English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1906-1914 前一篇   后一篇

• 综述与评论 •

锂陶瓷氚增殖剂的中子辐照性能与产氚行为

肖成建, 陈晓军, 康春梅, 汪小琳*   

  1. 中国工程物理研究院核物理与化学研究所 绵阳 621900
  • 收稿日期:2010-11-01 修回日期:2011-01-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 汪小琳 E-mail:xlwang@caep.ac.cn
  • 基金资助:

    中国工程物理研究院科学发展基金(No.2010B0301035)和国家磁约束核聚变能研究专项(No.2010GB112004)资助

Material Properties and Tritium Release Behavior of Neutron-irradiated Ceramic Tritium Breeders

Xiao Chengjian, Chen Xiaojun, Kang Chunmei, Wang Xiaolin*   

  1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
  • Received:2010-11-01 Revised:2011-01-01 Online:2011-09-24 Published:2011-09-02

D-T聚变堆采用氚增殖剂与中子反应生成氚来保证其燃料的“自持”。Li2O、LiAlO2、Li2ZrO3、Li2TiO3和Li4SiO4等锂陶瓷材料由于具有良好的化学稳定性、机械力学性能和产氚性能等优点,是聚变堆主要的候选产氚材料,而其在中子辐照环境下的各种性能和行为是氚增殖包层模块设计所关心的重要内容。本文介绍了国际上锂陶瓷产氚增殖剂的辐照实验研究概况,对材料的辐照性能(材料稳定性、热导性、离子电导性和活化性能等)、堆内/堆外产氚行为、影响氚在陶瓷材料中扩散或释放的各种因素,以及近来关注较多的辐照缺陷与释氚行为的相互关系等方面进行了归纳、分析和总结,同时针对中国确定的氦冷固态球床包层模块的技术路线,提出了需要广泛而系统地开展锂陶瓷基础研究的建议,指出今后国际上氚增殖剂的研究重点是高燃耗(>10%)和高荷载破坏情况下锂陶瓷材料的辐照产氚性能,以及聚变堆氚增殖包层工程条件因素,如磁场、等离子体诱发电流和中子倍增剂等对锂陶瓷小球释氚行为的影响。

For securing an adequate tritium supply to sustain the D/T fusion reaction, Lithium-containing ceramics,such as Li2O,LiAlO2,Li2ZrO3,Li2TiO3,Li4SiO4,are considered strongly as tritium breeding materials for fusion reactor blankets.Lithium ceramic tritium breeders have favorable chemical behavior,good thermomechanical properties and excellent tritium release performance, thereinto their tritium release performance in neutron irradiation is the primary technique target in the test blanket module. Many aspects are sumed up in this paper:properties of the irradiated ceramic tritium breeders (chemical stability, thermomechanical properties, ion conductivity, neutron activation and so on), tritium release behavior in pile and out of pile,influence factors on tritium diffuse or transfer in ceramic breeders,and correlation between tritium release and annihilation of irradiation defects. In support of the development of Helium Cooled Pebble Bed Test Blanket Module(HCPB TBM), many fundamental research subjects need further study in china. In the future,much effort work should focus on the lithium ceramics' properties at high burnup(>10%) and at high damage rates. In particular, the tritium release behaviour at integrated engineering conditions in the test blanket of ITER, including neutron multiplier, magnetic field, plasma induced current and so on, remains to be known.

Contents
1 Introduction
2 Oropertie of irradiated ceramic breeder
2.1 Effects of irradiation on structure and composing
2.2 Effects of irradiation on ion conductivity
2.3 Effects of irradiation on thermal conductivity and strength
2.4 Neutron activation
3 Tritium release behavior of ceramic breeder
3.1 Influence of Neutron fluence on tritium form
3.2 Influence of magnetic field on tritium release behavior
3.3 Influence of temperature on tritium release behavior
3.4 Influence of carrier gas on tritium release behavior
3.5 Influence of grain dimension on tritium release behavior
3.6 Influence of impurity on tritium transferring
3.7 Influence of catalytically active metal on tritium release behavior
3.8 Experiment system on tritium release behavior
4 Defect and irradiation behavior
4.1 Effect of oxygen vacancies on tritium releasing
4.2 Influence of lithium-ion vacancies on tritium release behavior
5 Conclusion

中图分类号: 

()

