem.Soc., 2009, 131: 14646-14647
[45] Hasobe T, Fukuzumi S, Kamat P.J.Phys.Chem.B, 2006, 110: 25477-25484
[46] Kongkanand A, Domínguez R, Kamat P.Nano Lett., 2007, 7: 676-680
[47] Pagona G, Sandanayaka A, Hasobe T, Charalambidis G, Coutsolelos A, Yudasaka M, Iijima S, Tagmatarchis N.J.Phys.Chem.C, 2008, 112: 15735-15741

[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[4] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[5] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[6] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[7] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[8] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[9] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[10] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[11] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[12] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[13] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[14] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.
[15] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.