[1] 冯开明(Feng K M).核聚变与等离子体物理(Nuclear Fusion and Plasma Physics), 2006, 26, (3): 161-169
[2] Rouxa N, Tanaka S, Johnson C E, Verral R.Fusion Eng.Des., 1998(41): 31-38
[3] Johnson C E, Nodab K, Roux N.J.Nucl.Mater., 1998, (258/263): 140-148
[4] Hollenberg G W, Watanabe H, Hastings I J.J.Nucl.Mater., 1992, 191/194: 23-29
[5] 郝嘉琨(Hao J K)编著.聚变堆材料(Nuclear Reactor Material).核材料科学与工程丛书().北京: 化学工业出版社(Beijing: Chemical Industry Press ), 2006, 12: 134-135
[6] Til S, Magielsena A J, Stijkela M P, Cobussena H L, Petten N R G.Fusion Eng.Des., 2010, 85(7/9): 1143-1146
[7] Kleykamp H.J.Nucl.Mater., 1999, 273: 171-176
[8] Hollenberg G W.Advances in Ceramics, 1989, 25: 183-189
[9] Piazza G, Erbe A, Rolli R.J.Nucl.Mater., 2004, 329/333: 1260-1265
[10] Johnson C E, Kondo T, Roux N, Tanaka S, Vollath D.Fusion Eng.Des., 1991, 16: 127-139
[11] H.Kleykamp.J.Nucl.Mater., 1999, 273: 171-176
[12] 毛世奇(Mao S Q).原子能科学技术(Atomic Energy Scienceand Technology), 1998, 32(5): 451-454
[13] Nodo K, Ishii Y, Ohno H, Watanabe H, Matsui H.Advances in Ceramics, 1989, 25: 155-164
[14] Roux N, Johnson C, Noda K.J.Nucl.Mater., 1992, 191/194: 15-22
[15] Schumacher G, Dalle D M, Huber R.Fusion Engrg.Des., 1991, 17: 31-36
[16] Tsuchiya K, Kawamura H, Tanaka S.2006, 81: 1065-1069
[17] Moritani K, Magari T, Moriyama H.Fusion Eng.Des., 1998, 39/40: 675-683
[18] Slagle O D, Kurasawa T, Verrall R A.J.Nucl.Mater., 1992, 191/194: 214-218
[19] 杨本福(Yang B F), 万竟平(Wan J P), 曹小华(Cao X H), 罗顺忠(Luo S Z), 赵鹏骥(Zhao P J).原子能科学技术(Atomic Energy Scienceand Technology), 1999, 33(5): 441-445
[20] Tsuchiya K, Kikukawa A, Yamaki D.Fusion Eng.Des., 2001, 58/59: 679-682
[21] Chikhray Y, Shestakov V, Maksimkin O.J.Nucl.Mater., 2009, 386/388: 286-28
[22] Kudo H, Okuno K.J.Nucl.Mater., 1981, 101: 38-43
[23] Moritani K, Moriyama H.J.Nucl.Mater, 1997, 248: 132-139
[24] Okuno K, Kudo H.J.Nucl.Mater., 1986, 138: 31-35
[25] Moritani K, Magari T, Moriyama H.Fusion Eng.Des., 1998, 39/40: 675-683
[26] Grishmanov V, Anaka S T, Tiliks J.Fusion Eng.Des, 1998, 39/40: 685-691
[27] Kizane G, Tiliks J, Vitins A.J.Nucl.Mater., 2004, 329/333: 1287-1290
[28] Moritani K, Magari T, Moriyama H.Fus.Eng.Des., 1998, 675: 39-40
[29] Casadio S, van der Laan JG, Alvani C, Magielsen A J, Stijkel M P.J.Nucl.Mater, 2004, 329/333: 1252-1255
[30] Piazza G, Erbe A, Rolli R, Romer O.J.Nucl.Mater., 2004, 329/333: 1260-1265
[31] Kizne G, Tīliks J, Vítin A, Tiliks J, Rudzitis J.Fusion Eng.Des., 2005, 75/79: 897-901
[32] Moriyama H, Anaka S, Noda K.J.Nucl.Mater., 1998, 258/263: 587-594
[33] Kwast H.Japan-US Workshop P195 and International Energy Agency Speciallist' Workshop Proceedings of the International Workshop on Ceramic Breeder Blanket Internations.Tokyo Japan, 1992.54-67
[34] Wedemeyer H, Werle H, Gunther E.J.Nucl.Mater, 1992, 191/194: 240-242
[35] Kinjyoa T, Nishikawaa M, Yamashitaa N.Fusion Eng.Des., 2007, 82: 2147-2151
[36] Taniguchi M, Tanaka S.J.Nucl.Mater., 1998, 258/263: 531-536
[37] Wedemeyer H, Werle H, Gunther E.J.Nucl.Mater, 1992, 191/194: 240-242
[38] Bertone P C.J.Nucl.Mater., 1988, 151: 281-292
[39] Tsuchiya K, Kikukawa A.Fusion Eng.Des, 2001, 58/59: 679-682
[40] Kopasz J P, Tam S W.J.Nucl.Mater, 1991, 179/181: 816-819
[41] Munakata K, Shinozaki T, Inoue K.J.Nucl.Mater., 2009, 386/388: 1091-1094
[42] Narisato Y, Munakata K, Koga A.J.Nucl.Mater, 2004, 329/333: 1370-1373
[43] Munakata K, Baba A, Kawagoe T.Fusion Fusion Eng.Des., 2000, 49/50: 621-628
[44] Mochizuki K, Munakata K, Wajima T.Fusion Engineering and Design, 2010, 85(7/9): 1185-1189
[45] Tanaka S, Terai T, Yamawaki M.Nuclear Energy, 1998, 32(1/2): 71-95
[46] Oyaidzu M, Kimura H, Yoshikawa A.Fusion Eng.Des., 2006, 81: 583-588
[47] Nishikawa Y, Oyaidzu M, Yoshikawa A.J.Nucl.Mater., 2007, 367/370: 1371-1376
[48] Abramenkovs A, Tiliks J, Kizane G.J.Nucl.Mater., 1997, 248: 116-120
[49] Oyaidzu M, Nishikawa Y, Suda T.J.Nucl.Mater., 2008, 375: 1-7
[50] Oyaidzu M, Morimoto Y, Kodam H.Sasaki M, Kimura H, Munakata K, Okada M, Kawamoto K, Moriyama H, Nishikawa M, Okuno K J.Nucl.Mater., 2004, 329/333: 1313-1317
[51] Okuno K, Kudo H.Fusion Eng.Des., 1989, 8: 355-358
[52] 陈晓军(Chen X J), 王和义(Wang H Y), 罗阳明(Luo Y M), 冯开明(Feng K M), 温兆银(Wen Z Y).核聚变与等离子体物理(Nuclear Fusion and Plasma Physics), 2006, 26(3): 210-216
[53] Zhu D Q, Peng S M, Chen X J, Gao X L, Yang T Z.J.Nucl.Mater., 2010, 396: 245-250
[54] Wu X W, Wen Z Y, Xu X G, Liu Y.Fusion Eng.Des., 2010, 85: 222-226

No related articles found!